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1 Introduction

WITH the increase in performance requirements of
high speed rotating machinery in various fields such as process
equipment, auxiliary power machinery, and space applications,
the engineer is faced with the problem of designing a unit capable
of smooth operation under various conditions of speed and load.
As an example, turborotors in the auxiliary power systems of
space applications must be designed to perform satisfactorily
under adverse load conditions ranging from the high acceleration
forces encountered at takeoff to the zero gravity load condition
encountered in orbit. In many of these applications the design
operating range may be well above the rotor first critical speed.
Under these circumstances the problem of insuring that a turbo-
machine will perform with a stable, low level amplitude of vibra-
tion is extremely difficult.

Under certain conditions of high speed and light loading, a
situation can arise in which the rotor system is capable of orbiting
or precessing in its bearings at a rate less than the total rotor
angular speed. This nonsynchronous precessive motion, which
has often been referred to in the literature as whirling or whipping,
can lead to destruction of the rotor if the whirl threshold speed is
exceeded. Nonsynchronous rotor precession is a self-induced
vibration and has sometimes been described as “sustained tran-
sient motion.” In general, a self-excited or self-induced vibration
is defined as a phenomenon in which the excitation forces inducing
the vibration are controlled by the motion. This is in contrast to
a forced vibration in which the external excitation is a function
of time only.

With a self-excited whirl instability, unbalance is of minor im-
portance. At the onset of whirl, the rotor behavior is unlike a
critical speed resonance where the amplitude of motion builds up
to a maximum value and then decreases. At the inception of
nonsynchronous whirling, the rotor motion will continually build
up with speed since the self-excitation increases the energy trans-
fer into the system with increased speed. If the rotor speed is
increased appreciably above the whirl threshold speed, the large
orbiting obtained will usually result in rotor or bearing failure.

This paper deals with the influence of internal rotor friction on
stability. The equations of motion for the single-mass flexible
rotor are developed and analyzed to determine the stability
threshold. An analog computer was used to simulate the rotor
motion, and comparison is made with experimental data.

The investigation shows that large gains in stability can be
achieved by incorporating bearing support flexibility and damp-
ing into the system.

2 Background

At the turn of the century, the design philosophy applied to
rotating equipment was to construct rotors sufficiently stiff to
insure operation below the first natural critical speed. In 1919,
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H. H. Jeffcott [1],! a noted English dynamicist, was asked to in-
vestigate the effect of rotor unbalance on the whirl amplitudes
and forces transmitted to the bearings. Jeffcott analyzed the
motion of a single-mass flexible rotor on fixed bearing supports
(see Fig. 1). Jeffcott’s splendid analysis of a relatively simple
model revealed to rotating machinery designers the possibility of
operation above the first critical speed providing good rotor
balance is acquired.

The 1920’s saw a trend reversing the rotor design concepts of
the previous decade. Turbine and particularly compressor and
pump manufacturers were beginning to construct higher speed,
lighter weight rotors designed for operation well above the first
critical speed. As more manufacturers adopted this “flexible”
rotor design, several encountered severe difficulties when operat-
ing above the first critical speed. These problems were at first
attributed to the lack of proper rotor balance. At this time, a
major United States manufacturer encountered a series of failures
of pumps designed to operate above the first critical speed. Dr.
B. L. Newkirk set up a series of experiments with several units to
observe the rotor dynamic behavior. It was observed that at
speeds above the first critical speed these units would enter into a
violent whirling in which the rotor center line precessed at a rate
equal to the first critical speed. If the unit rotational speed were

1 Numbers in brackets designate References at end of paper.
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Fig. 1 Single-mass flexible rotor
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increased above its initial whirl speed, the whirl amplitude would
increase, leading to eventual rotor failure. To further investigate
all aspects and contributing factors to:this problem, an experi-
mental test rotor was constructed to simulate a typical pump
unit. Extensive testing of this unit revealed the following im-
portant facts concerning this phenomenon [2]:

1 The onset speed of whirling or the whirl amplitude was un-
affected by refinement in rotor balance.

2 A well-balanced rotor sometimes required an external dis-
turbance to initiate whirl.

3 Whirling always occurred above the first critical speed.

4 The whirl threshold speed could vary widely between
machines of similar construction.

5 The precession (or whirl) speed was constant regardless of
the unit rotational speed.

6 Whirling was encountered only with built-up rotors.

7 Increasing the foundation flexibility would increase the
whirl threshold speed.

8 Introducing damping into the foundation would increase
the whirl threshold speed.

9 Increasing the axial thrust bearing load would increase the
whirl threshold speed.

It became clear to Dr. Newkirk that the rotor dynamic be-
havior could not be attributed to a critical speed resonance since
the high vibrations encountered always occurred above the first
critical speed and refinement of balance had no effect upon
diminishing the whirl amplitudes. There was nothing in the
literature at that time to indicate that any mode of motion, other
than synchronous whirl, was possible. During the course of the
investigation, a theory of the cause of the vibration was postulated
by A. L. Kimball [3]. Kimball suggested that forces normal to
the plane of the deflected rotor could be produced by the hysteresis
of the metal undergoing alternate stress reversal cycles. Newkirk
concluded that these out-of-phase forces could also be developed
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Fig. 2 Vecloriallrepresentation of a cross section of a deflected rotor
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by a disk shrunk on the shaft. Upon re-examination of Jeffcott’s
model and by introducing this additional force normal to the de-
flected rotor, he was able to demonstrate that the rotor was in-
deed unstable above the first critical speed, and thus was partially
able to explain some of his experimental findings. Since Newkirk
made no attempt to extend Jeffcott’s model by considering a
flexible foundation with damping, he was unable to explain
theoretically several of the key points of his experimental investi-
gations, particularly as to why increased bearing or foundation
flexibility and damping will improve rotor whirl stability.

This phenomenon became known as whirling above the first
critical speed, or shaft whirling, and its nature is completely dif-
ferent from the vibrations encountered when operating in the
vicinity of a critical speed.

3 Discussion

In general, a self-excited or self-induced vibration is defined as
a phenomenon in which the excitation forces inducing the vibra-
tion are controlled by the motion. Thisis in contrast to a forced
vibration, in which the external excitation is a function of time
only. As an example, the excitation forces usually considered
with rotating machinery are alternating and impulse forces such
as caused by unbalance and shock. These force systems are ex-
pressed as explicit functions of time and are unaltered by the
mode of vibration of the system.

The exciting force for the case of shaft whirling, as described
earlier, is provided by the frictional forces developed between two
mating surfaces when undergoing deformation. This frictional
force will henceforth be referred to as rotating or rotary damping
and (for constant 8,) can be expressed in the form

F = -0, - w) (1)

This force is developed only if the whirl speed ¢ is different from
the rotational speed w (see Fig. 2). When the motion of the
system is such that ¢ > w (which occurs below the first critical
speed ), the whirl motion is damped out and the system is stable.
When the precession rate ¢ is smaller than the rotational speed
w, the rotary damping force becomes a source of excitation; that
is, energy is added to the system causing the whirl amplitude to
increase. :

Fig. 2 represents a typical cross section of the idealized rotor
taken at the nth mass station. From the examination of this
schematic representation of a rotor section, it is possible to pre-
cisely define whirling of a system and also write the governing
equations of motion of the mass section. The position vector P,
of the nth mass center is given by

P, =38+ + 8m 4 e )
where

8, = absolute displacement vector of the bearing

8; = displacement vector of the journal relative to the bear-

ing
displacement vector of the deflected rotor center line
relative to the journal at the nth station
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Fig. 3 Schematic diagram of a flexible rotor on an elastic foundation
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e(® = position vector of the rotor mass center relative to the
rotor volume center at the nth station.

Examination of equation (2) and Fig. 2 shows that seven de-
grees of freedom are required to completely specify the location
of the nth mass station. In the subsequent analysis, the following
assumptions will be employed:

1 &, = 0, which implies no displacement of the journal center
relative to the bearing (no fluid film bearing).

2 e = 0, no rotor unbalance.

3 ¢ = 0, no body forces acting on rotor.

4 n = 1, single-mass rotor.

These assumptions reduce the rotor problem to a single-mass
dynamical system possessing four degrees of freedom. This con-
figuration is shown in Fig. 3.

4 Equations of Motion

A. Deflection Analysis
The displacement of the journal center is given by the position
vector (see Fig. 3)

PO = §, = Xin, + Yin, 3)

where X, and Y, are the Cartesian coordinates of point 0, relative
to point 0, and the displacement of the rotor volume center from
the journal center is given by

Pec = 8, = Xon, + Y2n,, )

where X, and Y, are the Cartesian coordinates of point C relative
to point 0, and n,, n, represent a set of fixed unit vectors.
The total displacement of the rotor center is given by

Pc = Xn, + Yn, (5)

where
X=X+ X, (6a)
Y =Y, + Y; (6b)

In geneial, the mass center of the rotor will not correspond to
the rotor volume center. Only for the case of perfect balance will
point M correspond to point C. In this case, °Pc = °Pm and the
equations of motion of the rotor will be given by

MY —F,=0; MY —~Fy =0 7

B. Beatring Forces

For the case of a symmetric bearing support, the elastic and
dam;)ihﬁ"g characteristics are uniform in all ttansverse directions.
The bearing or foundation at 0, are assumed to be of the form

¥, = 0% — K.Xy (8a)
F, = -V, — K.Y,y (8b)

(linear elastic and damping forces).

C. Shaft Characteristics

The/forces acting on the shaft are the elastic restoring forces and
the ‘amping forces. Of importance in the calculation of rotor
‘stability is the inclusion of rotary damping on the shaft. 'This
will be defined as the damping which resists a change of strain of
the flexible members.

Consider a rotating reference from R’ which is revolving with
an angular velocity of w. The rotor forces will be expressed in this
system, since damping in the shaft is brought about by a change
in configuration of the rotating shaft. The forces acting at C are
given by

F, = —[CRV/% + Kud,] ©)
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where
rVE/% = yelocity of point C relative to 0y in reference frame R’
or

Re/0 — RN/ _ RGR! X G 2 $d, ng + 8n, — wdng (10)

Hence

F, = —[(C2, + Kadn, + C2d,(¢p — w)ng] (11)

The equations of transformation between the n,, ny and the
fixed Cartesian unit vector set n, and n,, are given by

n.\ [ cos¢sing n,)

ng/ \ —sin ¢ cos ¢ n,
By taking the dot product of equation (11) with n, and n,, the
horizontal and vertical components are obtained as

F: = Fc'"z
= —[(Ced, + K2b,) cos ¢ — Cd.(¢p — w)sin ¢] (13a)

12)

F, =F; n, }
= —[(C, + K:b,) sin ¢ + C:d,(¢ — w) cos ¢] (13b)

since

X, = §, cos ¢; Y, = 8, sin ¢
and (14)
X, = 8, cos ¢ — 8,4 sin ¢; Yy = 5, sin ¢ + 8,¢ cos ¢
Hence

F, = —[Co(Xs + 0Y2) + KoX (15a)

F, = —[Cy(V2 — wXs) + KaYo] (15b)

Combining equations (8a, b) and (15a, b) subject to the con-
dition that

X =X 4 X,
Y = Y1 + Yz
CzKI . K201X1 K1K2b
F,= —-—+ (X Ys) — — — =
K1+K2( 2+ ol Ki+ K. Ki+ K.
(16a)
Y . K.(.V1 = KiKs
Bk g1k K+ K
(16b)

If it is assumed that the damping forces are much smaller than
the elastic forces, then equations (16a, b) become

K, z K, 2
F,= -C\7-——) X - C —
: ' (Kl + Kz) ’ (Kl + K2>
-— X 17
X (X + wY) K+ K (17a)
K, 2, K, >2
- o) r-e(ghe
. K.K,
- — =Y 17
X (Y — wX) K+ K (17b)
The equations of motion of the system become
X + (i 4 )X 4 ome¥ + we?X = 0 (18a)
=0 (18b)

P4 (u 4 m)V — omX + wulY

.
_ % (}1 Iiz KZ) = stationary damping coefficient of the

bearing supports
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n G K ’ tating damping coefficient of the
= — | =———] = rotating dampin, nt o
2 \E 1K g ping coefficie

shaft
KK
Wer? = Aﬁ = critical speed squared for case of light
(K1 + K») damping
Note that
KK Ky effecti tem spri t
— = effective sys spring rate.
Ki+K 7 yslem spring

5 Stability Analysis

Note that the rotary damping coefficient n, couples the two
equations:

¥+aX+a¥Y+aX=0 (19a)
V+aV —aX+ay =0 (19b)

Now by eliminating the cross-coupling term in equations (19),
one obtains a fourth-order equation in X:

X + 20X + (205 + i) ¥+ 2maX + (a2 + a)X = 0 (20)

Assume a solution of the form X = Ae*t.
becomes

Then equation (20)

St + A8% + A.82 + AS+ 4, =0 (21)

where

Il

A3 = 201 = 2(m + n2)

Ay = 2a5 + a1? = 2w (N1 + n2)?
Ay = 20103 = 2wet(ny + n2)

Ao = a2® + a® = (0m2)? + wer*

Rather than attempt at this point to solve for the roots of the
frequency equation (21), we will instead examine the stability of
the system by Routh’s criterion.

Consider the general equation:

N
ngo 4,8 =0 (22)
For N = 4, Routh’s criterion of stability is
A1AsAs > A2 + AiAs? (23)
201 + No)wo?[20e? + (m + 72)212(u + n2) >} 1)
4(m + na)%wert + 4[(Wn2)? + wertl (1 + n2)?
This reduces to
wert( + n2)? > (wn,)? (25)
or
@ < Wer [1 + (%:)(%)2] for stability (26)

This is the stability criterion of a flexible rotor subjected to in-
ternal damping, C.. The stability condition states that the rotor
may become unstable or whirl at some speed above the first
critical speed. The exact onset speed of whirling may vary,
depending upon the ratio of the damping terms C; and C: and the
spring rates K; and K,. Thus, if the bearing damping term is
zero or small in comparison to the rotary damping term, the
threshold of instability is @ = wer, the rotor critical speed. Con-
versely, if the rotary damping is small, or if the rotor stiffness K,
is much higher than the bearing stiffness (rotor behaves as a
“rigid body’’), then the threshold of instability is w > we, as
shown by Fig. 4.
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Fig. 4 Stability threshold of a flexible rotor with internal friction on a
symmetri¢ elastic bearing support
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6 Rotor Precession Speed
Let Z = X 4+ 7Y. Then equations (19a, b) may be written as

Z+aZ+ (@ —1a)Z =0 (26a)
Assume a solution of the form
7 = ae*
This results in the following frequency equation:
a? + aqx + (a3 — ta2) = 0 27)

In general, the value of & is complex:
a= P+ 1S
Substitution of the above into (27) and separating real and imagi-
nary parts results in
P2 — 82+ agP+a3=0 (28a)

2PS + auS — Qg = 0 (28b)

Eliminating S from (28a) and (28b), one obtains

4P* + 8a,P3 4+ (5a:2 + 4a3)P? + (4aia: + a®)P
+ a?az — a2 = 0 (29)

From the assumed form of the solution, it can be seen that if P
> 0, the system is unstable (displacements will grow exponentially
with time); and if P < 0, the system is stable (motion is damped
out). At the threshold of stability, we have the condition that
P = 0, which implies that

(m + n)wer — (nw)2 = 0

m
w = wcr<1 + —)
g

defines the threshold of stability. It was seen from Routh’s
criterion that, if @ > we:(1 + m/n), the system is unstable.
By eliminating P from (28a) and (28b), we obtain

2 2
S4+<%—a,>sz—%=o

ala; — a2 = 0;

or

(30)

(31)
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Solving for S2:
P R VO 2 2
(5)-ne A
2 =
8 2
or
oo () A ) v

S = .

2
(32)

From equation (13) it was found that at the threshold of in-
stability, @ = we:(1 4+ m/n). Introducing this condition into
equation (32), we obtain

STZ =
+ ma\? n + na2\* 1
Wer? — (%J) + ‘/("12—2) + ’5 Wer? (M1 4+ n2)? + wert
2
n + ng\? n + ny |2
er” T + er2
@ ( 2 ) ["’ T ] (33)
B 2
S f
|
| - e
? ag o! 9
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CONDITIONS :
M=025 LB SECYIN  K=K;=250,000 LB/IN D, =Dy-200 RAD/SEC
us=i4/12 RAD/SEC

Fig. 5 Whirl orbits of a balanced horizontal rotor below the threshold of
stability, o < w.

X

CONDITIONS:

Wepm 706 RAD/SEC
us =1412 RAD/SEC
w -1700 RAD/SEC

Fig. 6 Whirl orbit of a balanced horizontal rotor above the threshold of
stability, w > w,
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or

1
Sp? + = wu?; 8y — = _5 (m1 + ng)?

Counsider only the positive root or that
(34)

ST = Wer

The foregoing statement implies that, at the threshold of in-
stability, the volume center of the rotor will precess in a forward
direction at a rate equal to the first system critical speed.

Example Problem

Let
Ib-sec?
M = 0.25 —% (96.6-1b rotor)
K, = K, = 250,000 Ib/in.
D; = D, = 200 rad/sec
Ger, = JI@ = 1000 rad/sec = rotor natural frequency (on
M rigid supports)
K,
wor = Wor = 706 rad/sec = system natural frequency
W, = Wer <1 + ﬂ!) = 1412 rad/sec = threshold speed
ng

The whirl precession rate is given by equation (32):

Wert — (" ;L"g)z + ‘f{ (Z—:—"*)z - wc,2}2 + (wna)?
w2 @) (&Y

note that
D \? 200 \?
(i) = () = oo <1

D 2
Hence, expanding in terms of ( ) ,
4wer

1 /w\2f D \?
o =15 (2 (2]

Wy = Wor

or

Thus it can be seen that the precession rate of the rotor is in all
practical cases a constant, regardless of the total rotor rotational
speed.

1 Analog Computer Solution of the Rotor Motion

Equation (18) was programmed on the analog computer, and
the rotor motion was investigated over a wide range of support
stiffness and damping values. Also included in the analog pro-
gram was the influence of rotor unbalance and nonlinear shaft
stiffness. For example, Fig. 5 represents the whirl orbits of a
balanced horizontal rotor for a speed range of 500 to 1450 rad/sec.
Notice that as the rotor speed approaches the threshold of sta-
bility, the time required for the transient motion to die out in-
creases. At the threshold of stability, a sustained transient
motion is developed.

Fig. 6 represents the rotor motion above the threshold of sta-
bility. In the linear system, the unstable rotor motion is un-
bounded.
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i CONDITIONS:

7 — UNBALANCED ROTOR
= M = 025 LB SEC/IN
K= Kp=250000 LB/IN
D, ~D,~200 RAD/SEC
wer=706 RAD/SEC -
\ W =412 RAD/SEC
N N\ w -500 RAD/SEC
Vl\6-0 fvERTICAL ROTOR)

Fig. 7 Whirl orbit of an unbalanced rotor with internal friction damping
below the threshold of stability, v < w;s

Fig. 7 represents the case identical to Fig. 5, of w = 500 rad/sec
with unbalance added. When the transient motion dies out, the
orbit reaches the steady-state motion caused by the rotor un-
balance. Fig. 8 represents the unbalance rotor motion slightly
above the threshold speed. The equations of motion of the sys-
tem in complex vector form are

Z + (m 4+ m)Z + [wad(l + 8Z2Z) — iwna)Z

= w2 + G/M  (35)
It was found that only several percent change in radial nonlinear
stiffness parameter 8 was necessary to produce a limit cycle at the
threshold of stability. In the linear case, the total rotor orbit
forms a slowly divergent spiral. The introduction of the non-
linear component (§ = 0.01 and 0.04) causes a finite orbit to de-
velop. When the rotor speed is increased above the threshold
speed, the orbit grows but remains bounded. In actual rotor
systems, some small nonlinearity is usually always present to
produce finite limit cycles.

8 Discussion and Conclusions

From the stability criterion developed in this analysis, it is now
possible to theoretically explain the experimental findings of Dr.
Newkirk in 1924. Dr. Newkirk investigated the whirl behavior
of shafts with shrink fit disks and from experimental observations
arrived at several important conclusions concerning this type of
behavior. By examination of the graph of the plotted stability
criterion (Fig. 4), these conclusions can be verified.

Examination of the governing equations of motion shows that
rotor unbalance doesn’t appear in the equations, and hence the
stability criterion should not be affected by the degree of balance.
The stability criterion shows that whirling must take place above

_the first critical speed. The value we, represents the critical
speed of the unit with rigid bearing supports. The whirl speed is
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dependent upon two important parameters, the flexibility ratio R
and the damping ratio D. If R = 0 (rigid support), the threshold
region increases with increasing D. TUnless one has a built-up
rotor or shaft with shrink fits, it is impossible to obtain rotary
damping and D will be zero. Hence this motion will only occur
with built-up rotors. It has been observed that the whirl thresh-
old speed would vary considerably between units of similar design
and even for the same unit under different test conditions. This
can be readily accounted for by the fact that the shrink fits of the
built-up sections control the value of the rotary damping co-
efficient. Some variations of fit are to be expected even between
units of identical construction. It was observed that increasing
the thrust bearing load increases stability. This can be ac-
counted for by the fact that the stationary damping coefficient C;
is increased, reducing the damping parameter D.

Of utmost interest in this analysis is the effect of foundation or
bearing housing flexibility on rotor stability. In the original ex-
perimental investigation, it was found that decreasing the founda-
tion flexibility and introducing damping into the foundation had
an extremely beneficial effect on the whirl threshold. From the
stability plot, Fig. 4, it is seen that a reduction in the foundation
flexibility will increase R and reduce the system critical speed. If
the damping parameter D is less than 2, the effect of increased
foundation flexibility will increase the whirl threshold speed. In
some instances, it was observed that bearing damping was neces-
sary (along with reduced support flexibility) in order to improve
the whirl region. If the D-value is too high, that is, larger than
3, a reduction in support flexibility will not only reduce the
system critical speed but will also reduce the whirl threshold
speed. Introduction of damping into the support is necessary to
reduce the damping parameter D and hence raises the whirl speed
for the case of isotropic support stiffness.

Reference [4] shows that rotor stability may be appreciably
increased without the addition of damping by means of anisotropic
support stiffness. Reference [4] also shows that rotor instability
may be induced by other factors such as fluid film bearings.
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CONDITIONS :
We, = 706 RAD/SEC
W = 14i2 RAD/SEC
W = 1500 RAD/SEC

(b) FINITE ORBIT
NONLINEAR SYSTEM -3 = 0.0l

(c) FNITE ORBIT
NONLINEAR SYSTEM=~3=0.04

Fig. 8 Effect of nonlinearity on rotor motion above the threshold of stability, w > w,
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