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ABSTRACT

The paper deals with the analysis of the synchronous unbalance response of a
multi-mass flexible rotor in linearized fluid film bearings including shaft bow
and disc skew. The normal proceedure in treating the dynamic unbalance response
of a multi-mass rotor is to use the matrix transfer proceedure and to assume that
the rotor shaft is undistorted and that the transverse axis of components such as
shrunk on disks are perpendicular to the elastic centerline of the shaft.

In the operation of actual turborotors, however, it is often possible that
the idealized shaft and disc assumptions of straightness are violated due to such
factors as thermal bowing, excessive loading and improper shrink fits of impeller
wheels. In this case, then shaft warp and disc skew introduce effective unbalance
forces and moments which can cause large amplitudes of rotor motion when operating
in the vicinity of a critical speed.

To illustrate the importance of inciuding disk skew and shaft warp in the
dynamical equations, several synchronous response cases are presented, including
the evaluation of a large industrial motor driven water pump.
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Linear pedestal damping
Linear bearing oil film damping

Young's modulus of shaft section

Area moment of inertia of shaft section
Polar mass moment of inertia of disk
Transverse mass moment of inertia of disk
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Linear pedestal stiffness
Linear bearing oil film stiffness

Length of rotor shaft section¥*
Pedestal mass

Total rotor station lumped mass

Complex determinant, = AB - Sxysyx

Complex column vector comprising the elements

of the ninth column of rows 3, 4, 7 and 8
of the :otal transfer matrix.

Complex pedestal stiffness
Complex bearing o0il film stiffness

Complex combined point and field matrix
Complex field transfer matrix
Complex point transfer matrix

Reduced form of complex total transfer
matrix containing the remaining

coefficients of rows 3, 4, 7 and 8 after boundary

conditions have been applied.

Complex unbalance, = U + jUu

X y

Unbalance components in the x- and y-
directions.

Complex displacement column vector for
first station (left end) of rotor

Complex shear force in the x- and y-
directions*
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Complex absulute mass station displacement
(or shaft deflection) in the x-direction¥*

Shaft distortion (warp) deflection in
the x-direction*

Complex absolute mass station dispiacement
(or shaft deflectiomw in the y-direction*

Shaft distortion (warp) deflection in the
y-direction¥®.

Combined bearing and pedestal complex
stiffness.
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Complex skewed disk gyroscopic moments
about the y- and x-axes.

Complex distortion (warp) slopes

Complex unbalance driving forces in the
x— and y- directions

Complex distortion (warp) deflections

Net distortion (warp) deflections across
the shaft section in the x— and y-
directions.

Net distortion (warp) slopes across the
shaft section about the y- and minus x-
axes

= Zbyx
Complex shaft slope about the x-.axis

Complex shaft slope about the minus x--axis
(opposite the +y-rotation direction)

Shaft distortion (warp) slopes about the
y- and minus x-axes¥ :

= Zbe
Complex disk skew, TX+ it

y

Permanent disk skew angles about the
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*When an i (or i-1) subscript appears on the variables marked with an
asterisk, it denotes end i (or end i-1) of rotor shaft section i. An
i subscript can also denote mass station i or section i, depending on

its context.
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INTRODUCTION

Until recently the standard procedure in treating the synchronous unbalance
response of a multimass rotor in fluid film bearings has been to assume that the
shaft elastic centerline is initially undistorted, and that the transverse axes
of all external components (represented mathematically as disks) remain perpen-
dicular to the elastic centerline of the shaft. These two assumptions ignore
shaft warp and disk skew excitations, respectilvely.

Extensive publications are available on the dynamic unbalance response of
complex flexible rotor systems by such authors as Lund and Orcutt (1); Kawamo, °
Matsukura, and Inoue (2); Kirk and Gunter (3); Wolfe and Wong (4); Barrett,
Gunter and Allaire (5); and Koenig (6). These investigations have been focused
primarily on rotor excitation due to asymmetric-radial mass distributions or
disk eccentricities. However, rotor shaft warp and disk skew introduce effective
unbalance forces and moments that can induce large amplitudes of motion on the
rotor when it is operating in the vicinity of critical speeds. Ultimately, these
large amplitudes can lead to extensive rotor and bearing damage. As a result,
there have been several studies conducted to research these complex effects.

The case of the single-mass rotor on rigid bearings with a warped shaft and
radial unbalance has been treated by Nicholas, Gunter, and Allaire (7) at the
University of Virginia. This study has provided considerable insight into the
behavior of a rotor operating through the first critical speed. However, the
results of this work, for the single-mass rotor on rigid bearings, cannot be
readily extrapolated to multi-mass rotors on flexible bearings, particularly when
these rotors operate through several critical speeds. In addition, their study
does not include the effects of disk skew.

For a single-mass rotor system, the incorporation of disk skew is consider-
ably more complicated than the treatment of the warped shaft. 1In order to examine Pe
the influence of disk skew, two additional equations of motion must be considered
to represent the disk angular motion and gyroscopic moments. Yamamoto (8) pre-
sented the general equations of motion for a skewed disk, transformed into lin-
earized stationary coordinates, with small displacements and rotations. However,
the work of Yamamoto does not address the influence of permanent disk skew on
shaft dynamics.

The case of a single, overhung skewed disk on an undistorted, uniform
elastic shaft was treated by Benson (9) at the University of Virginia. Benson
demonstrated that permanent disk skew can have a pronounced effect on the dynam-
ics of the rotor shaft and that the single-plane balancing procedure is not
adequate to balance the overhung skewed disk at all speeds. However, this work
cannot be directly applied to multi-mass rotors and it does not include shaft
warp.

Kikuchi (10) has formulated the matrix transfer equations for the unbalance
response of a multi-mass flexible rotor with shaft distortion, but this work does
not consider the permanent disk skew effects. The Kikuchi concept is outstanding
in formulating the equations for the general bowed (warped) rotor. However, there
are several errors in the algebraic signs and the matrix terms. A comparison of
the author's matrix terms and the Kikuchi terms is presented in Reference (11).

This paper includes the effects of disk skew and shaft warp, in addition to
the commonly treated unbalance excitation, for synchronous rotor response. The
numerical results were calculated on a digital computer program which implements
the dynamic transfer matrix equations for a general multi-mass flexible rotor in
fluid film bearings. All eight bearing stiffness and damping coefficients are
considered.

To illustrate the importance of including disk skew and shaft warp in these

dynamic equations, several synchronous response cases are presented for a large
industrial water pump, in which the bearing damping was reduced by a factor of
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20 from the original values to excite the first three critical speeds. For the
five cases considered, shaft warp was the dominant excitation at the first crit-
ical speed, shaft warp and disk skew were dominant at the second critical speed,
and the disk skew dominated the third critical speed. For all three critical
speeds, the predominant excitation was not unbalance. Hence, a synchronous re-
sponse analysis that only considers unbalance excitation would be greatly in
error if the actual machine has skewed disks or a warped shaft (including coup-
ling misalignment). This error is particularly significant at the rotor critical
speeds, which in many machines are excited without reducing the bearing damping.
Due to the limitations of manufacturing tolerances, these excitations will always
exist to some degree and their influence on rotor behavior must be assessed.

TRANSFER MATRIX FORMULATION

The equations of motion, represented in transfer matrix form, mathematically
consider a lumped mass rotor model, consisting of a series of lumped masses con-
nected by a massless elastic shaft. These equations are applicable only to elas-
tic force-displacement relations. The rotor shaft may be supported by speed-de-
pendent, damped, asymmetric bearings in flexible damped pedestals. All eight
bearing stiffness and damping coefficients are considered.

The derived transfer matrix includes the equations of motion for the re-
sponse of a rotor with unbalanced masses, permanently skewed disks, and a warped
shaft. An unbalanced mass is created when the geometric center of an external
rotor component (represented mathematically as a disk) is eccentric to its mass
center by some distance, e . A disk 1s permanently skewed when its transverse
axis is not perpendicular o the elastic centerline of the shaft. Shaft warp
results when the elastic centerline of the rotor shaft is distorted. Note that
the term "warp" used in this paper differs from the warp in classical engineering
mechanics. The latter means that plane sections do not remain plane.

The total transfer matrix for a given shaft section is composed of the com-
bined properties of the point matrix which includes all of the shaft inertia
properties, unbalance and disk Skew which are concentrated at a point and the
field transfer matrix which includes shaft warpage. Fig. 1 represents a typical
rotor mass station with shear transfer from the adjacent shaft sections and
bearing forces. In addition to bearing forces, the pedestal or foundation motion
may also be incorporated in the point matrix.

A typical shaft elastic station including shaft warp is shown in Fig. 2 for
the Y-Z plane. A similar figure can also be presented for the X-Z plane. Note
that in this figure the disc skew angle T is shown in which the disk is skewed
a small angle from the shaft elastic centérline.

The point transfer matrix [Tp] across the i1-th mass station is of the form
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The field transfer matrix [Tf] across the i-th section is of the form

>
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After substituting the matrix of field equations (2) into the matrix of point
equations (1), the "combined pointand field transfer matrix" for the i-th section
and mass station is obtained.

fal 4 = [Ted [T£] Ja}, (3

which can be rewritten in the form
iAE g = [Tel ?Ag i-1 (4)

This combined matrix [Tc] defines the properties at end i of the i-th mass station
in terms of the properties at end (i-1) of the i-th section. Thus, the combined
point and field matrix is shown as follows in Table 1, (Equation (5)).

TABLE 1 Combined Point and Field Matrix

L. 2 ) 0 0 0 Do (%)
x i % 2EL 6EL > . X
. 52 . =
X &
== == £ ] 0 0 . As [
Bx e t EI 2EI : g : x X
22 [ 92
% i 2 I Tt ]
Hx 0 —MZIT '“’ZTT_ +1 _“ZITﬁlh 0 jw IP JutIpgy juw IPZEI 2 weIphsy Mx
+jw? IPz.sy
+AMy
$ 3
22 23 : ] 2 . "
= =41 BRY -2 . A D ybuyAbw
Ve Y & YoE1 YgET : 2E1 6EL I x
................................... g o
oo bw
y =i o0 0 0 0 1 2 e e Y y
] 2 9
o, 0 0 0 0 0 1 = St s .
B 2
. (3 . 22 2 2l P 2 M
M 0 -3u?Tp —J,,?lPﬁ —JuZIP-Zﬁ 0 —w?lLy w2Irp+l S O T : Jullpbs .
: - ~u?Tybs,
+aM
y
22 23 : . LA 22 - v
v -n -nt =gt i1 T & ¥ “5E ureptl ©o-nbwy v
’ +abu +AV
iody 0 0 0 0 0 0 0 0 1 LA D
(
(5)

Note: Symbols used here are defined in Appendix A.
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This combined transfer matrix [Tc], must be formulated for each (i-th) mass
station and adjacent shaft section across the entire rotor. The first combined
transfer matrix defines the state vector for station 2 in terms of the state
vector for station 1.

{A}, = [Te1] {A}h (6)

The i-th combined transfer matrix (in general) defines the state vector for
station 1 in terms of the state vector for station i-1.

g day )

Finally, the n-th (or last) combined matrix defines the state vector for
station n (the last rotor station) in terms of the state vector for station (n-1)

{A}i = [Tec

{a} = [Tc 1 {A} ' (8)

After performing the multiplication of the combined transfer matrices, in de-
scending order, the total combined transfer matrix [Tc] across the entire
rotor 1s obtailned. This matrix defines the state vecto%og%lthe right end of the
rotor (station n) in terms of the state vector at the left end of the rotor (sta-
tion 1). Thus,
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Matrix equation (9) is of the general form
(A} = [Tel ., {Ah (10)

The boundary conditions at the end of the rotor are free, so that the shears and
moments are zero at station 1 and station n. Therefore,

M =M =V =1V 0 (at left end of rotor) (1)

X1 vyl X1 vyl

0 (at right end of rotor) 2

M =M =V =1V
Xn yn XN yn

After applying the boundary conditions (equations 11 and 12), equation (9) be-

comes
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Equation (14) is in the form
{R} = [Tr] {v} (15)

Where [Tr] is the reduced form of the total combined transfer matrix, [Tec].
Now, solve for {v}, which contains the unknown displacements and slopes at the
left end of the rotor. Multiply both sides of equation (15) by [Tr]-!, which
becomes

[Te1-1{R} = [Tr][Tr] l{v} (16)
or
{v} = [Tr]"! {R} 17)
where
X1
ex
(v} = YIl (18)
6,1

Now that the displacements and slopes at the left end of the rotor are known,

start at station 1 and apply each combined transfer matrix, equations (6) through

(8), in sequence along the rotor to obtain the displacements, slopes, moments,
and shears at each adjoining station. Starting with equation (6), use state
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vector 1 to solve for unknowns in state vector 2 (where MXl =M =V =V = 0).

x known x
¢} known 6

- X
M 0
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\Y 0
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L5 = [Tc,{ known y ¢ (19)
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y

v 0
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2unknown 1

Continue with the general equation (7) to solve for the i-th state vector in
terms of the (i-1)-th state vector:

b'e known x
6 known 6
X X
M known M
X X
\Y known V
x x
J y } = [Tc‘ih known y ; (20)
ey known Gy
M known M
y y
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¥ 24
] . 1 .
*unknovn 1~1
Finally, for the n-th (last) state vector, apply equation (8) (where
M =M =V =V = 0):
xn yn xn yn
X known x
6 known 6
X %
0 known M
X
0 known V
X
iyt = [Tcn]‘ known y f (21)
8 known 6
y y
0 known M
b4
0 known V
¥
1 1
" unknown =l
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Now the complex rotor displacements, slopes, moments, and shears are defined at
each discrete mass station along the rotor.

APPLICATIONS - SINGLE MASS ROTOR

In order to verify the accuracy and the validity of the computer program
(SYNCWUS) which was designed to calculated the characteristics of a multi-mass
rotor system, the program was applied to the well known single mass rotor.

In the first case, a centrally located single mass rotor with a shaft bow of
6. = 0.125 mils and an unbalance eccentricity of e, = 0.25 mils as shown in Fig.
3 "was calculated. This systen was analyzed in detail in Ref. (7) to determine
the influence of various combinations of shaft bow and disk unbalance.

The results of the calculations are shown in Fig. 4 for two values of the
dimensionless damping coefficients . As can be seen from the figure, the com-
puter predictions are in excellent agreement with the results presented in Ref.

.

In the simple Jeffcott model of Fig. 3, the effects of gyroscopic moments
and disk skew are not considered. In the second case considered, a single over-
hung rotor with a skewed disk was examined. The case chosen was similar to the
model developed by Benson (9) for the single overhung rotor on a massless elastic
shaft as shown in Fig. 5. In this model the disk is skewed by 0.0674° and has a
radial unbalance eccentricity of e = 10 mils. A comparison between the results
generated by the SYNCWUS computer program and the analysis by Benson for the
single skewed disk is shown in Fig. 6. Numerous other cases for the single mass
rotor were also calculated with excellent agreement between the multimass com-
puter program and the results as predicted by Benson using single mass theory.

The case of the overhung rotor with disk skew and radial unbalance is of con-
siderable interest. The system may exhibit two critical speeds depending upon
whether the transverse moment of inertia, I, is larger than the polar moment of
inertia Ip. In this case, it is always possible to select the values of radial
unbalance and disc skew such that one of the critical speed modes will be perfect-
ly balanced, but not the other. The implication of this is that it is possible to
have an overhung rotor that appears to be in perfect balance at one speed, but is
badly out of balance at another speed due to the combined effects of disk skew and
radial unbalance. This characteristic and its influence on balancing will be pre-
sented in detail in a future paper.

Application - Multimass Motor-Water Pump

To illustrate the practical applications of these dynamic equations, several
synchronous response cases are presented for an industrial rotor. The rotor
system to be examined is a 45,330 1b. vertical centrifugal water pump consisting
of a 40,169 1b motor and a 5,161 1lb. pump. The motor is supported by two tilting
pad, oil-lubricated bearings and is rigidly coupled to the pump, which is support-
ed by an externally pressurized water-lubricated journal bearing. Figure (7)
illustrates the 40-station model for the entire rotor system, indicating the lo-
cations of the bearings and the major external rotor components.

The primary sources of rotor excitation in this system are the following:

1. Unbalance and permanent skew at the 11,025 1b. flywheel.

2. Unbalance at the motor core.

3. Angular and parallel coupling misalignment at the motor end flange (forms
of shaft warp).

4. Unbalance and permanent skew at the 1,770 1b. impeller.

Note that the impeller imposes hydraulic dynamic unbalarce excitation (due to
vane imperfections) as well as mechanical unbalance excitation. However, the
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hydraulic effects are of primary importance because other magnitudes greatly
exceed those due to residual mechanical unbalance.

Case A assumes small residual unbalances of 50 oz-in. each at the flywheel
and the motor core. The impeller has a hydraulic dynamic unbalance of 636.78
oz.-in. These unbalances are all in the x-direction (in phase). At the pump
operating speed (1190 rpm), this amount of unbalance would produce a load equiv-
alent to a 2.04-1bf weight placed at the outer radius of the impeller (19.5 in.).

Case B also has the same unbalance distribution as Case A. In addition to
this unbalance excitation, the flywheel is permanently skewed by an angle T =
0.0058798 degrees (the skew is in phase with the unbalance). The positive Skew
angle should cause restoring moments on the shaft that would tend to increase
the upper motor bearing amplitude from the Case 1 value for this rotor mode. An
unbalance couple of 882.0 oz.-in., acting on the flywheel, would produce the
equivalent to this amount of skew.

Case C has the same unbalance distribution as in Case A, but the impeller is
permanently skewed by an angle t1_ = -0.073048 degrees (the skew is in phase with
the unbalance). The negative skdw angle should cause restoring moments on the
shaft that tend to increase the impeller and water bearing amplitudes for this
rotor mode. This particular skew angle produces the equilvalent to an unbalance
couple of 212.4 oz.-in. acting on the impeller.

Case D considers a © = +0.025 degree angular coupling misalignment of the
pump shaft at the motor ehd flange, and the same unbalance distribution as Case
A. The misaligned pump shaft lies in a plane that is oriented at the shaft timing
mark. Angular coupling misalignment can result when the mating motor or pump
flange has not been machined truly perpendicular to the axial centerline of the
shaft. When the mating coupling flanges are bolted together, the axial center-
lines of the motor and pump shafts are not coincident. Hence, there is a built-
in distortion angle between them. This misalignment induces a form of warp (or
shaft distortion) excitation on the rotor system.

Case E is a combination run-that includes excitation due to unbalanced mass,
flywheel skew, impeller skew, and angular coupling misalignment. The unbalance
distribution is the same as in Case A, the flywheel has a permanent skew angle
T_ = 0.0058798 degrees, the impeller has a permanent skew angle tT_ = -0.073048
dégrees, and the angular coupling misalignment 6 g = +0.025 degrges. Note that
this is a combinatian of Cases A, B, G, and D. x>

To more clearly illustrate the significance of the disk skew and shaft warp
effects, the damping in the three bearings was lowered to 1/20 of the original
values to excite the first three undamped critical speeds, 484, 2132, and 3012
rpm. The mode shapes corresponding to these critical speeds are illustrated in
Figures 8, 9, and 10. Figure 11 is a plot of the resultant pump impeller x-probe
amplitudes for these excitation cases (A through E) and Tables 2, 3, and 4 contain
tabulations of the rotor amplitudes at six rotor locations for the first, second,
and third peak response speeds. This figure d1llustrates the significant differ-
ences between the synchronous pump impeller x-probe amplitudes due to unbalance
alone and those due to the addition of shaft warp and disk skew effects, in var-
ious combinations with the same unbalance distribution. Note that the angular
warp and combination curves do not go to zero amplitude at zero speed, like the
unbalance curve. This is because the warp is a permanent shaft distortion.

Hence, it produces a low speed runout in shaft amplitude.
The first peak response1 occurs at 175 rpm for the warp and combination
excitations. This peak represents the excitation of the first undamped critical

1 The rotor speed at which maximum (peak) amplitude occurs. This peak occurs when
a critical speed is excited by synchromous driving forces. Note that the undamped
rotor critical speeds might not be excited if there ' is enough damping present in
that mode.
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Table 2 Rotor First Peak Response Comparison (1/20 Original
Damping), x-Probe Peak Amplitudes

Upper Lower Lower Punmp
(a) motor Fly- motor cplng water  Impel-
‘Excitation type 4 brg wheel brg flange brg ler

Case A — Unbalance

Amplitudes, mils

- First peak not excited ———
Peak speed, rpm :

Case B — Flywheel Skew

Amplitudes, mils
Peak speed, rpm +—————— First peak not excited —
Change, % (®)

Case C — Impeller Skew

Amplitudes, mils :
Peak speed, rpm +~——————— First peak not excited —
Change, %

Case D — Angular Warp
(coupling misalignment)

Amplitudes, mils 0.69 - 1.65 12.26 39.77 53.58
Peak speed, Tpm (350) . o= (350)  (175) (175)  (175)
Change, % — - - S - i

Case E — Combination
(unbal., warp, skew)

Amplitudes, mils 0.70 - 1.67 12.27 39.83 53.68
Peak speed, rpm (350) - (350) (175) (175) (175)
Change, % e - - -

(a)

Specific excitations:

Case A — Flywheei 50 oz.-in.; motor core 50 oz.-in.; impeller 636.78

oz.-1in.
Case B — 1 = 0.0058798°; unbalance same as for Case A.
Case C — 1 = -0.073048°; unbalance same as for Case A.
Case D — 64 = 0.025°; unbalance same as for Case A.
Case E — Combination of Cases A, B, C, and D.

(b)

Change (%) from Case A: + indicates increase; - indicates decrease.
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Table 3 Rotor Second Peak Response Comparison (1/20 Original

Damping), x-Probe Peak Amplitudes

Upper Lower Lower Pump
{ay motor Fly- motor cplng water Impel-

Excitation type brg wheel brg flange brg ler
Case A — Unbalance
Amplitudes, mils 1.76 3.41 3.02 28.41 -- 49.39
Peak speed, rpm (2075) (2075) (2100) (2175) - (2175)
Case B — Flywheel Skew
Amplitudes, mils 5.44 10.19  2.54 27:41 - 47.66
Peak speed, rpm (2175) (2200) (2075) (2200) - (2175)
Change, %(b) +209.1 +198.8 =-15.9 -3.5 - -3.5
Case C — Impeller Skew
Amplitudes, mils 1.66 3. 11 2.86 32.98 - 57.21
Peak speed, rpm (2075) (2075) (2075) (2175) - (2175)
Change, % =5.7 -8.8 -5.3 +16.1 P +15.8
Case D — Angular Warp
(coupling misalignment)
Amplitudes, mils 12:21 11:23 6.54 32.40 10.47 51.22
Peak speed, rpm (2200) (2075) (2100) (2175) (2100) (2175)
Change, % +593.8 +229.3 +116.6 +14.0 - F337
Case E — Combination
(unbal., warp, skew)
Amplitudes, mils 4,33 8.36 5.21 35.56 11599 97322
Peak speed, rpm (2075) (2075) (2100) (2175) (2125) (2175)
Change, 7% +146.0 +145.2 +72.5 +25.2 - +1:5.9

a . . ;
( )Speclflc excitations:

Case A -- Flywheel 50 oz.-in.; motor core 50 oz.-in.; impeller 636.78

0zZ-=in.
Case B - 1 = 0.0058798°; unbalance same as for Case A.
Case C — 1 = -0.073048°; unbalance same as for Case A.
Case D — 04 = 0.025°; unbalance same as for Case A.

tase E — Combination of Cases A, B, C, and D.

(b)

Change from Case A (%): + indicates increase; - indicates decrease.
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Table 4 Rotor Third Peak Response Comparison (1/20 Original
Damping), x-Probe Peak Amplitudes
Upper Lower Lower Pump
(a) motor Fly- motor cplng water Impel-

Excitation type A brg wheel brg flange brg ler
Case A — Unbalance
Amplitudes, mils 1::36 1.57 6.58 47.08 18.39 82.03
Peak speed, rpm (2650) (2675) (2525) (2550) (2475) (2550)
Case B — Flywheel Skew
Amplitudes, mils 1:17 1..28 6.61 47.28 18.47 82.29
Peak speed, rpm (2600) (2650) (2550) (2550) (2475) (2550)
Change, %(b) -14.0 -18.5 +0.5 +0.4 +0.4 +0.3
Case C — Impeller Skew
Amplitudes, mils 1.56 Lo77 7.81 55.83 2169 95.80
Peak speed, rpm (2650) (2675) (2550) (2550) (2475) (2550)

Change,

%

+14.7 +12.7 +18.7 +18.6 +17.9 +16.8

Case D — Angular Warp
(coupling misalignment)

Amplitudes, mils 1.38 1,91 6.09 41.81 16.52 76.33

Peak speed, rpm (2625) (2625) (2450) (2550) (2450) (2550)
Change, % 155 +21.7 7.3 -11.2 -10.2 -6.9
Case E — Combination

(unbal., warp, skew)

Amplitudes, mils 1.34 1:72 7.24 50.74 19.89 90.19
Peak speed, rpm (2625) (2650) (2500) (2550) (2475) (2550)
Change, % -1.5 +9.6 +10.0 +7.8 +8.2 +9.9
(a)Specific excitations:

Case A — Flywheel 50 oz.-in.; motor core 50 oz.-in.; impeller 636.78

oz.-in.

Case B — 1T = 0.0058798°; unbalance same as for Case A.

Case C — 1 = -0.073048°; unbalance same as for Case A.

Case D — 04 = 0.025°; unbalance same as for Case A.

Case E - Combination of Cases A, B, C, and D.
(b)Change (%) from Case A: + indicates increase; - indicates decrease.
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speed, which was at 484 rpm. The difference between the peak response speed and
the undamped critical speed is due to the bearing damping. Note that the unbal-
ance, flywheel skew, and impeller skew excitations did not excite this critical.

The warp and combination amplitudes reached 53.5 mils, while the other cases show
only 2.5 mils. The former amplitude is 21.4 times the latter. Here, shaft warp

has a very significant effect on rotor response at the first critical speed.

The second peak response speed occurs at 2075 rpm for all excitations consid-
ered. This peak corresponds to exciting the second undamped critical speed (2132
rpm). The most significant differences at the peak resulted from impeller skew
and the combination, with increases of 167 from the unbalance case. Flywheel
skew caused only a 47% decrease from the unbalance case, and angular warp caused
only a 4% increase. Thus, disk skew (in this case, impeller skew) is the signif-
icant factor at the second rotor critical speed.

The third peak response speed occurs at 2550 rpm for all five excitation
cases. The corresponding undamped critical speed is 3012 rpm. For this rotor
mode, the impeller skew is dominant again, with an increase of 17% from the unbal-
ance case. The combination had a 10% increase, but it contains the impeller skew.
The flywheel skew remained essentially the same as the unbalance, and the angular
warp caused a decrease of 7%. Therefore, the disk skew (impeller skew) is the
significant factor at the third rotor critical speed.

The previous discussion addressed only the response at the pump impeller.
However, after carfeul examination of Tables 2 through 4, it is evident that the
five excitations have very significant effects at other rotor locations. The
conclusions for the first peak remain essentially the same, but at the second
peak (Table 3), it is observed that flywheel skew causes a 200% increase over
unbalance at the upper motor bearing and flywheel. Furthermore, the angular warp
caused increases of 5947 at the upper motor bearing, 230% at the flywheel, and
1177% at the lower motor bearing. Therefore, the previous conclusion for the
second critical speed must be altered. While impeller skew is still a significant
factor, the flywheel skew and angular warp effects definitely dominate the rotor
response at the second critical speed. Finally, after examining Table 4, for the
third peak, the previous conclusion remains basically unchanged. The dominant
effect on the overall rotor is impeller skew, with increases between 12 and 19%
for all six rotor locations. Note that the flywheel skew does show significant
decreases at the upper motion bearing and flywheel (14 and 19%, respectively),
and angular warp causes a 227% increase at the flywheel. Hence, disk skew (par-
ticularly at the impeller) should be credited as the predominant excitation .at the
third rotor critical speed. It should be pointed out that for the five excitations
used, the phase angles were all arbitrarily selected so that the unbalance, disk
skew, and angular warp were in phase. These phase angles do not necessarily rep-
resent the worst case, but for the purpose of the comparisons presented, they
were sufficient.

In conclusion, for the five cases considered, shaft warp was the dominant
factor at the first critical speed, shaft warp and disk skew were dominant at the
second critical speed, and disk skew dominated the third critical speed. TIn the
example cases presented in this paper for the industrial water pump, the bearing
damping coefficients were reduced by a factor of 20 in order to emphasize the
influence of shaft warp and disk skew on the rotor response. The response of the
pump with the full bearing characteristics is presented in Ref. (11).

For example, the water lubricated pump bearing has a length of 14 in. and
developes a principal damping coefficient of over 7000 lb-sec/in at 1200 RPM.
Because of this high damping coefficient, the first critical speed is not readily
excited by any form of unbalance. It also should be pointed out that a plain
journal bearing in a pressurized environment develops low principal stiffness
coefficients and high cross coupling coefficients. Therefore, such a system should
also be evaluated to determine its stability characteristics and ability to with-
stand self-excited fractional frequency whirl.
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DISCUSSION AND CONCLUSIONS

This paper has illustrated that disk skew and shaft warp excitations can
significantly alter the synchronous rotor response due to unbalance mass excita-
tion alone. This is particularly true when the rotor passes through several crit-
ical speeds. To illustrate the importance of these effects on an industrial
machine, the governing transfer matrix equations were applied to a large industri-
al water pump, in which the bearing damping in the three bearings was reduced by
a factor of 20 from the original values to excite the first tlree critical speeds.
For this rotor, it was demonstrated that shaft warp was the dominant factor at
the rotor first critical speed. Both shaft warp and disk skew had significant
effects at the second critical speed. Finally, at the third critical speed, disk
skew was the primary influence. Note that for all three critical speeds, the
predominant excitation was not unbalance. For this reason, a synchronous rotor
response analysis that only considers unbalance excitation could be greatly in
error if the actual machine being analyzed has skewed disks and a warped shaft
(including coupling misalignment). This error is particularly significant at the
rotor critical speeds, which in many machines are excited without reducing the
bearing damping. Due to the limitations of manufacturing tolerances, these exci-
tations will always exist to some degree, and their influence must be assessed.

There are many examples of turborotors that do not have the high fluid film
bearing damping characteristics as seen in the motor-water pump. For example,
aircraft gas turbine engines typically have rolling element bearings. Even with
damper supports behind the rolling element bearings, these gas turbine engines
usually exhibit much smaller damping characteristics in comparison to industrial
rotors on fluid film bearings.

Under these circumstances, the effects of shaft bow and disk skew can be of
considerable importance, particularly with overhung power turbines. Another
consideration in two spool gas turbines that cycle over a speed range is the
possibility of creating thermal bows which can cause shaft warpage and disk
skewing. This can result in the transmission of high bearing loads and a corre-
sponding reduction in bearing life.

Another industrial example where the influence of shaft bow and disc skew
is of importance is with a double overhung turboexpander. In this type of con-
figuration, one end of the machine has an overhung turbine or expander stage and
the other end has an overhung compressor wheel. It is quite possible to bow this
type of rotor by thermal gradients, improper shrink fits, or high unbalance load-
ing. If the shaft is bowed, then the wheels also become skewed to the bearing
line of centers. The theoretical analysis and actual experience with such a
system has shown that it is impossible to perform a satisfactory two plane field
balance on the'rogpf to completely balance the machine at all speeds.
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APPENDIX

The state vector at the right end of the i-th mass station can be expressed
in terms of the state vector at the left end of the mass station by means of the

point transfer matrix as follows:

where

1 0 c 0 0 0 o0 0 x| "
0 1 0 0 0 0 0 0 6,
0 —uZIT 1 0 Juzzp 0 0 B M
2. !
msu bex o d bey o 0 0 AV\ V\(
0 0 0 1 0 0 0 0 y (22)
o 0 0 0 1 0: 0 0 By
jw? -2 aM M
0 -j IP 0 0 w IT 1 0 "1y Iy
< 2 /
Zbyx 0 0 nw Zbyy 0 1 AV‘)’ \,y
0 G 0 0 0 07 0 1 Loy
AVX = wZ(UX + jUy) = u2U = the unbalance term in the x-z plane
Avy = —jwz(UX + jUy) = -jw?U = the unbalance term in the y-2
plane
- 2 :
= - +
M= (I, - TDw (T, JTy)
= (IP = IT)wZT = the skewed disk gyroscopic term in the
x-z plane
= _ 2 =
AMy (IP IT)w (Ty JTX)
= —j(IP - IT)MZT = the skewed disk gyroscopic term in the
y-z plane
= Ax + jA
wa X jly
As = AB + jAS6
X y
Aw = Ay - jhx
y
As = AB_ - jA®
vy pé
MBS Xy 1 T B g T Yx i g™
Ay = . 0 ; .
y yd,l yd,l—l y,d,i-1"1
B0 S Npsim — Tl g
AB_ =8 , = B :
y Y)d)l y:dal_l
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The bearing complex terms are as follows:

1. For a rigid pedestal —

bex = Sxx
bey = Sxy
Zbyx - Syx
“oyy ~ Syy

2. For a flexible pedestal —

bex = SXX(l - All) - SXyAZI
bey = SXy(l = A22) - SXXAl?'
Zbyx = Syx(l - All) - SyyA21
Z =S 1 -A -5 A
byy ~ Syy! 22) g I
where S = % dge
XX XX XX
S = k + j
xy ~ xy 9%y
S = k + jwc
yx yX yx
S = k + jwc
Yy yy 3 ¥y
BS .= §~8§
A = XX Xy yx
11 Q3
BS - 5.5
X X
A <= Q3
) nyxx + 8 X
Ay = Q3 -
—SyXSxy + ASy
Ay = E .
Q3 = AB - S S
Xy yx
A=S +8S5 -my?
XX pX
B=S +5S -muw?
yy PY
S =%k _ + juwc
PX PX pPX
S =k + juwe
PY Py Py
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Symbols Used on Combined Point and Field Matrix

- 2 _
LS mSw ZbXX

A =
bey
= Zbyx
= 2
o msm Zbyy

The bearing complex terms are as follows:

For a rigid pedestal —

2y g =
XX XX
bey - Sxy
Zbyx - Syx
2y 5
yy ¥y

For a flexible pedestal —

ZbXX e Sxx(l = All) - SX}’A21

bey Sxy(l =il = SxxA12

7 =8 41 - &) ~ 8. n
byx T Syx 1) = Syghel
Z =S (1 - Asp) = S Ayo
byy ~ vy 22 wE
where s -k SR
XX XX XX
S = k + jwc
Xy xy xy
S = k + jwc
yx  yx yx
S =k + jwc
yy vy yy
BSXX - SX A X
A =
11 %
BS_, - S_S
R < S
12 3

nyxx T
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Figure 1 Typical (i-th) Bearing Station Arrangement in y-z Plane
With Pedestal Flexibility (Neglecting Rotational
Stiffness and Damping Effects)

~<

M'
y,1i

Variable Relationships:

= + ; —di 3
Y yp,i yb,i (Absolute y-displacement of mass station)
V= =Y. (Elastic y-displacement of mass station)
i i dipd )
WiEie yp i = absolute y-displacement of pedestal
»

= relative y-disblacement of bearing

absolute y-distortion deflection (warp) of shaft
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Disk Amplitude Ratio (8/e ), dimensionless

u

2 | T 1 L g ||
® SYNCWUS Results
7.0 F &= Opll = Results of Gunter, -
Nicholas, and
Allaire[6]
6.0} i

3.0
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Frequency Ratio (m/wcr), dimensionless
Comparison Between SYNCWUS and Gunter, Nicholas, and

Allaire[6] for Disk Amplitude Ratio Vs Frequency Ratio
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Figure 5

e L
aL
ROTOR MODEL PARAMETERS
101.98 R = 20.0 in. I, = 146,461.95 lbf-in.?
135.97 i r = 4.0 in. I, = 73,231.04 1bf-in.?
4.0 in. w=2.0 in. k) = kp = 7197.9 1bf/in. (k,
704,14 e = 10 mils c] = cp = 28.64 1bf-s/in.
-0.0674° U_ = 112.66 oz.-in.
Unbalanced Single Mass Rotor With Overhung Skewed Disk

on Flexible Damped Bearings
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Disk Amplification Factor (/e ), dimensionless
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Figure 7 Shaft Cross Section for Large

Centrifugal Pump/Motor System
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Figute 8 Mode Shape at First Critical Speed

N1 = 483.5 rpm
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