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A Rapid Approach for Calculating
the Damped Eigenvalues of a Gas
Turbine on a Minicomputer: Theory

The calculation of the damped eigenvalues of a large multistation gas turbine by the
complex matrix transfer procedure may encounter numerical difficulties, even on a
large computer due to numerical round-off errors. In this paper, a procedure is
presented in which the damped eigenvalues may be rapidly and accurately
calculated on a minicomputer with accuracy which rivals that of a mainframe
computer using the matrix transfer method. The method presented in this paper is
based upon the use of constrained normal modes plus the rigid body modes in order
to generate the characteristic polynomial of the system. The constrained undamped
modes, using the matrix transfer process with scaling, may be very accurately
calculated for a multistation turbine on a minicomputer. In this paper, a five station
rotor is evaluated to demonstrate the procedure. A method is presented in which the
characteristic polynomial may be automatically generated by Leverrier’s algorithm.
The characteristic polynomial may be directly solved or the coefficients of the
polynomial may be examined by the Routh criteria to determine stability. The

method is accurate and easy to implement on a 16 bit minicomputer.

I Background and Introduction

In the analysis of the dynamic characteristics of high-speed
rotating machinery, such as compressors and gas turbines, it
is desirable to determine the damped eigenvalues of the
system. The magnitude of the real coefficient of the damped
eigenvalue determines the rotor amplification factor of the
system. For example, if the rotor amplification factor is 10 or
greater, the rotor system will be susceptible to low levels of
unbalance excitation. The API code, for example, requires
turbine and compressor amplification factors to be 8 or less.
A more serious problem with rotating machinery at high
speeds is the occurrence of self-excited whirl motion. Self-
excited whirl motion or rotor instability may be caused by
such factors as aerodynamic cross-coupling effects of the
impellers, labyrinth and fluid film seals, and hydrodynamic
journal bearings.

In the 1950’s, the extent of rotor-bearing analysis consisted
mainly of undamped critical speed determination. The major
paper in this field was presented by M. Prohl. The calculation
procedure that was required at the time was with a team of
people working with a desk calculator involving days or weeks
of work. Now, 100 station rotors or more may be rapidly
analyzed on the minicomputer in a matter of minutes. A
major contribution to the field of rotor-bearing stability was
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presented by Lund in 1974, when he described the complex
matrix transfer procedure to calculate the stability charac-
teristics of multistation turborotors, including generalized
linear bearing coefficients. This paper represented a major
advancement in the field of stability analysis. There are,
however, inherent numerical difficulties associated with the
matrix transfer method. In the absence of scaling of the
transfer matrices, numerical round-off errors occur on large
station systems which generate invalid eigenvalues. This
procedure may be somewhat alleviated by using double
precision and scaling of the matrices. However, it cannot be
completely avoided. A paper on the scaling and rotor
modeling process will be presented at a later time.

In this paper, a method based on constrained normal modes
plus rigid body modes is presented to determine the damped
eigenvalues of the system. The area of modal analysis is well
developed and is extensively employed by structural engineers
to simplify the dynamical representation of the system. One
of the standard methods of modal analysis is to eliminate the
damping or dissipation terms in the equations of motion and
solve for the undamped normal modes of the system. By
expressing the deflection as a sum of the undamped normal
modes, the modal dynamical equations of motion may be
generated. One of the typical assumptions in structural
dynamics is that the modal damping cross-coupling terms are
small and are thus eliminated. In the case of a gas turbine with
hydrodynamic fluid film bearings or squeeze film dampers,
the modal cross-coupling damping terms can never be
eliminated. The assumption that the normal modal equations
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Fig.1 Cross section of 54 statlon gas turbine

of motion are uncoupled is based upon the approximation
that the damping matrix is proportional to the mass or stiff-
ness matrix. In the case of rotating machinery with bearings
or seals, this situation never occurs in practice. It is only valid
if the damping of the system is extremely light and of the
order of only one or two percent of critical damping.

Figure I, for example, represents a 72,000 1b (32,727 kg)
gas turbine with 54 stations. The first two normal modes for
this system are shown in Figs. 2 and 3. The normal modes, for
example, were generated on a HP-9845B Desk Computer with
a 16 bit processor. In an attempt to analyze the damped
eigenvalues of this system on a mainframe computer,
numerical difficulties were encountered with the matrix
transfer procedure. The analysis of the 70 MW power
generation gas turbine as shown in Fig. 1 will be presented in
detail in Part I1—Applications.

The method of modal analysis appears to be a very at-
tractive procedure to describe the dynamical behavior of such
a complex system. The area of modal analysis has received
extensive treatment and classical descriptions of this method
are given by the various researchers in structural dynamics,
such as Hurty and Rubinstein. Modal analysis has been ex-
tensively applied to rotating machinery by Bishop, Parkinson,
and Black in England and Childs, Nelson, Gunter, Choy, and
Li, etc. in recent papers in the U.S. This is just to mention a
few of the many papers in this area.

The procedure is attractive from the standpoint that the
various system modes normally need to be calculated only
once. Modes are then used as building blocks to describe the
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generalized equations of motion usually in terms of un-
damped modes of motion.

There are various sets of mode shapes that may be em-
ployed as functional sets to span the vector space of
equations. These mode sets may be roughly classified in the
categories of normal, constrained, and free-free rigid body
mode sets. Dynamic analysis may also be performed by the
use of complex modes as outlined by Foss and also expanded
upon by Lund. The undamped modes may be used to generate
the complex damped modes; although a number of papers

Nomenclature
A, = amplification factor
= 1/2&(dim)
[A] 2nx2n mass and damping K, = bearing stiffness, N/m r = subscript, rigid body
matrix K. = shaftstiffness, N/m s = complexroot = p+iv,rad/s
[B}] = 2nx2n mass and stiffness K = 2K,/K,=stiffness ratio (dim) { X} = displacement vector, m
matrix [K] = nxnstiffness matrix, N/m A = complexinverse root, rad/s
[B], = kth Leverrier matrix [M] = nxnmass matrix, kg w = natural frequency, rad/s
b = subscript, bearing M, = modal mass, ith mode, kg w. = constrained natural fre-
¢ = subscript, constraint mode M,, = normalized modal mass cross- quency, rad/s
[C] = damping, N-m/s coupling coefficient (dim) w, = rigid body natural frequency,
C,; = modal cross-coupling co- n = order of system rad/s
) efficient p = real part of complex root, Q = normalization factor, rad/s
C = damping coefficient rad/s v = imaginary part of complex
= 2C/Muw, (dim) q = generalized coordinate root, rad/s
[D} = 2nx2n dynamic system q. = generalized constraint co- {#} = ithnormal mode
matrix (dim) ordinate A = normalized frequency
S = frequency ratio = (w,/w.)’ q, = generalized rigid body = N w, (dim)
= 2K, /K, (dim) coordinate {®} = orthonormal mode
240/Vol. 106, APRIL 1984 Transactions of the ASME
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Fig.5 Mode shapes of three-mass test rotor

have been written in various fields on modal analysis, few
papers have been written on the errors generated by the
truncation to a finite number of modes. Li and Gunter in 1981
presented one study on modal truncation error in component
mode analysis of a dual rotor system.

However, considerable research is still required in this area.
In this paper it is shown that the use of normal modes may not
generate accurate results even if the modal errors coupling
damping terms are retained. The use of component modes
along with rigid body modes is shown to generate the exact
eigenvalues. An excellent presentation on component mode
analysis is given by Nelson.

The generation of the damped eigenvalue problem requires
the initial solution of the undamped planar problem,
assuming the bearings are node points. Once the rotor modal
mass and frequencies are obtained, then the rotor elastic
properties do not have to be further calculated. The entire
stability analysis may be performed on a 16 bit minicomputer
with extremely good accuracy.

II Damped Eigenvalue Analysis

1 General Equations of Motion. The introduction of
linear viscous damping into a dynamical system results in the
following general matrix formulation:

IMI(x] +[Cl{x]) + [K){x] =F(1) (r.n

The generalized eigenvalue problem for the damped system
is formulated by setting F(r)=0 and assuming the
displacement vector {x} to be of the form

(x)=({X}e
The generalized eigenvalue problem may be written as

(1.2)
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Table 2.1 Three mass system mode shapes and eigenvalues

| Untamped Displacement Modes

FREQ r/mun (Hz) 968.6 (16.1) 1618 (60.3) 7911 (131.9)
rad/s 101.42 178.85 B28.4
M Modal Lb-sec®/in. .0095 0093 L0091
- (kg) _(1.668) (1.632) 1.597)
Station 1 .057 0.334 -0.008
2 0.724 1.000 -0.6906
3 1.000 0.0 1.00
4 0.724 -1.000 -0.6906
5 0.057 -0.334 -0. 608
tl Constrained Normal Mode
[ FREQ r/min (MHz) 995 (16.b) 1947 () R4T0 €1312) 1
rad/s 104.17 4134 8869
M Modal Lh=sec/iu, L0093 L0093 L0043
L (kg) | (roe32) | (1.e32) (1.632) 1
Station 2 0.7071 1.00 -0.7071
3 1.000 6.00 1.000
4 0.7071 1.00 -0.7071
L L ] J
- . . PR oo
(B4 Free-Free Modes
FREQ r/min (z) 0 0 4870.5 (81.2)
rad/s 510
M Modal Lhesect/in. L0135 .00 ) L0069
L _ o tkg) (2.448) ey | (.2 e
Station 1 1 P3 -3.00
2 1 1 -0.50
3 1 0 1.00
4 1 -1 -0.50
b ! -2 3.00

(NIMI+ NCT+ KT (X} =0 (1.3)

Since [ X} is in general a nonzero vector, Cramer’s rule
requires that the determinant of the coefficients must vanish.
This leads to the following equation:

IN[M]+ N[C]+[K]) =0 (1.4)
Equation (1.4) represents a polynomial of the form
PN =(A=N)A=N)A=N)— —=(A—Ay)  (1.5)

In general, the roots A, are complex for underdamped
systems. Since the [M], [C], and [K] matrices are all real
coefficients, the coefficients of the characteristic equation are
all real numbers. The complex roots \; have a corresponding
complex conjugate root ;.

For a full system of n degrees of freedom (no zeros in the
mass matrix), the order of the polynomial is 2n. In the case
where none of the roots are critically damped, the charac-
teristic polynomial is of the form:

P(\) = (A=A)A=A)IA=N)A=}y)

-(A=X) (A=X,) (1.6)
The root A is of the general form:

N =P;+iv,; (rad/s)

\ =P, —iv, (1.7

The resulting motion corresponding to the jth root is of the
form:

fx]) ={X],e’"[cosv,t+isinv,t] (1.8)

Hence if the real component P of the complex root A is
greater than zero, the system motion grows exponentially with
time and the system is said to be unstable in the linear sense.

Example 1. Consider the three-mass system as shown in
Fig. 4. Damping coefficients of C=1 lb-s/in. (175 N-s/in.)
are applied at each bearing. The 17 station-3 mass test rotor as
shown in Fig. 4 may be represented by the five degree of
freedom system as follows:
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00000 10000
01000 00000
M| 00100 | +Ch| 00000
00010 00000
00000 [ 00001
1.215 -0.489 0.348 —0.089 0.015
1.326 —1.274 0.526 —0.089
+K 1.852 —1.274 0.348| =0 (1.9)
(SYM) 1.326 —0.439
1.215

where the coefficients M, C, and K are given by:

M =0.00465 1b-s*/in. (0.815kg)
C=1.00 Ib-s/in. (175 N-s/in.)
K=1,000 Ib/in. (175,000 N-s/in.)

In the above formulation, the [M], [C], and [K] matrices
are symmetric and positive definite (Hermitian) form. The
eigenvalues of the system will all be of the form:

N=—=P;+iv; (1.10)

There can be no real positive roots in the system as given in
Example |.

2 Formulation of the Damped Eigenvalue Problem by
Normal Modal Analysis. In general, the formulation of the
damped eigenvalue problem as given by equation (1.3) is
difficult to numerically evaluate. The complexity of the
system may be reduced by first using normal modes and then
by the constrained modal method. It is possible to directly
evaluate the complex eigenvalues from the general for-
mulation. There are several methods that have been suc-
cessfully employed in large structural dynamics analysis codes
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such as NASTRAN. One of these methods is the inverse
power method with shifts and triangular decomposition.

In equation (1.4), the order of the system may be 10,000
degrees of freedom for a large structural problem. It is
therefore obviously impractical to determine the characteristic
equation for the complete system. The order of the system
may be reduced to practical limits by employing the un-
damped natural frequencies and mode shapes of the system.

Table 2.1 represents three sets of modes obtained for
Example | with no damping. The first set of modes represent
the normal modes with a bearing support spring rate of 1,000
Ib/in. (175,000 N/m) located at the bearings as shown in Fig.
4. Figure 5 represents the first three normal mode shapes for
this three-mass model. Figures 6 and 7 represent the first and
second animated mode shapes for the three-mass system. The
second set of modes represent the constrained normal modes.
These modes are obtained by constraining the motion at the
support locations. The third set of mode functions represent
the free-free modes. These modes are obtained by assuming
no support restraint acts at the end of the station. The first
two modes of this set are rigid body modes of zero frequency
and the third mode is the system first free-free bending mode.

The modes listed in Table 2.1 are called displacement
modes. The maximum value of the displacement mode is
unity at a mass station, Since Guyan reduction was used to
determine the free-free modes, the displacement at the bearing
locations, which are massless, is greater than unity.

The system equations of motion are reduced by assuming
the displacement vector {.X] may be represented in terms of
the normal modes (/ of Table 2.1) as follows:

(X)= Y q;19); @.1)
j=1
where N = order of system,
q, = Jjthgeneralized coordinate.
Substituting equation (2.1) into equation (1.1) results in:
M Y 4161, +1Q Y 4,161,
J=1 J=1
+K1 Y q,18),=F(1) @.2)
i=1

Multiply equation (2.2) by [¢]}/ and employing the or-
thogonality conditions that

(e} M](e);, = 0 ifiz)

= M, ifi=j (2.3)
[¢)][K]le);, = 0 ifizj

= Mujifi=J (2.4)

For the three mass system as shown in Fig. 4, the modal
equations of motion are given by:

G +Cig +Cipgr+Cqy +wiq, =0
Gy +Cy G +Cp@y + Co3 gy +wigy =0
G:+Cuq, +Crg +Cqy + wig, =0

(2.5)

It is important to note that the equations of motion ex-
pressed in terms of the generalized coordinates of undamped
modes, are coupled through the modal cross-coupling
damping terms C;;. In the analysis of the vibrations of large
structural systems, it is the normal procedure to ignore the
modal cross-coupling terms.

This approximation is valid for structural systems with light
damping and separation of modes. As a general rule,
however, if the damping is acting at discrete locations, such as
bearing or a squeeze film damper, the modal equations will
not uncouple.

The condition that the modal equations uncouple is given
by:

[C] = a[M] + BIK] (2.6)

Transactions of the ASME



Therefore, in order that the modal equations of motion
uncouple, the damping matrix must be proportional to the
mass or stiffness matrix. This condition is rarely encountered
in actual structures in which the damping is located at only
several discrete locations, as is the case with the action of
bearings and seals on rotating machinery.

Example 2.
for Example 1.

The damping coefficients C; and C; are assumed to be | 1b-
s/in. (175 N-s/m).

The modal damping coefficients are given by:

Determine the modal damping coefficients

1
c,= v [Cioid) +Csdisdys]

The modal damping matrix is given by:

| 0.648 O = ] 30
Cl= 0 2 0 2.7
= 7230 0 a2

The modal equations of motion are given by equation (2.5).
The modal damping matrix C is employed along with the
natural frequencies as given in Table 2.1. The modal
equations become

g, +0.684g, —7.30¢9, + 10,2864, =0
(}2 + 23.SQ2 + 143,527Q2 ={)
Gy —7.30, +77.82¢, + 686,246g; =0

Because of symmetry of the modes, the second mode is
completely uncoupled from the first and third modes. Hence
the second mode of vibration appears to act as a single degree
of freedom system. The first and third modal coordinates g,
and g, will be uncoupled only through the damping matrix. It
will be seen that both the first and second damped eigenvalues
are in considerable error for moderate values of damping and
only approximately correct for small values of damping using
the normal mode representation.

The characteristic polynomial generated by the normal
mode method is of 6th order, whereas the characteristic
polynomial for the complete system is 8th order. The second
mode damped natural frequency actually increases with
damping, whereas the modal equations predict the opposite
trend.

(2.8)

3 Approximate Roots of Damped System. [f the modal
cross-coupling coefficients are ignored, then the equations of
motion are uncoupled and are of the form

G, +2%w,4,+wiq,=0 (3.0
Assuming g; is of the form
q,=qeM
results in the following characteristics polynomial for the
system:

N 428w\ +wf =0 (3.2)

where A\, =P, = iv;
P= ——E,-w,- (3-3)
v, =wf\,-'f]_— Er: (34)

For the case where £, < <1
v!. - wr.

Where the damping coefficient £, is much less than 1, then the
damped natural frequency v; is equal to the undamped
natural frequency, w;.

Note that for the single degree of freedom system the
damped natural frequency reduces with increasing damping
or ¢ value. This is not necessarily the case in multidegree of
freedom systems such as equation (1.9).

Journal of Vibration, Acoustics, Stres-
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Table 3.1 Approximate damped eigenvalues for light
damping (C,, = 1.0 Ib-s/in.}(175 N-s/m)

Mode
1 2 3
w; 101.42 378.85 828.4
£,(dim) .00337 0.03101 0.04697
A= 1/2ED 148 16 10.64
P; —-0.342 —11.75 -38.91
Ui 101.419 378.66 827.49

The approximate damped complex eigenvalues for the
system are given in Table 3.1.

In the foregoing example, the damping value of C = 1 lb-
s/in. (175 N-s/m) is sufficiently low such that the damped
natural frequencies correspond to the undamped natural
frequencies. The values listed for mode 2 are exact for low
values of damping since the second mode is uncoupled from
the first and the third. It shall be seen, however, that the
solution for the second mode for large values of damping is
completely erroneous. As the bearing damping is increased to
very large values, the natural frequencies will increase from
101.42, 378.85, and 828.4 rad/s to the constrained natural
frequencies of 104.17, 413.3, and 886.9 rad/s. The ap-
proximate uncoupled modal equations predict that the
damped natural frequencies decrease with increasing damp-
ing. Hence uncoupled modal equations may be completely
erroneous even for moderate values of damping. This
assumption of modal uncoupling is commonly used in modal
analysis of structures and multilevel gas turbine engines. For
the case where large localized damping forces are present in a
structure or an aircraft engine, the use of uncoupled normal
modal equations of motion may exhibit considerable error.

It will be seen that it is necessary to have a third order
polynomial instead of a second order polynomial to obtain
the characteristic behavior in which the damped natural
frequency increases with damping. This is usually the case
with very flexible rotors.

The quantity A_ represents the rotor modal amplification
factor at an excitation frequency of w=w; and is given by:

PR i
2P;

i

(3.5)

4 Solution of the Fourth Order Characteristic Polynomial
Generated With Normal Modes. The coupled eigenvalue
equations for the system first and third modes may be written
in matrix form as follows:

)\3+C||)\+w‘|" : C]_\}\ Q|
-------------- e [ | == | =0 @D)
C3|k : )\"' +C33)\+w§

The characteristic polynomial for the coupled two degree of
freedom system is given by expanding the determinant of the
coefficient matrix as follows:

AN +(Cp + Cyy)N' + (€, Cy3 = C13Cyy + 0] + 0N
+(Ch i+ Cho)h+wiwi=0 (4.2)

From the knowledge of the invariants of the characteristic
equation, the polynomial may be normalized in order to avoid
the numerical difficulties associated with the generation of
high order polynomials.

Let A=0A
where Q= vV, w;. (4.3)

The transformed polynomial equation (4.2) is now of the
form:

A+ AN+ AN A NFL=0 (4.4)

Note that the first and last coefficients of the transformed
equation, A, and 4, are unity.

APRIL 1984, Vol. 106/ 243



i 1

Fig.8 Single mass system on damped flexible supports

Table 4.1 Influence of damping on system using first and
third normal modes

Damping P, v Py vy
0 0 101.42 0 828.4
] -0.339 1013 -38.9 827.44
10 -3.37 101.6 —-389.1 727.6
50 —13.6 109.5 —154.4 7.4 x10°10
100 -12.7 120.1 —62.2 6.6 x10°10
1000 ~1.54 126.8 ~5.57 -4.49%x10°10

From Table 4.1, it is seen that as damping increases, from 1
Ib-s/in. (175 N-s/m) to 1,000 Ib-s/in. (175,000 N-s/m) at the
bearings, an optimum value is reached by which maximum
damping is achieved for the first mode. This damping value
appears to be around C =50 lb-s/in. (8,750 N-s/m). However,
for the third mode, it is seen that as damping increases, the
damped frequency of the third mode diminishes rapidly.

From a physical standpoint, this result is not correct, as the
damping increases and approaches o, then, the values of P;
should approach zero and the values of the damped
frequencies v, and v, should approach the values of the
constrained natural frequencies of w,, = 104.17 and w4 =
886.9 rad/s. For the case of the first mode, the asymptotic
value of v, approaches 126.8 rad/s rather than the value of
104.17. Hence for large values of damping, the use of normal
modes is considerably in error for the third mode and only
approximately accurate for the first mode. A similar problem
also exists with the prediction of the second mode damped
natural frequency.:

The reason for this discrepancy in the calculation of the
damped frequencies by the normal mode procedure is that the
characteristic equation for the system is 8th order. Using three
normal modes, only a 6th order system can be developed.
Hence this characteristic increase in the damped frequency
with increasing bearing damping cannot be predicted using
only the normal modes. This situation may be remedied by the
introduction of two additional rigid body modes.

However, rather than introduce the rigid body modes with
normal modes, we shall examine the use of the constrained
modes along with the rigid body modes.

5 Dynamical Analysis Using Constrained Normal Modes

5.1 Single-Mass System. The dynamical modal equations
will be formulated using the rigid body modes {¢), and the
constrained normal modes {¢}.. Consider the single mass
system as shown in Fig. 8.

A further simplification may be obtained if symmetric
bearings at station 1 and 3 are assumed. If the motion x, is
assumed to be equal to the motion at station 3 then the
equations reduce to:

][]
AL
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0 ¢.1.0

Introducing the dimensionless time transformation 7 where
T=w.l,

2 . 2C
) 2 C= Mo

Letf=<

The transformed equations become:
0 X, ¢ X,
aa + .
1 X, 0 X,
1+f-1 X,
+ =0
X;

-1 1
Assume a solution of the form:
A

wr
We ¢

(5.1.2)

x=eN=e“ =em

The characteristic determinant becomes:

[C‘/\+l+f -1 J
=0

(5.1.3)
-1 A+
The characteristic polynomial is given by:

CA3+(l+ﬂ/\Z+C‘/\+f=O (5.1.4)

The modal equations will now be developed by assuming {x}
to be of the form:

S I
i ={ 7 ] =ate) +acten (5.1.5)

where

{¢], =rigid body mode = [{}

{$} . =constrained mode = [ﬂ

It is of interest to note that the rigid body modes { ¢}, are in
general not orthogonal to the constrained modes { ¢} ...

The general equations of motion are now expressed as
follows:

MG, (o}, +4. 1)) +[ClG, (o}, +4.(d),)
+[Kl(g, (8}, +q.{9}))=0 (5.1.6)

Multiplying equation (5.1.2) by {¢,}7 and {¢]] yields the
following matrix equations:

MINENINENINE

(5.1.7)
The characteristic determinant is given by:
[ AN +CA+f A2 } {q,]
. R =0 (5.1.8)
A A +1 q.
The characteristic polynomial is:
AL+ CA+N (AT +1)=AY =0
Expanding the above, we obtain the following:
CAP+(1+HA +CA+f=0 (5.1.9)

From the comparison of the polynomial generated by the
exact system and the constrained modal analysis it is seen that
the polynomial is exact.

From equation (5.1.4) it is seen that as C—0 the charac-
teristic equation becomes:

(1+NHA+f=0 (5.1.10)
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The natural frequency of the system is given by:

S
A=z Y,
or
/f }K;
mw A=, — . — 5.1.11
W) w(/\ 1+f M ( )
The normal mode shape is given by:
1
(@)= | 1+/ 5.1.12)

Lo

Using the normal mode formulation the modal equation
becomes:

A2+< : )ZC'A+L—0 (5.1.13)
1+f 1+f o
By comparing the approximate formulation with the exact
third order polynomial it is seen that the approximate solution
is accurate only when C is small and for f< <1. These two
conditions imply light damping and stiff rotors or shafts.
Thus in the case of analysis of highly flexible rotor bearing
systems with substantial damping, the normal modal method
may be inaccurate for even moderately damped bearings.

Example 3. Determine the characteristic equations and
the first damped mode of the three mass rotor for various
damping values using constrained modes.

Let

{x} = g lo.)+aq.lo.]
where

of =1 111 1]

ol = [0 0.7071 1 0.7071 0]

The modal equations of motion are given by:
[ A[rr "‘/[(‘r dr 2C 0 q’r
+
|\ A(["L' ML‘L‘ q( 0 0 q'c
ws‘wrr 0 q,
+ =0
0 M, w2 q.

Mlj = ¢’:T[A’!] ¢j

The resulting characteristic equation for the system is given
by:

(5.1.14)

where

A-M MHIN+CA+ (U +NA T+ CA+f=0 (5.1.15)
where
. 2C . M,
C: N M"= ¢
Ml'l'wl' MI'I'
w? _ M,
= r M = rc
f w_ ’ ¢ M

Thus, for the three mass system:
M, =0.01395, M, =M, =0.01123; M. =M, =0.0095

w, = Im = 378.6 rad/s; w.=104.17 rad/s

_¢/(Cs,

rre

w, \° 378.6 )3
= = =13.2
/ ( w ) <IO4.I7 3

¢

c=C, =1.376C;
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Table 5.1 Damped first mode for various values of C-
constrained modes and exact solution
Constrained Exact
C P] Uy AC Pl VI
0.1 -0.034 100.59 2958
1.0 -0.339 100.63 147.5 ~0.339 100.4
5 -1.414 101.00 357 -1.429 101.0
7 -1.684 101.70 30.2 -1.709 101.5
10 -1.817 102.34 28.2 —-1.84 102.1
12 -1.794 102.67 28.6 -1.82 102.5
20 —1.468 103.4 35.2 —1.48 103.3
100 -0.356 104.14 146.26 -0.363 104.0

The characteristic polynomial is given by
0.04874A* + 1.376CA* + 14.209A2 + 1.376CA + 13.209=0

(5.1.16)

The primary complex root of this equation for various values
of damping is given in Table 5.1.

From Table 5.1 it is seen that the system first damped
natural frequency v, increases in magnitude from the value of
the undamped natural frequency w, of 100.6 rad/s to the
constrained natural frequency of w., = 104.14 rad/s as the
bearing damping C increases. It is apparent also that there is
an optimum bearing damping that should be placed at the
supports and this value is approximately C =10 Ib-s/in. (1750
N-s/m) and not 50 lb-s/in. (8,750 N-s/m) as indicated in
Table 4.1. The minimum amplification factor that can be
achieved with this system with optimum damping is only
A, =28. Hence it is apparent that the first mode of the 3 mass

" system is extremely sensitive to excitation and will have a large

amplitude of motion at the first critical speed due to rotor
unbalance.

In comparison of the results of Table 5.1 to the results as
shown in Table 4.1 using normal modes, it is seen that the
prediction of the first mode root for C = 1 lb-s/in. (175 N-
s/m) yields a real component of P, = —0.339rad/s. ForC =
10 Ib-s/in. (1750 N-s/m), the value of P, as shown in Table
4.1 is —3.37 rad/s which is almost twice as large as the value
shown in Table 5.1. Hence it can be concluded that the em-
ployment of normal modes in even moderately damped
systems may lead to sizable errors in the prediction of the
value of the real root.

5.2 Three-Mass Rotor. In Section 5.1 it was seen for the
single-mass case that the employment of a constrained mode
{¢]. in conjunction with a rigid body mode {#}, generated
the correct third order characteristic polynomial. This
procedure, therefore will be applied to the three-mass, five-
station system. The system displacements will be assumed to
be imposed of three constrained modes plus the addition of
two rigid body modes. The displacements will be given by:

3 2
(X)= Yaclel+ X a.le), (5.2.)
=1 il

It is important to note that the constrained modes are not
necessarily orthogonal to the rigid body modes.

The displacements { X'} may be expressed in terms of either
the displacement mode shapes {¢} or in terms of the or-
thonormal mode shapes {$} where

1
P = —
{®}, Y [o],
Table 5.2 represents the five orthonormal mode shapes
required to describe the three-mass system of Fig. 4. The first
three mode shapes listed in Table 5.2 are constrained modes
and the last two are rigid body cylindrical and conical modes.
The displacements can be written in general as:

(5.2.2)
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Table 5.2 Orthonormal mode shapes and eigenvalues for three-mass system

Constrained modes Rigid body
Mode no. 1 2 4 .
Freq. r/min 995 3,947 8,470 0 Q
rad/s 104.17 413.3 886.9
M-modal mass
(Ib-s*/in.) 0.0093 0.0093 0.0093  0.01395 0093
Station | 0 ¢] Q 8.467 20.739
2 7.332 10.370 -7.332 8.467 10.370
3 10.370 0.0 10.370 8.467 0.0
4 7.332 -10.370 —7.332 8.467 -10.370
5 0 0 0 8.467 —-20.739
i The modal stiffness matrix is given by:
X)) = b}, (5.2.3)
(X1= Latdl, 01085140 0 0 O
Applying the foregoing displacement relationship to _1ns 0 1.7082 0 0 0
[ g C T . (KD ouar = 10 0 0 7.8659 0 0
equation (1.9) and multiplying by {®}7 results in the 0 0 0 1.433 0
following set of modal equations for the generalized coor- 0 0 0 0 8.6021

dinates g;:
Gy + Mgy + M sGs + w2 =0
Gy + MGy + MysGs + w22 =0
Gy + Mg+ Mysds + w® =0 (5.2.4)
Go+ My, + MyGy + Myydy + Caaga + w2 =0

Gs + Mg G, +Ms3G, + M3 Gy + CssGs + w0t =0

It is seen that the mass system is not diagonal. It is given by:

1.00 0 0 0.9856 0
0 1.00 0 0 1.00

M]= 0 0 1.00 -0.1691 0

0.9856 0 -0.1691 1 0

0 1.00 0 0 1
(5.2.5)

The coefficients for the damping matrix are given by:
0
0
[Cl=C 0 (5.2.6)
143.38
215

The total stiffness matrix of the system is composed of the
bearing stiffness matrix plus the stiffness matrix of the shaft
corresponding to free-free end conditions

[K1=1K1s +[K]s (5.2.7
The constrained frequencies are given by:
wit = (8T [IK], + [Kls) @)

= [®),7[K]s(®)a (5.2.8)

In the absence of external bearings acting at the interior points
X, to X,. The components w,? are given by:

w,=104.172=10,851.4

w2 =413.32=170,816.9

wey? =886.9% =786.591.6
The rigid body frequencies are given by:

5

w;t = (), T1IK], + (KI5 { @)
= (®},71K),(®), (5.2.9)
Since [K]; is a singular matrix of order 2,
2K
wnl=[ol, K, (0}, = 143,380=
Im
2 4K
wal=1{®),T[Kl,[®), = 860,212= —2 (5.2.10)
m
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(5.2.11)

The diagonal modal [K] matrix may be normalized by
dividing the elements by w,, 2.

[k]modal = f] (5212)

where

2

f‘,=(i"—) (5.2.13)
Wey

The diagonal damping matrix is normalized by dividing by

wq. This normalization procedure is equivalent to a

dimensionless time transformation of the form w,¢t=7. The

normalized [C] matrix is given by:

0
} 0
[Q1=C 0 (5.2.14)
1.376
2.065

The system modal equations of motion are given by:
M1{g) +(Cltq) +fillq} =0 (5.2.15)
6 Generation of Characteristic Equation. The system

given as follows,

IMILX} +[CH{X) + [Kl{x] =F(1) 6.1

may be converted into a system of coupled first order
equations by:

(%) , (%)
{y)= o= )
{x} {x}
{OIMI}{IA’I} [[—Mlo}[lﬂ}
+
M] [C] fx) 0 [X] {x)
0
= { ] 6.2)
{F(1)]
The form of the 27 order equation in { y] is given by:
[Alty) +[Blly)=1(Q]) (6.3)

Consider the homogeneous equation with {Q} = 0.
Let
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(yy=LTr]e”
(Dl{y} =AY}

1
where A= — inverse complex root
s

(6.4)

(D]= - [B]~'[4]
=— (6.5)
0 K1~ M] [C

0 : I
= { ------------ Fommommeee- } (6.6)
-[K17' (MY - KT
The foregoing system may be iterated directly to determine
the complex eigenvalues or the characteristic polynomial may
be expanded by the application of Leverrier’s algorithm. The
characteristic polynomial is given by:

[D1-N/T1=0 6.7
If the foregoing matrices were used in Leverrier’s
algorithm, then considerable numerical difficulties would
result. The K~ 'M and K~ 'C matrices may be scaled as
follows:
Let
U=r1
QM) X) +QIC] (%) + [K]fx) = (6.8)
QK] MIX) + QK] (Clx) + (x) = (6.9)

Let the choice of Q be the first constrained natural frequency
(104 rad/s).
The normalized matrices are given by:

[ 0.0000 0.0377 0.0251 0.0126 0.0000 ]
0.0000 0.3163 0.3739 0.2409 0.0000
00 0.3739 0.5321 0.3739 0.0000
00 0.2409 0.3739 0.3163 0.0000

KM=
0126 0.0251 0.0377 0.0000 |

00 0.

00 0.0000 0.0000 0.0000 0.0000 ]

00 0.0000 0.0000 0.0000 0.2600
(K1-'1Cl= 00 0.0000 0.0000 0.0000 0.5200
00 0.0000 0.0000 0.0000 0.7800

L 0. .0000 0.0000 0.0000 0.0000 1. 0400 |

The assembled dynamic matrix D is given by

oCoo -

0.0000  0.0000  0.0000  0.0000 0.0000
0.0000  0.0000  0.0000  0.0000 0.0000

0.0000  0.0000  0.0000  0.0000 0.0000

0.0000  0.0000  0.0000  0.0000 0.0000

0.0000  0.0000  0.0000  0.0000 0.0000

[D]= | ~ommmm oo m e
0.0000 -0.0377 —0.0251 —0.0126 0.0000

0.0000 —-0.3163 ~0.3739 —0.2409 0.0000

0.0000 —-0.3739 —0.5321 —0.3739 0.0000

0.0000 —0.2409 —0.3739 —0.3163 0.0000

| 0.0000 -0.0126 -0.0251 —0.0377 0.0000

Let the characteristic equation be expressed in the form:
AT+ AN AN+ A, =0 (6.10)

The coefficients of the characteristic equation may be
determined by Leverrier’s algorithm as follows:

A, = ~—trace [D] 6.1D
[B], = [DI+A,lN
A, = - Vitrace [[D](B],]
or in general,
A= % trace([D](B, _ ]]; k> 1 6.12)
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and
(Bli =[DI[Bi 1]+ A 1] (6.13)

Using Leverrier’s algorithm, an eighth order polynomial is
generated. Table 6.1 represents the damped roots for the three
mass system with the damping varied from 0.1 to 100 lb-s/in.
The roots generated by expanding out the complete M, K, and
C matrices were identical (within numerical bounds) to the
roots generated based on the use of constrained and rigid
body modes. Since the five modes used form a complete set,
the exact characteristic polynomial is generated. The exact
solution for the first mode was generated also by using only
the first constrained and the first rigid body mode. In com-
parison with Table 4.1, the first damped mode based on the
undamped normal modes is only accurate for small ranges of
damping and the third mode is completely in error.

From Table 6.1 it is of interest to note that as the damping
is increased, the damped natural frequencies increase from the
undamped normal mode and approach the constrained
normal mode values. It is also of importance to note that the
optimum damping for all three modes is not identical. This
fact is important when designing a squeeze film bearing for a
gas turbine which must operate through multiple modes. For
example, with the three-mass test rotor, the optimum damp-
ing for the second and third modes is between 1 to 2 1b-s/in.
(175 to 350 N-s/m) damping, while the optimum damping for
the first mode is 10 lb-s/in. (1750 N-s/m). Even with the
inclusion of optimum damping for the first mode, the lowest
possible amplification factor is given as 27.7.

IIT . Summary and Conclusions

(1) There are three sets of undamped modes of motion that
may be used as building blocks or modal sets to determine the
system damped eigenvalues or forced response. These modes
are called the normal modes, the constrained normal modes,
and the rigid body free-free modes.

(2) The normal mode set yields only the correct damped
eigenvalues for low values of damping. The free-free mode set
should be avoided. These particular modes do not form a
complete set of functions to properly span the vector space.

(3) The undamped normal modes are generated by setting
the damping equal to zero. When these modes are used to
express the dynamical equations of motion, the existence of

: 1.0000 0.0000 0.0000 0.0000  0.0000 “
'\ 0.0000 1.0000 0.0000 0.0000 0.0000
| 0.0000 0.0000 1.0000 0.0000  0.0000
| 0.0000 0.0000 0.0000 1.0000  0.0000
i 0.0000 0.0000 0.0000 0.0000 1.0000
y —1.0400 0.0000 0.0000 0.0000 -0.0000
v —.7800 0.0000 0.0000 0.0000 -0.2600
i —.5200 0.0000 0.0000 0.0000 -0.5200
, —.2600 0.0000 0.0000 0.0000 —0.7800
v —.0000 0.0000 0.0000 0.0000 -1.0400 |

damping caused by bearings or seals will cause modal cross-
coupling damping terms to appear which couples the
equations of motion. The normal structural procedure is to
ignore the modal cross-coupling damping terms by assuming
that the damping matrix is proportional to the mass or the
stiffness matrix. With real turbomachinery, such a condition
never occurs and the equations of motion cannot be con-
sidered to be uncoupled unless the modal damping coef-
ficients are extremely low, of the order of two percent of
critical damping.

(4) For the case of moderate to high values of bearing
damping, the use of the normal modes will not result in the

APRIL 1984, Vol. 106/ 247



Table 6.1

Damped roots of three-mass rotor systems

(& P, v, A, P> V, A, P, Vs Ay
0.1 -.03 100.4 1453.0 -1.19 387.7 158.6 —4.05 828.3 102.4
1.0 -.342 100.4 146.6 +-11.00 382.0 17.3 -28.4 847.4 149
2.0 -.67 100.5 75.1 -17.51 389.8 11.1 —-28.02 868.1 5.5
50 -1.43 101.0 354 —-15.98 4064 12.7 —-14.79 882.7 29.8
7.0 ~1.71 1015 29.8  -12.71 410.1 16.1 —-10.87 884.5 40.7
10.0 -~1.84 102.1 27.7 -9.44 4124 21.8 -7.72 885.4 57.3
120 -1.82 102,5 28.2 -8.00 4131 25.8 —-6.46 885.7 68.5
15,0 -1.71 102.9 30.1 -6.50 413.7  31.8 -5.19 886.0 85.4
200, -1.48 103.3 349 -4.93 414.2* 420 -3.90 886.2 113.5
50.0 -.71 1039 73.5 -2.00 4147 103.9 —1.55 886.4 285.7
100.0 -.36 104.0 143.2 —.89 413.7 231.7 * * *

*Numerical inaccuracy in root.

correct eigenvalues, either as to the real part (the damping) or
the imaginary part (the damped natural frequency).

The prediction of the first damped mode is only moderately
accurate, using the normal modes. However, the second and
third damped modes are considerably in error for large values
of bearing damping. In previous work presented by Li and
Gunter, on analysis of gas turbine engine vibrations by the
normal mode approach, many higher order modes had to be
retained in order to maintain accuracy of the lower mode
response.

(5) There is only one set of modes that was found to
generate the exact characteristic polynomial. This was the use
of the three constrained flexible modes, plus the addition of
two rigid body modes. This particular modal set has the
advantage that the constrained normal modes are obtained by
specifying O bearing displacements. Therefore the constrained
modes are independent of bearing stiffness. The characteristic
polynomial for the second mode, for example, is a third order
polynomial instead of a second order, as would be obtained
from the normal mode approach. The use of the second
constrained mode and the second or conical rigid body mode
results in the exact third order characteristic polynomial. The
behavior of the third order characteristic polynomial is
completely different from the second order. For example,
with a second order polynomial, the damped natural
frequency decreases with increasing damping. However, the
opposite effect occurs with the third order polynomial. The
frequency may increase with increasing damping. As the
damping is increased to high values, there is an asymptotic
value that is reached which represents the constrained critical
speed (pinned ends).

The first, third, and cylindrical rigid body modes combine
to form a fifth order characteristic polynomial. The correct
behavior of both the first and third modes are generated by
this set of modes. It is also of interest to note that the exact
values of the first mode were generated by using only the first
constrained and cylindrical rigid body mode.

(6) In this paper, it was shown how the exact characteristic
polynomial may be generated by the use of Leverrier’s
algorithm. By means of this algorithm, the coefficients of the
characteristic polynomial may be rapidly determined. These
characteristic coefficients may be examined by Routh’s
criteria for stability, or the characteristic equation may be
solved directly. Normally, one should not attempt to generate
the characteristic polynomial for large order systems, as the
coefficients of the polynomial become increasingly large. In
this paper, it is shown how a simple scaling procedure may be
incorporated with the generation of the characteristic
polynomial in order to keep the coefficients within bounds.

The scaling procedure was found to be most successful and
coefficients for twentieth-order polynomials can be easily
generated. This procedure has been adapted to the general
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stability analysis of turborotors, including eight bearing
stiffness and damping coefficients per bearing and shaft
gyroscopics. The application of this method to the analysis of
at 70 MW gas turbine-generator will be presented in detail at a
later date.
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APPENDIX

Nomenclature-Appendix

(I, =n x nrotor polar moment of inertia matrix
1.} =n X nrotor transverse moment of inertia matrix
{G] =n X nskew symmetric gyroscopic matrix

(U)T =lXoYy”
A. Generalized Constrained Modal Equations of Motion

In an actual turborotor, the equations of motion are more
complex than the simple three-mass system, as represented by
equation (1.9). The presence of gyroscopic disk moments,
fluid film bearings, and seals causes the rotor equations in the
horizontal and vertical directions to be cross coupled. The
general linearized equations of motion are of the form (A.1).

[§3) 0 (x}

\

0

\

N

1o
!

|
81 lo 1,
+Q

{

[§3]

Q

) o -1

o (¢}

AN

X and Y represent the displacements measured in a fixed X,
Z, and Y, Z coordinate system and 6, y are the corresponding
rotations measured respectively in the fixed reference system.
The equations of motion are cross coupled due to the
gyroscopic G matrix and the bearing matrix B. Self-excited
instability is caused primarily by the cross coupling bearing
coefficients.

In matrix notation similar to equation (1.1), the complete
equations of motion may be expressed as:

MUY+ (IG) + [CD U] + (1KY, + [K1){U) =0.

The generation of the modal equations of motion is as
follows. Let

| {%(F Z":qchcH Zzlqnw,;

c=1 r=1

(A.3)
Y n 2
T =quc‘¢c]+qur[¢rl
‘I/ c=1 r=1
The modal equations are of the form:
I~ | (e : . NF ‘
{10 1o ! ) o iWT ot o 10 1 a0 [. i 0
i I I o,
e N o ] b Wl o i o R N0
; AN (G P | | (Ggyt RN
roemenees [ PR ‘ L RN [J— T ..... O SRR SR
e I i . ! '
| 0 o o | | ! ‘ o 0o i€ IE @} o (0 iR
re | ; | oxx ; ny i XY
0 Mo 4} L ] ('q.ry) ! o I o ny } Eyy (&") o 10 iy:

B. Routh-Hurwitz Stability Criterion

The general characteristic polynomial, using two rigid
modes and C constrained modes, is of order N = 8 + 4C. If
the characteristic polynomial is expressed in the form

PON= Y, A, N =0,

k=0

(B.1)

then the general Routh-Hurwitz criterion may be used to
determine the stability of the system. A stable system implies
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that all of the complex roots have real negative roots. The first
necessary, but not sufficient, condition is that

A;>0. (B.2)
Thus, the Routh array is formed:
D, D, D, D; D,
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The condition of stability is that all of the D, determinants
must be positive. For the study of turborotor stability, it is
usually only necessary to retain the first constrained planar
mode and the two rigid body modes.

DISCUSSION

H. A. Scarton.! To those of us who try to remain in-
dependent of large computing packages, such as NASTRAN,
IMSL or SSP subroutines, the vastly simplified results given
by this work come as a welcome relief. A few questions
relating to certain details of this major contribution remain.

First of all, could the authors comment on the extension of
this problem to the nonself-adjoint (nonsymmetrical M, C, K
matrices) problem? A casual analysis of this formalism
leading up to equations (6.10-13) suggests that there may be
little modification required. Second, can the authors
elaborate, in detail on their procedure for handling the case of
either singular K (rigid body mode) or M (no mass at certain
system connection points)? Third, would the authors care to

(A.4)

generalize their N scaling criterion? In one instance, they
normalize by the lowest constrained mode; in another they use
the geometric mean of the lowest and the highest modes (by
which I assume they mean the damped vibration mode
wherein the coupling damping terms are ignored). What
about the linear average of the lowest and the highest?
Further, do the authors suggest that one must first solve the
conservative problem to obtain these normalization factors?
In that instance, how would they recommend that the nor-
malization factors for the conservative problem be obtained?
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Authors’ Closure

The following discussion is in reply to the various com-
ponents put forth by Dr. Scarton concerning several aspects
of this paper.

His ficst point dealt with the question of how this work may
be applied to problems with nonself-adjoint M, C, and K
matrices. This is of major importance to those, for example,
who wish to investigate problems of self-excited rotor in-
stability. The mass matrix is, in general, always symmetric,
but the C and K matrices are not symmetric for the case of
turborotors with gyroscopic effects, fluid film bearings, or
aerodynamic cross-coupling forces. The gyroscopic moments
cause skew-symmetric terms to appear in the general damping
matrix, and the fluid film bearings cause asymmetrical terms
to appear in the general stiffness matrix. For the case of
symmetric M, C, and K matrices, the complex eigenvalues all
have negative real components (stable system). The
generalized asymmetric K matrix may lead to the existence of
complex roots with positive real roots. In this case the system
is said to be unstable in the linear sense. The existence of a
real positive root in the system may be determined by the
application of Rouths’ criterion on the coefficients of the
characteristic equations.

In the simple example of the three-mass rotor as
represented by equation (1.9), the motion is planar and all of
the matrices are symmetric. Hence all the complex roots will
be stable. In order to examine the case of nonself-adjoint
systems, the order of the matrices is doubled to a 2n x2n
system as given in Appendix A. The stability of the system
may be determined by the Routh-Hurwitz Stability Criterion
as presented in Appendix B.

The second point is related to the handling of special cases
in which M or K are singular. The case in which M is singular
represents no problem. For example, in the three-mass, five-
station model of equation (1.9), the mass matrix is singular
since zero mass was assumed to be present at the first and fifth
stations. In the development of the 2n X 2n dynamical D
matrix as given in equation (6.6), the mass matrix is not in-
verted. In the present formulation, difficulty would be en-
countered if the K matrix were singular. This would
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correspond to the case of zero-bearing coefficients and a rotor
or shaft spinning freely in space. This problem, however, does
occur when one wishes to calculate the shaft free-free bending
modes. The problem of the singular K matrix may be over-
come by reformulating the dynamical D matrix to require the
inversions of the mass matrix instead of the K matrix. If,
however, both K and M are singular, which is often the case
for free-free eigenvalue analysis, the system may be modified
by adding small bearing stiffness values to the K matrix to
make it nonsingular. With proper scaling, this method is
numerically stable. The first two modes are the damped rigid
body modes, and the higher modes are the free-free modes.

The third important point that Dr. Scarton makes concerns
the general procedure for scaling the system by selecting the
proper A value. There are several ways to theoretically select
the optimum A value. It should be reemphasized, that with no
scaling, numerical difficulty is experienced with even
relatively simple systems. The ideal scaling is achieved by
equation (4.4) in which the A, coefficient is set equal to unity.
For example, for the fourth-order system as represented by
equation (4.2), the scaling factor @ = Vw,w; = A4,%.

An accurate scaling factor may be determined from using:

A=DET![M~'][K]I VN
or if M is singular,

A~! =DETI[M][K] ' I'/N

It is also important to note that since this method was
implemented on a microcomputer (both the HP-9845 and HP-
200 with 32-bit internal architecture), various scale factors
could be quickly tested. Any reasonable estimate of a scaling
factor produced good results. The problem can also be
formulated whereby the polynomial can be truncated above a
certain order, dropping the higher frequency modes, which
usually are not of interest in a standard vibration problem.

It is important to note that this procedure has a wide range
of application beyond rotating shafts, and has also been used
to formulate the damped torsional eigenvalues of complex
gear boxes.
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