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EQUATIONS OF MOTION OF AN OVERHUNG SHAFT
INCLUDING DISC GYROSCOPIC EFFECTS

The following derivation is adopted from the original derivation of F.M. Diment-
berg “Flexural Vibrations of Rotating Shafts,” Butterworths 1961, pp. 61-67. The
derivation is based upon the influence coefficient method. Figure 1 represents an
overhung disk on a massless elastic shaft. The shaft is supported by simple bearings
of infinite stiffness. The bearing span is L and the disk overhung distance is a.

If rotor acceleration is ignored, then the motion of the disk is described by 4
equations of motion. These equations relate the z,y translations of the disk and ¢_
and (by which represent the angular displacements or rotations of the disk.

In the derivation of the equations of motion for the overhung disk, a right handed
coordinate system will be used. This is the standard procedure used in finite element
analysis in order for the stiffness matrix to be positive and symmetric. Therefore
positive values of X and Y represent positive displacements respectively of the disk
from the z and y axes, respectively. Likewise, positive rotations ¢, and d)y represent
small rotations of the disk about the z and y axes, respectively.

In this derivations of the overhung disk including gyroscopic moments, as adopted
from Dimentberg, small displacements and rotations are assumed. This linearizes
the equations of motion. If large displacements and rotations are assumed, then the
Eulerian angles are normally used. These angles are expressed in a rotating coordinate
system and represent the disk rotation, precession and nutation angles. The use
of the standard Eulerian angles for rotor dynamics is undesirable as this leads to
nonlinear equations of motion. If the assumption of small disk angles is assumed, then
Dimentberg, Timoshenko, and Yamamoto have shown that the gyroscopic equations
may be represented by linearized equations with the rotations expressed in an absolute
reference frame.

The deflections and rotations at the overhung disc are expressed in terms of the
forces and moments acting on the disc for the z — z plane as shown in Figure 2.
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The deflection and slope y and @_ of the shaft for the y — z plane are given by
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Fig. 1 Schematic of Overhung Rotor
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(b) Y-Z plane of overhung shaft showing force and moment P, and M,

Fig. 2 Overhung Shaft With Reaction Forces and Moments



The terms P, , and M, , represent the external forces and moments acting on the
shaft at the disk overhang location. The right-hand rule is used for both the forces
and bending moments acting at the end of the shaft.

The shaft deflections and rotations at the overhung disk location may be expressed
in matrix form using the four influence coeflicients a;;.

The influence coefficients are defined as

_ a® N a’l _ B a? N al
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At this point the deflections of the shaft in the z — z and y — z planes are uncoupled
from each other. The deflections and rotation in the z — z plane may be expressed
in terms of the influence coefficients as

X

a1 Pp+ a2 M,y }
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In matrix form this would be expressed as

MEE

Where

and for the y — 2z plane

Where



The influence coefficient matrix [a] may be inverted to obtain the shaft stiffness

matrix [K] such that
By G
= (8)
F, a2

The stiffness coeflicients K;; for the overhung shaft are as follows:

Kll K12

K12 K

Ko = 12E1 <3a+L) K — _6EI (3a+2L)
= 3 3a+4L ’ 1z = a? 3a+4L

Ko - 6E1 (3a+2L> . _ 4FE]1 <3a+3L)
a - a? 3a+4L ' 27y 3a +4L

Solving the system equations with respect to P, and M,, the following is obtained
for the £ — z plane of bending of the shaft:

12E1 [ 3a+ L 6FEI (3a+2L
= X — — -
F. ad <3a + 4L) a2 (3a T 4L> ¢y Ky X + Ky ¢y (9)
6FE1 (3a+ 2L 4F1 (3a+ 3L A
My=—"0 (3a + 4L> X+ (3a + 4L> ¢y =KnX+En¢,  (10)

Similarly, using signs which agree with the system of co-ordinates, for the y — 2z plane

of bending of the shaft:

Py

12EI /3a+ L 6EI /3a+2L )
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Disk Dynamical Forces and Moments

The internal reaction forces and moments acting on the disk will be replaced by the
external forces and moments due to damping and disk unbalance and the dynamical
or inertia forces and moments acting on the shaft.

From Newton’s second Law of Motion

ZFexternal =Mma



or Zﬁezternal + F-"z"nert‘ia =0 (13)

For the z direction the external forces F, are

Fy cxternal = Me,w?coswt — Cyg X
Where C; = disk damping ; €, = mass unbalance eccentricity.
The inertia force in the z direction is
Fr inertia = —mMm X

Therefore the reaction load P, is represented by

P,=-mX — C;X + me,w? cos wt (14)

This expression includes a rotating unbalance at the end of the disk in which the disc
mass center is displaced from the axis of rotation by e,.

The reaction force P, in the vertical direction is given by

P,=-mY — C;Y + me,w?sinwt (15)

For the rotational degrees of freedom, the equations of motion are given by

— -
Mezte'r'na.l + Minertia =0

dH

Where Mz’nertia = - 'Ft'

(16)

For small angular rotations of the disk, as shown in Fig. 3, the angular rotations of
the disk, the angular momentum vector may be expressed as

H=Lwk+ Lo, 7+ 1,7 (17)

The total time rate of change of the angular momentum vector is given by

dH OH . i,
R e o XH 1
dt ( 8t )Iocal Wik ( 8)



Fig. 3 Disk Angular Displacements and Moments for Small Rotations
. (Dimentberg).



Where Wgig = ('ﬁxﬁ— d)y;

—

dH - - . o
_— = IPWIC + It ¢xl + It ¢y]
+(¢.7+9,7) X (Lo +1Ld,T+whF)
Assuming constant angular velocity w we obtain for % the following;:

a;_I;I = (Ités:: + wlpéy) i+ (Ii&sy - WIP(;SZ) ; (19)

Therefore the corresponding values of M, and M, are

M:z' tnertta — — (L&z + wlpd)y) (20)

My inerio = — (1§, — wI,$,) (21)

An alternative derivative to the time rate of change of the angular momentum
vector H is to write the angular moment vector components along the fixed X and
Y axes assuming small rotation angles. As illustrated by Dimentberg shown in Fig.
4, angular momentum components in the X and Y directions are given by

H, = Lé,+Lwo, (22)
H =1L¢ -Luwe, (23)
M= o1 1w, 2
M, = dgy L, —Lw, (25)



When small rotations are assumed the moment equations are linearized expres-
sions in terms of the rotation angles as measured in a fixed coordinate system. The
equations for the time rate of change of angular momentum as derived in Eqs. 24
and 25 are identical to those given in Egs. 20 and 21.
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Fig. 4 Disk Angular Momentum Vector for Small Rotations
(Dimentberg).



The disk kinetic eneregy as expressed in a fixed cooridnate system may be ex-
pressed as the sum of the kinetic energy of translation plus the kinetic energy of
rotation, which includes the gyroscopic effect

T = Ttmnslations + Trotations (26)
T = Llm (X2+Y2)

+ 1 (¢z + ¢§) +wl, (6,9, - 6,0,

Disk Equations of Motion

Substituting the expressions P;, P, M, and M, from Equations (14,15,20,21) in Equa-
tions (9-12), the differential equations for the free transverse vibrations of a rotating
shaft at the end when friction forces are absent are obtained.

mX + CyX + KuX + K130, = me,w? cos wt (28)
mY + C;Y + KnY — K19, = me,w? sin wt (29)
Lé, — Lwo, + KnX + Kud, =0 (30)
Lé, + Lwo, — KnY + Knd, =0 (31)

The four equations of motion may be combined into two complex equations of motions
because of the symmetry of the shaft stiffness matrix.

Let Z=X+iY ; ¢=¢ —ig,

The complex equations of motion including rotor radial unbalance €, and disk
skew T are

mZ + CdZ+K11Z+K12¢:mewzeiwt (32)

Lo — iwl,d+KnZ+ Kyud=T1w? (I, L) =2 (33)

10



Undamped Forward and Backward Critical Speeds

In the absence of disk unbalance and external damping, it is assumed that the
free undamped motion obeys harmonic motion of the form

z=2ZeM ; ¢p=0e . (34)

For the determination of the rotor undamped forward and backward critical
speeds, the rotor damping and rotor unbalance are ignored. A harmonic motion
of A rad/sec is assumed. Positive values of A relate to forward critical speeds. Neg-
ative values of A\ correspond to backward critical speeds. For the case where A = w,
this is referred to as the synchronous critical speeds.

Substituting Eq.31 in Eqgs.32 and 33, the characteristic is obtained from the equations
of motion for free vibrations.

—-mA2 + Kll K12
~0 (35)
Ko —ILN 4+ LwA + Koy

Expanding the determinant to form the characteristic equation

AMobye (ﬁ+£) Nyl Eu oy KuKn - Kh o
It It It m Itm

For the case of a disc (I, = 21;) the equation has the form:

KKy — K122
ILim

A 2w)® = (%+ ﬂ) )\2+2%w/\+

i =0  (36)

Equation 35 has two positive and two negative roots. The positive roots represent
the forward critical speeds and the negative roots of A represent the backward critical
speeds. Dimentberg shows that the equivalent backward modes of A may be obtained
also by a sign change of w. When w is zero, there are two natural frequencies. These
natural frequencies are referred to as the planar modes of motion. These would be the
corresponding modes that would be obtained by a stationary rap test on the rotor.

The synchronous critical speeds are those values of w which are simultaneously
equal to the frequencies of the natural vibrations of the rotating shaft. Assuming
that w = %, instead of Eq. 34 then follows

Kz _ Ku ) ey KnKn— Ky 3)

4 re—
wi<1t¢ m

Eq. 37 with the ‘upper’ signs has one real root (with plus or minus)
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o 1/Kn Ku) (1(22 K11)2 AKZ,
w’f"\l 2[( I, m \} L, " m Im (38)

This is the 1st forward synchronous critical speed

| 1/ Kn K22> | (Ku K22>2 4KT
“1e = \l 2 [( m T3, m 3L/ " 3Lm (39)
This is the rotor 1st backward critical speed.
_ 1 1{11 K22> ( I{ll 1(22>2 4‘[{122
Wab = J 2 [( m " 3L) T\ m "3/ T3m (40)

This is the rotor 2nd backward critical speed.

When the signs of w and A are the same, forward precession takes place; when
they are different, reverse precession takes place. Consequently, a rotating shaft with
a thin disc has one critical speed of forward precession (38) and two critical speeds
of reverse precession (39), (40). These values satisfy the inequality

Waop > Wif > Wy (41)
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Example Calculation of the Forward and Backward Critical Speeds of an
Overhung Shaft-Rigid Bearings

The derivation of the forward and backward critical speeds as presented by Di-
mentberg assumes that the bearings are rigid and that the precessive motion is circular
in either the forward or the backward direction.

As an example, consider a uniform shaft supported on two rigid bearings. The
span between the bearings is 60 cm (23.622 in.) and the overhand distance is a = 30
cm (11.81 in.). The shaft diameter is d = 2 cm (.787 in.). The disk diameter is D =
50 cm (19.685 in.) and the thickness h = 1 cm.

The second area moment of inertia I of the shaft is

7 d* 70.7874
I = = = . in?
61 61 0.01882 in

E = 30E6 1b/in® ; EI = 564,637 Ib/in’

The shaft stiffness coefficients are given by

_ 12E1 (3a+ L\ _ EI 3 _ :
Ky = (3a+4L) =5-45 o =0-333 x 10° kg/cm = 1,866 1b/in

as

6EI /3a+2L EI
K - =79 —y = — 3 = —
2T g2 <3a+4L) 3-82—5 =-T-0x10"kg 15,477 1b
_ 4FI (3a+ 3L B EI_ , - '
Kn = — (3a+4L)_3 21— = 1796 x 10° kg — om = 155,560 Ib — in

The weight of the disk is

4
mD7h L 0.983 Ib/in® = 33.91 Ib

w =
The polar moment of inertia is given by

I —mRz-—gx
2 2—g

2 b — in?
%:1’643—111:4.256 b — sec? — in

386 in/sec’

For a thin disk, the transverse moment of inertia is given by
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mR> 822 1b —in’

T 3% ] > = 2.13 Ib — sec? — in
in/sec

It =
The calculated forward and backward critical speeds are given by

w1y = 70 rad/sec = 669 RPM
w1 = 50 rad/sec = 478 RPM
wap = 208.5 rad/sec = 1,991 RPM

Figure 5 represents the computed forward and backward critical speeds as derived
by Dimentberg. The intersection of the straight line A = w with the critical speed
plots represents the forward and backward modes. Note that with a rigid disk and no
shaft mass, the gyroscopic effect causes the second critical speed to increase at a rate
that the synchronous line A = w does not intersect with the second forward critical
plot. Thus for the ideal case of the overhung disk, as given in this example, there is
only one synchronous forward critical speed that can be excited by rotor unbalance.
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Fig. 5 Forward and Backward Critical Speeds of Overhung Rotor
(Dimentberg)
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A six-station model was generated using the CRITSPD-PC computer program to
simulate the undamped forward and backward critical speeds of the overhung rotor.
Critical speeds for the single-mass overhung rotor were computed with and without
shaft mass included. For example, without the consideration of shaft mass, there is
only one synchronous forward critical speed computed by the CRITSPD-PC program.

Table 1 represents the model for the single-mass overhung rotor. The disk was
assumed attached to the shaft by a rotational spring stiffness of 1.0E8 lb-in. The
external diameter of the disk is 19.685 in and the disk thickness is .3937 in. The
specific weight of steel of .283 Ib/in® was assumed. The value of the rotational spring
rate Kot of 1.0E8 1b-in treats the disk as if it were rigidly attached to the shaft.

In the first case, the bearing stiffnesses were assumed to be 1E7 1b/in. This value
of stiffness essentially represents a rigid support. Figure 6 represents the overhung
disk synchronous first critical speed including shaft mass. The first synchronous
critical speed is computed to be 668 RPM. The theoretical predicted value of the
first synchronous critical speed without shaft mass is shown to be 669 RPM. The
inclusion of shaft mass causes only a very slight reduction of the first critical speed.
The reason for this is that there is very little kinetic energy in the shaft as compared
to the kinetic energy of the disk.

The inclusion of shaft mass, however, has a profound effect on the second critical
speed. Without the inclusion of shaft mass in the model, there is no second critical
speed predicted. However, when the shaft mass is included, there is a second critical
speed predicted to be at 8,679 RPM as shown in Fig. 7. The kinetic energy of the
system is predominantly in the shaft at the center span between the bearings. The
overhung disk has become a nodal point where the deflection and slope approach
zero. This behavior is typical of the motion observed on gas turbines with overhung
fan sections. After the rotor speed exceeds the first critical speed, the fan section
becomes a nodal point. Therefore balancing at the fan or the overhung disk location
will have very little influence on the response at the second critical speed.

The forward and backward critical speeds for the overhung rotor were computed
for a rotor speed of 2,000 RPM. The value of the first critical speed increases slightly
in value as shown in the critical speed plot by Dimentberg in Fig. 5. For a rotor speed
of 2,000 RPM, the second forward critical speed, neglecting shaft mass, as showr in
Fig. 8 is 5,329 RPM. If the overhung rotor were in a gas turbine and were excited
by the high rotor critical speed at 5,300 RPM, then the second forward critical speed
could be excited.

Figure 9 represents the rotor backward first critical speed at 1,000 RPM. The
mode shape is similar to the rotor first forward or synchronous critical speed. At
1,000 RPM, the backward mode occurs at 358 RPM. The backward precessive motion
of the disk reduces the critical speed from the synchronous value of 669 RPM to 358
RPM. Figure 10 represents the overhung rotor second backward critical speed at
1,000 RPM. The mode shape is similar to the second forward critical speed except
that there

15



TABLE 1 CRITICAL SPEED MODEL OF OVERHUNG ROTOR

«== CRITSPD-PC INPUT DATA S8ET ----

Number of Mass Stations

Number of Bearings

Number of Attached Discs
Number of Offset Flexible Discs

[ S Y

ROTOR IDENTIFICATION: -
OVERHUNG ROTOR MODEL BASED ON DIMENTBERG MODEL~BACKWARD MODES- 2,000 RPM
RIGID DISK WITH NO SHAFT MASS - d = 2 CM , L=60 CM , A=30 CM

DISK =50 CM X 1 CN , K BEARINGS =5E3

INITIAL ROTOR PARAMETERS:

ENGLISH

Units In (ENGLISH, MKS, or SI) :

Units Out (ENGLISH, MKS, or SI) : ENGLISH
Number of Modes to Calculate (0 to 10) : 3
Calculate Shaft Gyroscopics (YES or NO) : NO
Calculate Shear Defomation (YES or NO) : NO
Global Value for Young's MNodulus 3 30E6
Global Value for Shaft Demnsity : 0.00

Convergence Criterion : 1E-6
F1=HELP; F2=SAVE FILE; F3=SAVE AND EXIT; F4=EXIT; ENTER=NEXT DATA FIELD

CRITSPD: File = OVHDIMEN.DAT Line = 21 Column = 1 INSERT OFF
Global Value for Young's Modulus : 30E6
Global Value for Shaft Density : 0.00
Convergence Criterion : 1E-6
Initial Shaft Z Coordinate : 0.0
FLEXIBLE OFFSET DISC PARAMETERS:
DISC DISC ROT EXT INT POLAR TRANS DIsC DISC DISC
LOC WEIGHT STIFF DIA DIA MOMENT MOMENT THICK DENS OFFSET
1 6 0 1.0E8 19.685 0.0 0.00 0.00 .3937 . 0.283 0.0
ATTACHED DISC PARAMETERS:
DISC DIsC DISC DISC DISC O=Left Justified
LOCATION DIAMETER THICKNESS DENSITY TYPE 1=Centered
1: 6 19.685 .3937 0.00001 1
ROTOR STATION PARAMETERS:
EXT STATION EXT INT POLAR TRANS SHAFT E
WEIGHT LENGTH DIA DIA MOMENT MOMENT DENS MOD
1: O .5 .787 0 o 0 0 1
2: O 11.81 .787 0 0 0 0 1
F1=HELP; F2=SAVE FILE; F3=SAVE AND EXIT; F4=EXIT; ENTER=NEXT DATA FIELD
CRITSPD: File = OVHDIMEN.DAT Line = 41 Column = 1 INSERT OFF
WEIGHT LENGTH ‘DIA DIA MOMENT MOMENT DENS MOD
1: O .5 .787 0 (o] 0 (4] 1
2: O 11.81 .787 0 (o} o 0 1
3: 0 11.81 .787 (] (o} 0 0 1
4: O 5.905 .787 0 0 0 (o] 1
$: O 5.905 .787 0 (o} 0 0 1
6 : O .2 .787 0 0 0 0 1

BEARING PARAMETERS:

BEARING BEARING SUPPORT SUPPORT
LOCATION STIFFNESS STIFFNESS WEIGHT
1: 2 SE3 0 0
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is considerably more amplitude at the overhung disk location. If the foundation is
excited at 2,300 RPM, then the 2nd backward whirl mode may be excited in the
absence of damping on the rotor. The excitation of the foundation in a planar mode
is similar to exciting the foundation by a simultaneous forward and backward rotating
vector. The backward rotating vector would excite the backward mode. Normally
with symmetric bearing stiffness characteristics, rotating unbalance will not excite
the backward rotor mode.

As an additional check of the critical speeds of the overhung rotor, the finite ele-
ment program DYROBES was used. The DYROBES finite element program has the
ability to compute the complex or damped eigenvalues of the system. By specifying
the rotor speed, the DYROBES program automatically computes the system forward
and backward complex eigenvalues and mode shapes. In the DYROBES program, a
bearing damping value of 0.1 lb-sec/in was used. Table 2 represents various forward
and backward critical speeds computed using the theoretical single-mass overhung
rotor equations, the CRITSPD program and the DYROBES program. Excellent
agreement between the CRITSPD and DYROBES programs was obtained for the
computed forward and backward modes of the overhung disk with and without shaft

mass.

TABLE 2 COMPARISON BETWEEN THEORETICAL OVERHUNG DISK
CRITICAL SPEEDS AND COMPUTER PREDICTIONS

Forward Modes | Backward Modes | Bearing Stiffness
RPM RPM 1b/in
Case | RPM | Shaft 1y 2 1, 2 K. Ky COMMENTS
Mass
Forward
1 | Variable | No | 676.7 — — — 108 108 Synchronous
CRITSPD
Forward
2 | Variable | Yes 668 8,679 — — 108 108 Synchronous
CRITSPD
3 Variable | No | 670 — 479 1,983 Rigid Rigid Dimentberg
Syn. For. & Back
4 2,000 No 907 5,329 247.6 1,994 108 108 CRITSPD
For. & Back
5 2,000 No 907 5,324 247.8 1,994 107 107 DYROBES
Complex Roots
Soft BRGs
6 2,000 No — — 240.7 1,612 5E3 5E3 CRITSPD
Backward Modes
Soft BRGs
7 2,000 No 795 5,049 240.9 1,614 5E3 5E3 DYROBES
Complex Roots
Soft BRGS
8 2,000 Yes 785 4,951 240.4 1,591 5E3 5E3 DYROBES
6,517 Shaft Mass
9 2,000 No 818 5106 242 1,693 S5E3 10E3 DYROBES
BRG Asymmetry

CRITSPD-PC - Undamped critical speed analysis program by transfer matrix method
DYROBES - Finite element rotor program with QR method for complex roots
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OUERAUNG ROTOR MODEL BASED ON DINENTBERG MODEL-
RIGID DISK NITH SHAFT MASS - d = 2 ON, L=60 OX , A=30 X
DISK =58 CX X 1 CN, RIGID BEARINGS .
KODE §1 : Frequency = 11,13 HZ (668 RPY)
Kode is STRCHRONOUS

—1 U

Jllllllll’lll;ll;lilllllJlllIII_LlLl_llll
2y

-1 [S]

Fig. 6 Overhung Disk Synchronous 1st Critical Speed Including Shaft
Mass ; N; = 688 RPM

CUERHUNG ROTOR MODEL BASED ON DINENTBERG MODEL-
RIGID DISK MITH SHAFT MASS - d =2 0N, L=60 OF, 4=38 O
DISK =58 OX X 1 X, RIGID BEARINGS -
WDE 42 ¢ Frequency = 144,64 HZ (8679 RPY)
Node is SYRCHRONAUS
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Fig. 7 Overhung Rotor Second Critical Speed Including Shaft Mass
N, = 8,079 RPM
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OUERHUNG ROTOR WODEL BASED ON DINENTBERG MODEL-FORMARD NODES- 2,008 RPM
RIGID DISK HITH MO SHAFT MASS - d = 2 O, L-6@ O, A=38 CM
DISE =58 CN X 1 O, RIGID BEARINGS
MODE 82 ¢ Frequency = 88.82 HZ (5329 KPX)
Mode is FORMARD - Shaft Speed - 2000 RPN

.
- - - N \
N 07,27 mmmmmmmm el
N ¥
PSS 5

: : 42
- ~ N

- ~
-
; ;
— JR . L
| N N IS NN N N | | F Y N NS N N S N | | S U S SN [ [N PO | N T T N S |
L4 1e as

- Seale 1o In -~

Fig. 8 Overhung Disk 2nd Forward Critical Speed With No Shaft Mass
at N=2,000 RPM ; N,;=5,329 RPM

OERUNG ROTOR MODEL BASED O DINENTBERG MODEL-BACKNARD MODES-1008 RPY
. -RICID DISK-RITH N0 SHAFT MRS = d =2 O, LGB OH, A=30 X
- MSK =38 Q4X 1 O, RIGID BEARINGS

KDE 41 : Frequency = 5.96 HZ (358 1)
Kode is BACKNARD - Shaft Speed - 1000 AP

1 1 i
|

_‘11llllIll]lll]lllll‘],llllllllll_]lll!l]l

9

Fig. 9 Overhung Rotor Backward 1st Critical Speed at 1,000 RPM
N,;=350 RPM
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QUERHUNG ROTOR MODEL BASED ON DINENTBERG MODEL-BACKNARD MODES-1009 RPN
RIGID DISK NITH NO SHAFT MASS - d =2 (N, L=68 N, A=30 CM
DISK =59 CX X 1 (N, RIGID BEARINGS
WODE 2 ¢ Frequency = 38.33 HZ (2300 RPY)
Kode is BACKMARD - Shaft Speed - 1008 RPN

NN L el e

1|
’ 19 2y

Fig. 10 Overhung Rotor 2nd Backward Critical Speed at 1,000 RPM

N;»=2,300 RPM

OUERAUNG ROTOR MODEL BASED ON DINENTBERG MODEL-BACKMARD MODES- 2,008 RP
RIGID DISK WITH N0 SHAFT MRSS - d = 2 CN, L=60 OF , A=30 CX
DISK =38 04X 1 O, RIGID BEARINGS
MDE 2 ¢ Frequency = 33,23 HZ (1994 RM)
Kode is BACKMIRD - Shaft Speed - 2000 RPN

7NN

---------------------------------

‘_-..

JR

l

I
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- v

Fig. 11 Overhung Disk 2nd Backward Mode at 2,000 RPM
Ny,=1,994 RPM
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Forced Response of the Overhung Rotor with Bearing Asymmetry.

Figure 12 represents a schematic of the overhung rotor that was used in the DY-
ROBES program. In the DYROBES program, the horizontal and vertical values of
the bearing stiffness may be changed. In the critical speed program, for example, only
one value of bearing stiffness may be assumed. The rotor orbits are either forward or
backward circular orbits. The use of bearing asymmetry results in elliptical orbits,
which can change the gyroscopic effects of the disk on the shaft.

Figure 13, for example, represents the synchronous unbalance response at the
overhung location with unbalance at the disk location. The peak response occurs at
550 RPM assuming asymmetric bearings of 2E3 1b/in. Notice that the phase change
in the z and y direction is from 0 to 180 degrees, which is one would expect for the
single-mass rotor. There is no indication at all of the existence of a second critical
speed in this plot. Figures 14 and 15 represent the forces transmitted to the inboard
and outboard bearings, respectively. The maximum force at the inboard bearing is
approximately 6 1b at 550 RPM, and the maximum force at the outboard bearing
is 20.5 Ib at 550 RPM. The outboard bearing near the disk always has the highest
forces transmitted at the first critical speed. Likewise, from the plot on bearing forces
transmitted, there is no indication of the excitation of a higher mode.

In the next forced unbalance response run, as shown in Fig. 16, the vertical
bearing stiffness is 1E4 lb/in and the horizontal bearing stiffness is 5E3 Ib/in. This
represents a difference in bearing stiffness in the z and y directions by a factor of 2
with stiffer bearings than in Fig. 15. A peak critical speed is shown at 620 RPM. It is
also of interest to note that the first backward and second backward modes show an
excitation by the unbalance on the disk. Figure 17 represents the outboard bearing
forces transmitted. The outboard bearing forces transmitted have been increased to
100 Ib at 620 RPM. The increase in bearing forces at the outboard bearing at the
first critical speed is due to the use of stiffer bearings. However, because of bearing
asymmetry, one can also see the excitation of the second backward critical speed at
approximately 1750 RPM.

In the next unbalance response case as shown in Fig. 18, the bearing stiffness
in the y direction is 2E3 Ib/in, which corresponds to the first case. The horizontal
bearing stiffness has been reduced by a factor of 4 to 5E2 1b/in. There are two distinct
first criticals in the z and y directions due to the asymmetric support system. Of
particular interest is the strong appearance of the second backward critical speed at
1,260 RPM which is now excited by unbalance. This figure should be compared to
Fig. 13. which represents the rotor response on symmetric bearing supports. By
reducing the stiffness in the horizontal direction by a factor of 4, a strong excitation
of the second backward critical speed is seen at 1,260 RPM. Figure 19 represents
the bearing forces transmitted at the outboard bearing. The maximum bearing force
is 56.5 Ib at 1,260 RPM, which corresponds to the second backward critical speed.
Figure 19 should be compared to the forces transmitted for Fig. 15, which shows only
a 20.5 1b maximum transmitted at 550 RPM. Thus the incorporation of bearing
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System Configuration

OUVERHUNG ROTOR MODEL BASED ON DIMENTBERG MODEL
SHAFT — d=2 cm, 1=60 cm, a=30 cm, HWITH NO SHAFT MASS
DISK - 39Ox1 cm,

~ X

Fig. 12 Finite Element Model of Overhung Rotor Using DYROBES

OVERHUNG DISK MOTION—SYMMETRIC BRGS, K=2E3

Station 6, SubStation 1 ——— Peak to Peak
probe 1 (x) O deg — max amp = 0.10282 ot 550 rpm
- probe 2 (y) 90 deg — max amp = 0.10282 at 550 rpm
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Fig. 13 Synchronous Unbalance Response of the Overhung Disk
With Symmetric Bearing Stiffness Characteristics
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INBOARD BRG FORCES—SYMMETRIC BRGS, K=2E3
Station = 2

Max Transmitted Force = 6.0931 at 550 rpm
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Fig. 14 Inboard Bearing Forces Transmitted With Symmetric Bearings
K=2E3 lb/in
OUTBOARD BRG FORCES—SYMMETRIC BRGS, K=2E3
Station = 4

Max Transmitted Ferce = 20.538 at 350 rpm
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Fig. 15 Outboard Bearing Forces Transmitted With Symmetric
Bearings ; K=2E3 Ib/in
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OVERHUNG DISK MOTION — Kx=5E3, Ky=1E4, NO SHAFT MASS
Station 6, SubStation 1 ——— Peak to Peak

probe 1 (x) O deg — max amp = 0.36638 at 620 rpm
probe 2 (y) 90 deg — max amp = 0.37766 at 620 rpm
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Fig. 16 Unbalance Response of Overhung Disk With Bearing

Fig.

Asymmetry ; K, = 5E31b/in , K, = 1E4 lb/in

OUTBOARD BRG FORCES — Kx=5E3, Ky=1E4, NO SHAFT MASS

Transmitted Force (Ib)

Station = 4

Max Transmitted Ferce = 100.96 at 620 rpm
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17 Outboard Bearing Forces Transmitted With Bearing

Asymmetry ; K, =5E31b/in , K, = 1E4 Ib/in
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OVERHUNG DISK MOTION — Kx=5E2, Ky=2E3, NO SHAFT MASS
Station 6, SubStation 1 ——— Peak to Peak

probe 1 (x) O deg — max amp = 0.15786 at 480 rpm
probe 2 (y) 90 deg — max amp = 0.31298 at 480 rpm
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Fig. 18 Unbalance Response of Overhung Disk With Bearing
Asymmetry ; K, =2E31b/in , K, = 5E2 Ib/in

QOUTBOARD BRG‘FORCES — Kx=5E2, Ky=2E3, NO SHAFT MASS
Station = 4

Max Transmitted Force = 56.586 at 1260 rpm
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Fig. 19 Outboard Bearing Forces Transmitted With Bearing
Asymmetry ; K, =2E31lb/in , K, = 5E2 Ib/in
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asymmetry has caused a substantial excitation of the second backward critical speed
due to unbalance. If bearing symmetry is maintained, then the high response at 1260
RPM is not seen.

Therefore we see that in the case of an overhung rotor with bearing asymmetry,
there is a strong possibility that a second backward whirl may be excited. Although
this effect was eluded to by Dimentberg, at the time he studied this, computer pro-
grams such as the DYROBES finite element program were not in existence in order
to calculate such an effect. It is possible that overhung aircraft gas turbines with un-
centered squeeze film dampers may exhibit the asymmetric effect due to gravitational
loading and aircraft manuevers. This may then lead to the excitation of the turbine
backward second critical speed.
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