Lateral-Torsional-Axial coupled vibration for a geared system

In the vibration study of a single rotor system, the lateral, torsional, and axial vibrations are
typically decoupled and can be studied separately in general. However, for a geared rotor system
with multiple rotors, the lateral, torsional, and axial vibration are coupled through the gear mesh
and/or rider ring (sometimes called thrust collar ring), as illustrated in Figure 1. The rider ring is
commonly used in turbomachinery applications, such compressors and expanders, to transfer the
thrust load from high speed pinions to the low speed gear to reduce the mechanical friction loss
and eliminate thrust bearings in the high speed pinions, as shown in Figure 2. The rider ring is
more commonly used in high speed and low power small machines where the mechanical
frictional power loss is critical to the entire machine and the cost is also competitive in the
market.

Stage 1

30191 rpm

I AR
Y 1 AR

Driver :’@ =70

2975 rpm
_{Z p

Lo 2
i
=
I |
==
A
. ]
Rider || - - o 42903 rpm
Ring g ]
L=t~ Mesh Stage 3
:25’”/ ;
-

L

Figure 1 Geared system with rider ring
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Consider a gear-paired system, as shown in Figure 3, gear 1 is used as a reference gear where the
gear 2 angular position, ¥, is specified with respect to the gear 1. Gear 1 can be either a driving or
driven shaft and rotates CCW or CW. The (X,Y,Z) coordinate system is a fixed Cartesian
coordinate system with Z axis in line with the spinning axis and X and Y in the transverse
directions perpendicular to the Z axis, following the right hand rule. The motion for each finite
element station along the rotor (including the gear center) is described by 6 degrees-of-freedom:
three (3) translational displacements (x,y,z) along (X,Y,Z) axes and three (3) rotational
displacements (6,,0,,0,) about (X,Y,Z) axes. For lateral vibration, the motion of each finite

element station is described by two translational displacements (x,y) in the X and Y directions
respectively, and two rotational (angular) displacements (6,6,) about the X and Y axes
respectively. For torsional vibration, the motion of each finite element station is described by a

rotational displacement (8, ) about the spinning axis (Z). For axial vibration, the motion of each
finite element station is described by a translational displacement (z) along the spinning axis (Z).



Therefore, the motions at a typical finite element station are described by the following
displacement vectors:

Complete motion: Ueoxyy = {X, y, z, 6, 6,, 6, }T (la)

Lateral vibration: q. = {X, y, 6, Hy }T (1b)

Torsional vibration: ¢, ={6,} (1c)

Axial vibration: J, = { Z} (1d)
Y

0,

Figure 3 A typical gear set



Note that the spinning direction of the rotor is commonly defined as CCW along the positive Z
axis (+2) for a single rotor system. However, for a geared multiple rotor system, some rotors will
rotate CW in the negative Z direction (-Z). Therefore, caution must be taken when defining the
forward and backward precessions of the lateral orbit motion. The detailed explanation of the
orbit motion has been documented in Chen and Gunter (2005), some highlights and cautions for
the geared system are addressed here.

The lateral rotor motion at each finite element station is either forward or backward precession in
relation to the direction of rotation (spin) of the rotor and not the direction of the Z axis, as
shown in Figure 4. The whirling motion is defined as a forward precession if it is whirling in the
same direction as the rotor spinning direction, and as a backward precession if it is whirling
opposite to the rotor spinning direction. A straight line motion is a degeneration of a whirling
orbit and a transition between the forward and backward precessions without the whirling
motion.
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The direction of precession, or a whirling direction, of a lateral vibration orbit is defined by the
rate of precession angle in the (X,Y) plane. The precessional angle is defined as:

_ y®
#(t) = arctan © 2)

The direction of precession (whirling) is determined by the rate of precessional angle
sign(g) 3)

When ¢ is a positive value (CCW) and the rotor is spinning in the positive Z direction (CCW),

the orbit motion is a forward whirl (precession). When ¢ is a negative value (CW) and the rotor
is spinning in the positive Z direction (CCW), the orbit motion is a backward whirl (precession).
When ¢ is zero the orbit motion degenerates into a straight-line path without whirling.

However, when the rotor is spinning in the negative Z direction (CW), then a positive ¢ (CCW)

indicates a backward whirl and a negative ¢ (CW) indicates a forward whirl. For a single rotor
system, this confusion can be avoided by modeling the rotor with positive Z is the spinning
direction. For a multiple rotor geared system, the spinning direction of a rotor can be either in
the positive or negative Z axis. Therefore, it is convenient to define the rotor speed € as a vector
with direction. That is, if the rotor is spinning in the positive Z direction, the rotor rotational
speed Q is positive and vice versa. Then the forward and backward whirl is defined by the

product of ¢ and Q:

Forward whirl (precession): Q>0 sign (Q¢) IS positive (4a)
Backward whirl (precession): Qp<0 sign (Q¢) is negative (4b)
Straight line motion: Qp=0 (4c)

Another caution is that almost all the calculated bearing coefficients, including the so-called
aerodynamic cross-coupling terms (kxy =Q, k= —Q) where Q is a positive value, are obtained

with the assumption that the spinning direction is in the positive Z direction (CCW). With the
opposite spinning direction, i.e., spinning in the (-Z) direction, all the cross-coupled stiffness and
damping coefficients (k) k., k‘gx,kg,y » Gy Gy Cp ,Cey) must change sign to accommodate the

negative spinning direction. Since the shaft (rotor) properties is isotropic for a circular cross-
section, therefore the rotor governing equation and related matrices are not affected by this
spinning direction, with the exception on the sign of the gyroscopic matrix and related forcing
vectors.

For a purely torsional vibration, it is commonly describe the torsional vibration rotational

displacement (49*) in the same direction as the spinning direction. For a geared system, this

z

could lead to some confusions since the directions of rotor rotation are opposite for a mating gear
set. In this context, for consistency, we will use the definition in Eq. (1) for the rotor vibration

5



displacements. That is, the torsional displacement (6,) is defined along the positive Z axis,

regardless the spinning direction. Therefore for a positive Q, & =6, , and for a negative Q,

3

6 =—0,.

In summary, when analyzing the geared rotor system and the motion at each finite element
station is defined in Eq, (1), then the following cautions must be taken:

1. Treat the rotor rotational speed €2 as a vector, positive if it rotates in the positive Z direction
(CCW for a right hand ruled Cartesian coordinate system as used in Eq, (1)) and negative if it
rotates in the negative Z direction (CW). This will take care of the gyroscopic matrix and related
forcing function involved rotational speed.

2. Change the cross-coupled bearing stiffness and damping coefficients if necessary when the
rotor speed is negative, since almost all the bearing coefficients are obtained by assuming the
rotor speed is positive in the positive Z direction. This is particularly important when performing
the stability analysis since cross-coupled stiffness coefficients, including the aerodynamic cross-
coupling term, significantly affect the system stability.

3. When viewing the results for lateral motion, the direction of whirling needs to take into
account the rotor speed. That is, the forward and backward whirl is defined by the product of ¢

and Q, not just ¢ as used for a single rotor system.



Example 1: A dual rotor system

A dual rotor system, as shown in Figure 1-1, is utilized here to demonstrate the effects of rotor
direction of rotation on the system dynamics. For multiple rotor systems, if all the shafts are in
the same axis and connected through couplings with the same rotational speed and direction of
rotation, then they can really be treated or modeled as a single rotor system and all the
discussions on the single rotor system are valid. However, for system as demonstrated in this
dual rotor system and geared systems (which will be discussed later), the rotors are having their
own rotational speed and direction of rotation. Then, the results will not be easily comprehended
and deserve some discussions. This dual rotor system has been presented by many publications
by Nelson, etc. and the system details are analyzed and documented in Chen & Gunter (2005)
with the same direction of rotation. Since rotors are supported by isotropic bearings with
constant stiffness and damping coefficients, the effects of rotational speed (magnitude and
direction) on the system dynamics are discussed here. Only the lateral vibrations are considered
and torsional and axial vibrations are neglected in this example.
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Figure 1-1 Dual rotor system

Casel: Q,=15Q,Q;: CCW and Q,: CCW

Let us review our previous discussion in Chen & Gunter withQ, =1.5 €2, . That is, the rotor 2

rotates in the same direction of rotation with rotor 1 in a speed ratio of 1.5. The speed
relationship is entered in the Shaft Elements tab. A positive value indicates a CCW rotation and
a negative value indicates a CW rotation. To display the direction of rotation, the check box in
the Model Graphic Settings must be checked.
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Assuming the both rotors rotate CCW in the positive Z direction in this first case. Figure 1-2,
whirl speed map, shows the first 4 system damped natural frequencies verse the rotor speeds with
the synchronous excitation lines overlapped in the maps. It is noted that these two graphs are
identical with the exception of the scale in the X-axis (speed axis), where one labeled with the
rotor 1 speed and the other labeled with rotor 2 speed. These four frequencies (modes) are
labeled as (@, w,, w;, w,) for identification purpose. Also noted that in addition to the using of

the forward and backward precession labels (F, B), the (CCW+) and (CW-) are also used to
represent the direction of whirling of the mode. So, the first and third modes whirl in the CW (-
7) direction and the second and fourth modes whirl in the CCW (+Z) direction. Since both
rotors rotate CCW (+Z) direction, so, modes 1 and 3 are backward precession modes for both
rotors, and modes 2 and 4 are forward precession modes for both rotors. At zero speed, modes
(1, 2) and (3, 4) are essentially the planar modes with the same frequency, one in X direction
and the other in Y direction, and they form two circular whirling modes, one forward and the
other backward, due to gyroscopic effects as the speed increases in this example. The
gyroscopic effect stiffens the forward precession modes (increases the associated frequencies)
and softens the backward precession modes (decreases the associated frequencies).
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Figure 1-2 Whirl speed map for 2, =1.5Q,

The associated mode shapes with whirling directions for the rotor speeds of
(Ql, QZ) = (10000,15000) rpm are shown in Figure 1-3. Again, the mode shapes for the first and

second modes are very similar and mode shapes for the third and fourth modes are very similar.
For the first and third modes, both rotors are whirling in the CW direction with a whirl frequency
of 5825 and 14189 cpm, respectively. For the second and fourth modes, both rotors are whirling
in the CCW direction with a whirl frequency of 8504 and 15260 cpm, respectively. Since both
rotors rotate CCW, therefore, the second and fourth modes are classified as the forward
precessional modes, and the first and third modes are referred to as the backward precessional
modes. For the isotropic systems, the mass unbalance excites the forward modes only.
Therefore, the critical speeds are the intersections of frequency curves of modes 2 and 4 and the
excitation lines in the whirl speed map.
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Figure 1-3 Precessional mode shapes at speed of €2;=10000, 2,=15000 rpm

After knowing the mode precessional direction, we can go back to examine the whirl speed maps
and to identify the critical speeds due to shaft mass unbalance. The damped critical speeds are
the intersection points between the system natural frequencies and the synchronous excitation
line in the whirl speed map. The first two critical speeds due to rotor 1 mass unbalance occur at
rotor speeds of about (,=8250, Q,=12375 rpm) and (,=15292, Q,=22938 rpm) with the
whirling frequencies of 8250 and 15292 cpm, respectively. That is, the critical speeds due to
rotor 1 mass unbalance are identified by the excitation line with the spin(1)/whirl ratio of 1, i.e.,
(% =1, 2 =1.5). And the first two critical speeds due to rotor 2 mass unbalance occur at
10} 0}
rotor speeds of about (Q;=5233, Q,=7849 rpm) and (,;=10062, Q,=15093 rpm) with the
whirling frequencies of 7849 and 15093 cpm, respectively. That is, the critical speeds due to
rotor 2 mass unbalance are identified by the spin(2)/whirl ratio of 1, i.e.,

(& =1,% =% =0.66667). Therefore, the first forward mode (@) will be excited by the
10 o 1.

rotor 2 mass unbalance at rotor speed about (€,=5233, ,=7849 rpm) and again be excited by
the rotor 1 mass unbalance at rotor speed about (£2;=8250, Q,=12375 rpm) during the startup.
The second forward mode (@4) will be excited by the rotor 2 mass unbalance at rotor speed about
(€2,=10062, €Q,=15093 rpm) and again be excited by the rotor 1 mass unbalance at rotor speed
about (Q,=15292, Q,=22938 rpm) during the startup. Each forward mode is excited twice by
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the mass unbalance during startup in this case, the first one is by rotor 2 mass unbalance due to
higher speed ratio and the other is by rotor 1 mass unbalance. The backward modes (@, @,) are

not excited by the mass unbalance in this isotropic system.

Since this system is an isotropic system with speed independent (constant) bearing coefficients,
the critical speeds can also be estimated using the critical speed analysis. The critical speeds due

to rotor 1 mass unbalance are obtained by assigning the spin(1)/whirl ratio = 1, i.e. —=1 and

(2
Q, " . .
—==1.5. And the critical speeds due to rotor 2 mass unbalance are obtained by assigning the
)
. o 0 1 Q, .
spin(2)/whirl ratio = 1, i.e. — =-—=0.66667 and —==1. The associated mode shapes are
o 15 @
shown in Figure 1-4.
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Figure 1-4 Critical speed mode shapes for Q, =1.5 ),

The rotor steady state responses at station 2 (rotor 1) and station 9 (rotor 2) are shown in Figure
1-5. As expected, the peak responses due to rotor 1 mass unbalance occur around (€2;=8250,
Q,=12375 rpm) and (Q;=15292, Q,=22938 rpm) and the peak responses due to rotor 2 mass
unbalance occur around (€,=5233, Q,=7849 rpm) and (Q,;=10062, ,=15093 rpm). To fully
understand the rotor motion with both mass unbalances, a transient analysis is performed at the
rotor speed of Q =10,000 and €2, =15,000 rpm with both the mass unbalance forces from
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rotors 1 and 2 included. The steady state results are presented in Figure 1-6. Both rotors are
whirling in the CCW direction, which is the same as the rotor direction of rotation, with two
whirl frequencies of 10,000 and 15,000 rpm, which are caused by the rotor mass unbalances.
The steady state motion is not a single harmonic vibration with simple elliptical orbit, it is the
sum of two harmonics and the whirling direction is the same as the rotor rotational direction, as
shown in Figure 1-6.
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12



300

150

0.00

150

-300

3.00

0.00

150

-3.00

Rotor Speeds = 10000, 15000 rpm

X-¥ Plot at Rotar Speed 10000 rpm
Seation: 2 \

View from +Z Drection of Ratation CCW

X-¥ Plot &t Rotor Speed” 15000 pm €2
Station 3 =

"

View from +Z, Direction of Rotation. CCW

Y-Spectrum

X-Spectrum

Y-Spectrum

Q, =10000 and Q, = 15000 rpm

150

120
0.90
0.60
0.30
o B

1.50

120
0.90
060
0.30
0.00 i
0 5000 10000 15000 20000 25000
Frequency (cpm)

Q, =10000 and Q, = 15000 rpm

1.50
120
0%
0.60
030
0.00
1.50
120
0.90
0.60
0.30
0.00
0 5000 10000 15000 20000 25000

Frequency (cpm)

Figure 1-6 Rotor responses at speed €,=10000 and €,=15000 rpm

13



Case2: Q,=-15Q, Q;: CCW and Q,: CW

Let us consider the rotor 2 is counter-rotation of rotor 1, that is, rotor 1 rotates CCW and rotor 2
rotates CW, as shown in Figure 1-7. The resulted first 4 natural frequencies (Q, =-1.5Q, ) are

overlapped with the original first 4 natural frequencies (€2, =+1.5€,) shown in Figure 1-8.

The associated 4 mode shapes at speed of €,=10000, Q,=-15000 rpm shown in Figure 1-9. Note
that the first and third modes, as shown in Figure 1-9, are whirling CW in the negative Z axis,
which are backward precessions for rotor 1, however, are forward precessions for rotor 2. And
the second and fourth modes are whirling CCW in the positive Z axis, which are forward
precessions for rotor 1 and backward precessions for rotor 2. Since the rotor 2 rotates CW which
has the opposite gyroscopic effect from rotor 1, therefore, the two modes (@], ) and (w;, ;)
split less than that in Casel with the same direction of rotation. The gyroscopic effect from rotor
1 stiffens the second and fourth modes since they are forward precessions for rotor 1. However
these two modes are softened by the gyroscopic effect from rotor 2 since they are backward
precessions for rotor 2. Same discussions apply for the other two modes. Again, for the
isotropic systems, the mass unbalance excites the forward modes, which whirl in the same
direction as the rotor direction of rotation. Therefore, the mass unbalance of rotor 1 excites the

modes (@;,®,;) with CCW whirling direction and the mass unbalance of rotor 2 excites the

modes (@], ;) with CW whirling direction. So, each mode will be excited once during rotor
startup in this case, which is different from Case 1.
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The critical speeds due to rotor 1 mass unbalance are obtained by assigning the spin(1)/whirl

. . Q Q ..
ratio =1, i.e. =~ =1 and —% =-1.5. And the critical speeds due to rotor 2 mass unbalance are
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obtained by assigning the spin(2)/whirl ratio = 1, i.e

Q Q 1
,ie. —2=1 and =t =——=-0.66667 .
w o =15
associated mode shapes are shown in Figure 1-10
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Figure 1-10 Critical speed mode shapes for Q
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The rotor responses at station 2 (rotor 1) and station 9 (rotor 2) due to mass unbalance are shown
in Figure 1-11. As expected, the peak responses occur at the critical speeds which are different
from Case 1. Figure 1-12 shows the rotor steady state response with both mass unbalances at
speed of (©2;=10000 rpm CCW and Q,;=15000 rpm CW). It shows that the rotor 1 is whirling
CCW and rotor 2 is whirling CW, both are corresponding to their own direction of rotation.
Again, the whirling frequencies are the rotor speeds due to mass unbalances.

Response at Station 2 due to rotor 1 and 2 mass unbalance
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Response at Station 9 due to rotor 1 and 2 mass unbalance
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Figure 1-11 Rotor responses for €2, =-1.5Q,
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Rotor Speeds = 10000, -15000 rpm

X-Y Plot at Raotor Speed: 10000 rpm
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Figure 1-12 Rotor responses at speed 2;=10000 rpm CCW and €,=15000 rpm CW



Case3: Q,=-15Q, Q; CW and Q, CCW

For the completeness of the comparison, let us assume that the rotor 1 rotates CW and rotor 2
rotates CCW, as shown in Figure 1-13. The whirl speed map is shown in Figure 1-14. Note that
the curves are generated from Case 3 and dots represent the results from Case 2. It shows that
the frequency values are identical, however, the whirling direction are opposite, but consistent
with the rotor direction of rotation. Therefore, the critical speeds due to rotor mass unbalances
are identical to those in case 2, since the mass unbalance excites the forward modes, which whirl
in the same direction as the rotor rotation. The critical speeds calculated using the critical speed
analysis are also identical to those obtained in Case 2 and are not repeated here. The steady state
unbalance responses are also the same as those in Case 2 Figure 1-11. Figure 1-15 shows the
steady state responses at station 2 (rotor 1) and station 9 (rotor 2) at rotor speed of (€2;=10000
rpm CW and Q;=15000 rpm CCW) viewing from the +Z and —Z axis. Again, the response orbits
whir in the same direction as the rotor rotation due to mass unbalance in this isotropic system.
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XY Plot at Rotor Speed: 10000 rpm X-Y Plot at Rotor Speed: 10000 rpm
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Figure 1-15 Rotor responses at speed ;=10000 CW and ,=15000 rpm CCW

Case4: O, =150, Q; CW and Q, CW

Again, if both rotors rotate in the CW direction, the results will be identical to those presented in
Case 1. The responses are also identical if viewed from the —Z axis. From Case 3 & Case 4, we
learned that in all design practical purposes, for a single rotor system, the rotor direction of
rotation can always be assumed in the CCW direction (+Z axis) without losing any accuracy and
physical insights. For multiple rotor systems, the direction of rotation of rotor 1 can be assumed
in the CCW direction (+Z axis) and others can be defined accordingly. The importance is the
relationship in the direction of rotation for the multiple rotor system, not the exact direction of
rotation of each rotor.
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Example 2: A single rotor with cross-coupled bearing coefficients

Before we move on to the geared rotor system with multiple rotors running in different speeds
and directions, let us examine another example to understand the coordinate relationship in more
details. Consider a uniform shaft supported by two identical fluid film bearings, as shown in
Figure 2-1. This system was first presented by Lund (1974) using the linearized bearing
coefficients in the determination of damped critical speeds and instability threshold. It was then
fully analyzed by Chen & Gunter (2005) in both linear and nonlinear analysis and results are
well documented. This example used here is to address some necessary requirements and
cautions in the coordinate transformation, in preparation for the analysis of complicated multiple
shaft systems.

This uniform shaft has a length of 50 in., a diameter of 4 in., a Young’s modulus of 3.0E07 psi, a
shear modulus of 1.154E+07 psi, and a weight density of 0.283 Lb/in’, is supported at the ends
by two identical plain cylindrical fluid film bearings. For this uniform shaft, it has been
demonstrated that the shaft shear deformation, rotatory inertia, and gyroscopic effects have a
minimal influence on the dynamics of this rotor system, therefore, they are neglected here and
focus is on the coordinate transformation. The two fluid film bearings are plain cylindrical
journal bearings with a journal diameter of 4 in., a bearing radial clearance of 0.002 in., a bearing
axial length of 1 in., and an oil viscosity of 6.9 centiPoise (1.0E-06 Reyns).

A

| | | | | | | |
A 2T BT 4T ST GT TT BT sT mT 11 _E!E}

Plain Cylindrical Journal Bearing Shaft Data . . .
D=4inL=1in C=0.002in L = 50in, D =4 in, Density = 0.283 Lbm/in"3

Figure 2-1 Uniform shaft supported by two plain cylindrical bearings

To perform the linear analysis on this rotor system, we need to analyze the bearings first to
obtain the linearized bearing coefficients. Two bearing coordinate systems, as shown in Figure
1-2, are commonly used in the bearing analysis. The first one (X,Y), commonly used by the
rotor dynamics analysts, is the same as the rotor coordinate system, that is X to the right and Y to
the top and Z points to the viewer, regardless the bearing load vector. Then the bearing
coefficients can be directly used in the rotor dynamic analysis. The second one (x’,y’) is more
frequently used by the bearing analysts where x’-axis is the same as the load vector and y’ is
perpendicular to the x’-axis. Once the linearized bearing coefficients are obtained from the
(x’,y’) coordinates system, it can be easily transformed into the standard (X,Y) coordinate system
for the rotordynamic study. This coordinate transformation is described in details in Chen and
Gunter and is given in Eq. 2-1.
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Bearing Data '
L=1in \
Ds=4in (:\ Y. a
Cb=0.002in
2Cb/D = 0.0010 X 6 X
Cp=0.002in
Preload =0
Offset =0 w w

Figure 2-2 Bearing coordinates

{kxx kxy} _{ cosd sin 0}{&., kx.y}{cosa —sin 9}

k, K, | [—sin@ cosé| k,, Kk, |sind cosd

where @is the angle from x’ to X axis. One critical assumption used in the above two coordinate
systems for the bearing analysis is that the shaft direction of rotation is CCW in the Z direction.
This assumption was not emphasized in many textbooks and papers, because for a single rotor
system, we can always model the rotor system in the CCW direction of rotation without any
problem as described in previous example. However, there will be different direction of

rotations present for a geared system. Then caution needs to be taken to be sure that all the
bearing coefficients have been converted into the coordinate system used for the rotor analysis.

Two scenarios are considered and shown in Figure 2-3, where (X,Y) are now the coordinates
used to describe the rotor motion in the rotor dynamics analysis, and (X3, Y;) are the coordinates
where the bearing linearized coefficients are obtained. When the rotor rotates CCW and the
bearing coefficients are calculated based on the assumption of CCW shaft rotation, then (X,Y)
and (X5, Y5) are the same, there is no need for any transformation and the bearing coefficients can
be applied directly in the rotordynamic study. When the rotor rotates CW and the bearing
coefficients are calculated based on the assumption of CCW shaft rotation, then the X and X,, are
opposite to each other and Y and Y, are the same. The linearized bearing forces acting on the
rotor in both coordinate systems are:

In bearing coordinate system:

el el bl 2L
Fyb kyx kyybyb Cyx nybyb
In rotor coordinate system:

23



Fy kyx kW y CVX CW y
Since we have the bearing forces and linearized coefficients in the bearing coordinate system and

they need to be converted into the rotor coordinate system. The displacement, force, and
coefficients transformations for scenario 2 are:

Y'Y, Y Y,

\ CCW
[

X Xb Xh X

\n
CW

Figure 2-3 Rotor coordinates and bearing coordinates
G le b
y yJ, LO 1jlyJ,
ek le R
Fy Fy b 0 1 Fy b

Cyx ny j| _ |: Cyx _nyj|
|Gy Cy Gy b
For the stiffness and damping coefficients, only changes are the sign for the cross-coupled
coefficients. The sign switch in the cross-coupled stiffness coefficients plays an important role
in the rotor stability analysis. It is known that the cross-coupled stiffness coefficients generate
the undesirable circulatory force and it contributes positive work done on the rotor system for a

whirling orbit in the positive Z direction (CCW whirling orbit), and negative work done for a
whirling orbit in the negative Z direction (CW whirling orbit). Positive work done indicates the
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destabilizing effect and negative work done indicates the stabilizing effect. The work done by
the cross-coupled stiffness coefficients over one cycle of a harmonic motion is given before and
repeated here for easy reference:

Wcirculatory = (kxy - kyX ) ’ ﬂ-(a ) b)

where a and b are the semi-major and semi-minor axes of the elliptical orbit. Positive b indicates
a CCW whirling orbit and negative b indicates a CW whirling orbit. ﬂ(a'b) is the area of the

whirling elliptical orbit and positive area for a CCW whirling orbit and negative area for a CW
whirling orbit. With the positive (k,, —k,, ) term, this circulatory force destabilizes the CCW

whirling modes, and stabilizes the CW whirling modes. Since for a single rotor system, we can
always assume the rotor rotates CCW, therefore the CCW whirling modes are the so-called
forward modes and CW whirling modes are backward modes. However, for a CW shaft rotation,
the CW whirling modes are now the forward precessional modes and CCW whirling modes are
the backward precessional modes. For the fixed-lobe fluid film bearings, with the positive Z
shaft rotation, the (k,, —k,, ) term is prone to be positive for the high speed and low load

applications and it will tend to destabilize the forward modes with CCW precession. However, if
the bearing coefficients are obtained based on the negative Z shaft rotation, then the (k,, —k,, )

term is prone to be negative for the high speed and low load applications and it will tend to
destabilize the forward modes with CW precession. Therefore, the sign switch in the cross-
coupled stiffness coefficients is extremely important in the rotor stability analysis if the bearing
is analyzed in the CW rotation. This is also valid for the so-called aerodynamic cross-coupling
term Q used in the stability analysis by many Industry Standards, such as API. The purpose of
introducing the aero-dynamic cross-coupling is to study the rotor stability and its sensitivity to
the destabilizing force. The aerodynamic cross-coupling term is commonly treated (modeled) as
a pseudo bearing with the following stiffness expression:

0
{ 0 g} where Q is a positive value.

However, the Standard did not mention that it is customary to assume that the rotor is rotating
CCW in the positive Z direction when the above expression is applied. If the rotor rotates in the
CW direction, then the proper aerodynamic cross-coupling expression will be:

0 -
{Q (?} where Q is a positive value and Q is CW rotation.

The aerodynamic cross-coupling term always destabilizes the forward modes, regardless the
shaft rotation. The above discussion will be illustrated using this example. The bearing
coefficients versus speeds and their coordinate definition are shown in Figure 1-4.
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Figure 2-4 Bearing coordinates
Case 1: Q is CCW rotation
Let us consider the conventional case, that is, the shaft is rotating CCW in the Z direction. Then,

the bearing coefficients can be directly applied in the rotor dynamic study. Figures 2-5 and 2-6
show the whirl speed map and stability map. These two maps have been presented in this text
many times. The only addition in the map is the direction of whirling for each mode. Since the
rotor is rotating in the CCW direction, so the modes with CCW precessions are the forward
modes, and with CW precessions are the backward modes. The first two backward modes are
overdamped and not shown in the map. The first forward mode goes to unstable when the rotor
speed exceeds 9120 rpm, which is commonly referenced as the instability threshold.
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Figure 2-6 Bearing coordinates
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With these linearized bearing coefficients, Figure 2-7 shows the steady state unbalance response
at bearing station with 0.1 oz-in evenly distributed mass unbalance eccentricity. Figure 2-8
shows the bearing station displacement orbit at rotor speed of 5000 rpm. Note that the vibration
is about the static equilibrium position for the linear analysis. The response orbit is whirling
CCW in the direction of shaft rotation, which is a forward precession. Figure 2-9 shows
response orbits for the linear analysis and nonlinear simulation about the bearing geometric
center. Again, they are in the forward precessions and the orbit due to nonlinear simulation is a
little smaller than that from the linear analysis due to nonlinearity.

Bode Plot
Station: 1, Sub-Station: 1
Probe 1(x) 0deg: Amp = 0.75965 phase = 146 at 5900 rpm
Probe 2 (v} 90 deg: Amp = 0.82704 phase = 240 at 6700 rpm
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Figure 2-7 Steady state unbalance response at bearing station
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Figure 2-8 Bearing station linear displacement orbit at 5000 rpm
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Figure 2-9 Bearing station linear and nonlinear displacement orbit at 5000 rpm



Since the instability threshold is around 9120 rpm from the stability map, therefore, the linear
steady state unbalance response analysis is not valid after this speed and transient analysis is
required. Figure 2-10 shows the transient response orbit at 10000 rpm with the linearized
bearing coefficients. It shows that the response will grow out of the bearing clearance circle
which is not physically feasible in practice and it demonstrates that the linear theory is not valid
after the instability threshold and nonlinear theory should be applied. However, it shows that the
response grows in the CCW direction, same as the direction of shaft rotation. It implies that the
rotor is whirling with an unstable forward precessional mode, which is agreement with the
stability map. Figure 2-11 shows that response orbit with nonlinear simulation. Again, it shows
that the rotor is whirling CCW in the direction of shaft rotation, that is a forward precessional
motion. And the orbit is constrained within the bearing clearance circle.

X-Y Plot at Rotor Speed: 10000 rpm

Station: 1
4 T T T T T T T LI T T T T L T T T T T T LI T T
Bearing
o Clearance |
0
a2t i
4

View from +Z, Direction of Rotation: CCW

Figure 2-10 Transient response with linearized bearing coefficients at 10000 rpm
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X-Y Plot at Rotor Speed: 10000 rpm
Station: 1

View from +Z, Direction of Rotation: CCW

Figure 2-11 Transient response with nonlinear bearing forces at 10000 rpm

The above discussion provides a brief review on some important concepts that were presented
before. The main objective here is to emphasize that the bearing coordinates and rotor
coordinates must be in the same direction of rotation. Let us consider now the rotor rotates in the
CW direction, as shown in Figure 2-12, and the bearing coefficients were obtained based on the
CCW direction of rotation as before. Figures 2-13 and 2-14 show the whirl speed map and
stability map with the original bearing coefficients. At the first glance, one may think that the
results are identical to the previous discussion due to the same frequency values and the mode
whirling directions, so it is unnecessary to switch the sign in the bearing cross-coupled
coefficients. However, it is also noted that the rotor now rotates in the CW direction, so the
CCW precessional modes becomes backward precessional modes and CW precessional modes
become forward precessional modes. So, with these incorrect bearing coefficients, the backward
mode becomes unstable, which is NOT the same as before. So, without the sing change in the
bearing coefficients, the free vibration analysis provides incorrect results.
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Figure 2-13 Whirl speed map with the INCORRECT bearing data
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Figure 2-14 Stability speed map with the INCORRECT bearing data

Figure 2-15 shows the steady state unbalance response at the bearing station with the original
bearing coefficients. Now, the significant difference is shown here with the previous result in
Figure 2-7. Figure 2-16 shows the bearing station steady state response orbit at 5000 rpm
viewed from both directions: +Z and —Z directions. It shows that the response orbit is whirling
in the opposite direction from the direction of shaft rotation. This is also incorrect compared
with previous results in Figure 2-8. Therefore, the sign switch in the bearing cross-coupled
coefficients 1s important and needs special attention when the shaft direction of rotation is
different from the bearing coefficients calculation.
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Bode Plot
Station: 1. Sub-Station: 1
Probe 1 (x) 0 deg: Amp = 0.7437 phase = 336 at 7200 rpm

£60 Probe 2 (y) 90 deg: Amp = 0.70796 phase = 271 at 7600 rpm
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Figure 2-15 Steady state response with the INCORRECT bearing data

Displacement Orbit (mils) Displacement Orbit (mils)
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Speed = 5000 rpm Speed = 5000 rpm
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| View from +Z, Direction of Excitation: CWW ‘ | View from -Z, Direction of Excitation: CCW |

Figure 2-16 Steady state response at 5000 rpm with the INCORRECT bearing data

Figures 2-17 and 2-18 show the whirl speed map and stability map with the correct bearing
coefficients, that is the sign change in the cross-coupled bearing coefficients. Now the results
are identical to the original results. Although the forward precessional modes now are whirling
in the CW direction, it is consistent with the shaft direction of rotation.
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Figure 2-17 Whirl speed map with CORRECT bearing data
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Figure 2-18 Stability map with CORRECT bearing data
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The steady state unbalance response in Bode plot is identical to the correct result shown in
Figure 2-7, and not shown here. The response orbit at bearing station at 5000 rpm and viewed
from both +z and —Z directions, are shown in Figure 2-19. It shows that the results are identical
to previous results if viewed from the correct direction. This example illustrates the importance
of the shaft direction in the bearing coefficient calculation. In the rotordynamic study, the rotor
rotation must be consistent with the bearing coefficients.

Displacement Orbit (mils) Displacement Orbit {mils)
Station: 1, Sub-Station: 1 Station: 1, Sub-Station: 1
Speed = 5000 rpm Speed = 5000 rpm
p a=0.76901, b = 0.48651 5 a=10.76901, b = 0.48651
1 1
0 0
1 1
2 2
| View from +Z, Direction of Excitation: CW | | View from -Z, Direction of Excitation: CCW | LTA

Figure 2-19 Bearing station response orbit with CORRECT bearing data
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Example 3: 4 Stations Geared Model

A simple gear set with 4 finite element stations, as shown in Figure 3-1, is presented here as
another example. The similar model was presented and analyzed in many publications, such as
Iida et. al. (1980), Neriya et al (1985), and Kahraman et al (1992). A lumped model will be used
here for illustration purposes. Station 1 is a motor which drives a gear set, and the gear set drives
a load unit. In the previous publications, “pinion” and “gear” are used to describe station 2 and
station 3, respectively. And station 4 is the load unit. However, in industry it will be more
common to call the mating gear with larger pitch radius the “gear” and the smaller pitch radius
the “pinion” (Shigley and Mischke, 1989). With this industrial nomenclature, station 2 will be
called the gear and station 3 is the pinion.

The purpose here is to illustrate the combined lateral and torsional vibration due to the gear mesh
effect, particularly the effect on the influence of the lateral vibration. For lateral vibration,
consider only the translational motions at stations 2 and 3 without any gyroscopic moments. For
torsional vibration, there is one torsional motion for every station and a total of 4 degrees of
freedom. So, there are a combined of 8 degrees of freedom in this system, 4 lateral motions

(X, ¥, %, Y;) and 4 torsional motions (6,,,6,,,6,5,6,,). In this example, the lateral governing

equations of motion in X and Y directions are decoupled, also the lateral motion in Y direction is
coupled with the torsional motion. The relevant parameters are listed below:

For pure lateral vibration:
my = 16.96 kg with a mass unbalance of U, = 0.0003 kg-m
ms = 5.65 kg with a mass unbalance of U; = 0.00028 kg-m
Both are supported by an isotropic bearing with a stiffness of 2.75 E07 N/m

For pure torsional vibration:
Ji = 0.459 kg-m? with a torsional synchronous excitation of 7; = 1 N-m
J,=0.0628 kg-m”
J3=0.03 kg-m*
Jy = 0.549 kg-m’
The torsional stiffness connects stations 1 and 2, stations 3 and 4 is 115 N-m/rad.

The gear data:
Gear mesh connects stations 2 and 3
Spur gear and second rotor located at right hand side of the first rotor
First rotor (motor-gear) rotates CCW and the second rotor (pinion-load) rotates CW
Pitch radius for the gear at station 2 is 0.1015 m (P,~0.203 m)
Pitch radius for the pinion at station 3 is 0.0564 m (P,~=0.1128 m)
The speed ratio, 2, =—1.79965 Q, =n Q,, where n =-1.79965

Only the tangential gear contact stiffness is considered, K,=2E08 N/m
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Rotor 1 Rotor 2
CCW CWwW

Figure 3-1 4-stations geared system

Gear mesh data is entered under the Torsional/Axial tab in the Data Editor option. In this
example, the tangential stiffness is given and it is a spur gear, therefore there is no need to enter
the pressure angle and helix angle. All other data can be entered just like doing the pure lateral
and torsional analysis. When performing the Lateral-Torsional-Axial analysis option, one may
select the types vibration be included in the analysis. In this example, Axial vibration is always
be excluded, and torsional and lateral are included.
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Both the free and forced vibrations are studied. For free vibration (natural frequency analysis),
four cases are included.

1. The first case is the conventional purely torsional analysis with a rigid link in the gear
mesh (K, =00). With this rigid link between stations 2 and 3, the original 4 DOF

torsional model has been reduced and become a 3 DOF torsional model. There are 3
natural frequencies are calculated: 0, 148, and 546 rpm. The zero natural frequency
corresponds to the rigid body motion due to unconstrained torsional motion.

2. The second case is the torsional analysis with the flexible gear mesh (K,=2E08 N/m).
There are 4 natural frequencies: 0, 148, 546, and 70185 rpm. The 4™ natural frequency is
introduced by the flexibility of the gear mesh and this frequency value is extremely high.
The 2™ and 3™ frequencies are essentially the same as the originally rigidly linked case.
It is typically true that the torsional stiffness due to the gear mesh is much higher than the
shaft torsional stiffness, and a rigid link can be reasonably assumed for the torsional
analysis.

3. The third case is the purely lateral vibration. Since the bearings are isotropic and there are 2
natural frequencies for each rotor, one for each direction. The natural frequencies for rotors 1

f k
and 2 can be easily determined by the following frequency equation: @ =,[|—
m

a. Rotorl: o, =, = 2.75E07 =1273 rad/sec = 12160 rpm

16.96

b. Rotor2: o, =, = /% = 2206 rad/sec = 21068 rpm
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4. The fourth case is the combination of the lateral and torsional vibration with the gear
mesh effect. Once the gear mesh is included, the system is no longer an isotropic system.
Asymmetry property is introduced by the gear mesh stiffness.

The results are summarized below:

Purely Purely Purel Combined

Torsional Torsional ure yl Torsional & Comments

(K, =) | (K,=2E08 N/m) | F2emal |1 teral
Mode 0 0 0 0 Torsional Rigid Body
Mode 1 148 148 148 Torsional + weak y
Mode 2 546 546 546 Torsional + weak y
Mode 3 12160 10703 Lateral y, + Torsional
Mode 4 12160 12160 Lateral x,
Mode 5 21068 17327 Lateral y; + Torsional
Mode 6 21068 21068 Lateral x3
Mode 7 70185 96985 Torsional + Lateral y

The eigenvectors (modal displacements) for the vibratory modes are arranged in the following
order, (Xz, Yy, X3, Y3:0,4,0,,,0,5,0, 4) , with translation motion first and then the torsional motion.

However, for clarity and easy interpretation, the torsional displacements in rotor 2 are commonly
converted into the equivalent displacements with the speed ratio. That is the torsional

displacements (6,5,6,,) will be expressed as (%@j, where n = -1.79965. The modal
n n

displacements are summarized in the following table and shown in the Figure 3-2.

Displ. Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7
148 rpm | 546 rpm | 10703 rpm | 12160 rpm | 17327 rpm | 21068 rpm | 96985 rpm
X2 0 0 0 1 0 0 0
V2 -4.0E-05 1.6E-05 -0.108 0 0.0617 0 0.0319
X3 0 0 0 0 0 1 0
V3 4.0E-05 | -1.6E-05 0.033 0 0.197 0 0.0988
0. 1 0.0462 -0.0002 0 -6.5E-05 0 -2.1E-06
6., 0.0397 -0.5560 0.8580 0 0.8590 0 0.8600
0.3/n 0.0389 -0.5557 -0.5557 0 -0.5557 0 -0.5557
O.4/n -0.2617 0.0381 0.0001 0 0.0000 0 1.1E-06
0.3 -0.0700 1 1 0 1 0 1
0.4 0.4710 -0.0685 -0.0002 0 -0.0001 0 -2.0E-06
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Maode No.= 1 : Raotor: 1 STRAIGHT LINE Motion: Rotor: 2 STRAIGHT LINE Mation
Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped Matural Freqg.) = 148 rpm, Log. Decrement = -0.0000

Torsional + very weak y

Y Torsional
motion
Lateral 3
motion 2
= -

+0

Mode No.= 2 : Rotor: 1 STRAIGHT LINE Metion: Rotor: 2 STRAIGHT LIME Mation
Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped Matural Freq.) = 546 rpm, Log. Decrement = -0.0000
v Torsional + very weak y
X

1

2
4 K_Q
=

+0
Mode Mo.= 3 - Rotor: 1 STRAIGHT LINE Motion: Rotor: 2 STRAIGHT LINE Motion
Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped MNatural Freq.) = 10703 rpm, Log. Decrement = -0.0000

Lateral y + Torsional

3 \
4 ﬁgg
= B
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Mode No.= 4 - Rotor: 1 STRAIGHT LIME Motion: Rotor: 2 NO Precession
Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped Matural Freqg.) = 12160 rpm, Log. Decrement = -0.0000

Lateral - Rotor 1

R SS

-0
Maode No.= 5 - Rator: 1 STRAIGHT LINE Motion: Rotor: 2 STRAIGHT LINE Mation
Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped Matural Freq.) = 17327 rpm, Log. Decrement = -0.0000
y Lateral y + Torsional
X
1
4 =
=N -
+0
Mode No.= 6 - Rotor: 1 NO Precession: Rotor: 2 STRAIGHT LINE Mation
Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped Natural Freq.) = 21068 rpm, Log. Decrement = -0.0000
Lateral - Rotor 2
4 =
-0
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Mode Mo.= 7 - Rotor: 1 STRAIGHT LINE Motion: Rotor: 2 STRAIGHT LINE Motion
Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped MNatural Freq.) = 96985 rpm, Log. Decrement = -0.0000

Torsional + Lateral

=N

+0
Figure 3-2 Mode shapes

It shows that mode 1 and mode 2 are primary torsional motions, there is extremely small relative
torsional motion occurs at station 2 and 3 (6,,,6,,/n) which causes insignificant movements at

y direction for stations 2 and 3. The frequencies are basically the same as the purely torsional
analysis without the lateral vibration. Again, in this example, only the lateral motion in Y
direction is coupled with the torsional motion and lateral motion in X direction is decoupled
from other motions.

The mode 3 shows the strong coupling between the torsional motion and the lateral motion of
rotor 1 and again only in the y direction. Mode 5 shows the strong coupling between the
torsional motion and the lateral motion of rotor 2 and also only in the y direction. Due to the
large relative movement at the gear contact point, it acts like a flexible support underneath the
bearings, so the frequencies are lower than those obtained from the pure lateral motion.

Modes 4 and 6 are the purely lateral motion at the X direction for the rotor 1 and rotor 2 and the
frequencies are the same as the pure lateral vibration. Mode 7 is the torsional motion coupled
with the weak lateral motion and it raises the frequency from the purely torsional motion.

Since there is no gyroscopic effect present and the bearings are isotropic, the system natural
frequencies do not vary with the rotor speed. Figure 3 shows the whirl speed map with both
rotor speeds are labeled in the X-axis. Each mode can be excited by the synchronous excitations.
The critical speeds for the first 6 modes below 25000 rpm of rotor 1 speed are summarized in
table 2.
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Figure 3-3 Whirl speed map

1

Critical speeds due to rotor 1

Critical speeds due to rotor 2

Mode o o
synchronous excitation synchronous excitation
(rpm) Rotor 1 speed, Q; | Rotor 2 speed, Q, Rotor 1 speed, Q; | Rotor 2 speed, 2,
148 148 Q, =1.79965 Q, Q;=Q,/1.79965 148
546 546 Q, =1.79965 Q, Q;=Q,/1.79965 546
10,703 10,703 Q, =1.79965 Q, Q;=Q,/1.79965 10,703
10 12,160 Q, =1.79965 Q, Q;=Q,/1.79965 12,160
17,327 17,327 Q, =1.79965 Q, Q;=Q,/1.79965 17,327
21,068 21,068 Q, =1.79965 Q, Q;=Q,/1.79965 21,068
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Now, let us investigate the steady state synchronous response due to rotor 1 unbalance, rotor 2
unbalance, and motor torsional excitation. The objective here is to study the dynamic
characteristics of the system due to various excitations, and not focus on the exact response
amplitude since no damping is introduced in this system. The steady state response was
analyzed from 10 rpm to 25,000 rpm with an increment of 10 rpm.

Case 1: Motor synchronous excitation, 77=1 N-m

With the torsional synchronous excitation at the motor (station 1), Figures 3-4 and 3-5 show the
lateral response at stations 2 (rotor 1) and 3 (rotor 2). As expected, the peaks were observed for
modes 1, 2, 3, and 5 with Y displacements only. There is no response for the X displacement
since the lateral-torsional coupling occurs in the Y displacement only in this rotor arrangement.
The responses are straight line motions. Modes 4 and 6 are the pure lateral vibration modes in
the X direction which are not excited by the torsional excitation. Figures 3-6 and 3-7 show the
torsional displacements at stations 2 and 3 and again only the modes 1, 2, 3, and 5 are excited.
Figure 3-8 shows the gear dynamic force due to this torsional excitation.

It is noted that although the bearings are isotropic, however the lateral orbits at stations 2 and 3
are straight line motion due to torsional effect and not circular as observed in lateral vibration
analysis only, which implies that with this torsional vibration coupling, the system is no longer
isotropic.

Lateral Steady State Response at Station 2 due to torsional Excitaton
10 Mode 1

10°} 2
10"}

107¢
10°

10

Straight line motion

10°

Displacement {(micron)

¥

107

7l

10 ¢

1[]'55 i
10 10% 10° 10% 10°
Rotor 1 Rotational Speed (rpm)

Figure 3-4 Lateral steady state response at station 2 due to torsional excitation at station 1
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Lateral Steady State Response at Station 3 due to torsional excitation

101'5
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Straight line motion
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Figure 3-5 Lateral steady state response at station 3 due to torsional excitation at station 1
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Figure 3-6 Torsional response at station 2 due to torsional excitation at station 1
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Torsional displacement at station 3
due to torsional excitation

10°f
107k
10°h
107
107}
107}
10%k
107§
107}
107}
107
10
10°¢

1051
W

Displacement (rad)

Mode 1
2

10°

107 10° 10*
Rotor 2 Rotational Speed (rpm)

Figure 3-7 Torsional response at station 3 due to torsional excitation at station 1
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Figure 3-8 Gear dynamic force due to torsional excitation at station 1
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Case 2: Rotor 1 mass unbalance excitation, U, = 0.0003 kg-m

Figure 3-9 shows the lateral steady state response at station 2 due to rotor 1 unbalance. It shows
that there is only one peak in the X direction at mode 4 critical speed and two peaks in the Y
direction occurring at modes 3 and 5 critical speeds. These results are consistent with the
observation from the modal displacements (mode shapes). Again, the system is no longer
isotropic due to the coupled lateral and torsional motions and the orbits are highly elliptical near
critical speeds for station 2. Figure 3-10 shows the lateral steady state response at station 3 due
to rotor 1 unbalance. It shows that there are 2 peaks in the Y direction due to resonances at
modes 3 and 5. However there is no motion in the X direction. As explained before, the motion
in the X direction is not coupled with the torsional motion. The motion at station 3 due to rotor 1
unbalance is a straight line motions along the Y axis.

Figure 3-11 is the torsional response at station 2 due to rotor 1 unbalance. Figure 3-12 is the gear
dynamic force due to rotor 1 unbalance. Both figures show that the lateral and torsional motions
are strongly coupled for modes 3 and 5.

Further examine the station 2 lateral response orbits at various rotor speeds, as shown in Figure
3-13. At low speed, the orbit is near circular and forward precession which indicates that the
torsional influence is insignificant. As speed increases, the orbit becomes more elliptical and the
major axis is aligned with the Y axis. At mode 3 resonance, the motion becomes a straight line.
After resonance, the orbit becomes backward precession and the major axis gradually turns to be
in-line with the X-axis. After the mode 4 resonance, the orbit becomes forward precession again.

Lateral Steady State Response at Station 2 due to rotor 1 unbalance
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107F Mode 3
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Figure 3-9 Lateral steady state response at station 2 due to rotor 1 unbalance
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Lateral Steady State Response at Station 3 due to rotor 1 unbalance
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Figure 3-10 Lateral steady state response at station 3 due to rotor 1 unbalance
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Figure 3-11 Torsional response at station 2 due to rotor 1 unbalance



Gear Dynamic Force
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Gear Mesh: 1, 5tnl: 2, StnJ: 3
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Figure 3-12 Gear dynamic force due to due to rotor 1 unbalance
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Figure 3-13 Lateral response orbits at station 2 for various rotor speeds due to rotor 1 unbalance

Case 3: Rotor 2 mass unbalance excitation, U; = 0.00028 kg-m

Now let us consider the steady state response due to rotor 2 mass unbalance at station 3 only.
Figure 3-14 shows the lateral steady state response at station 2 (rotor 1) due to rotor 2 unbalance.
It shows that the response at Y direction has two peaks due to modes 3 and 5 resonances, and the
response at X direction is null. So, the response at station 2 is a straight line motion along the Y
axis due to rotor 2 unbalance.
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Figure 3-15 shows the lateral steady state response at station 3 (rotor 2) due to rotor 2 unbalance.
It shows that the response at Y direction has two peaks due to modes 3 and 5 resonances, and the
response at X direction has one peak due to mode 6 resonance. The discussions on this case are
similar to the previous case. Again, there are backward whirl between mode 5 and 6 at station 3.

Lateral Steady State Response at Station 2 due to rotor 2 unbalance

B

s Mode 3

Straight Line Motion

Displacement (micron)
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Rotor 1 Rotational Speed (rpm)

Figure 3-14 Lateral steady state response at station 2 due to rotor 2 unbalance

Lateral Steady State Response at Station 3 due to rotor 2 unbalance
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Figure 3-15 Lateral steady state response at station 3 due to rotor 2 unbalance
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Case 4: Angular position of rotor 2 is not zero

Note that the above discussion is based on the rotor 2 is at zero angular position in the horizontal
line from rotor 1, therefore the torsional motion couples the Y displacements only. Let us
consider another scenario that is the rotor 2 is located at 45 degree with respect to rotor 1, as
shown in Figure 3-16. Then, the torsional motion couples both X and Y directions. The values
of the system natural frequencies are identical to the previous case, except the X and Y lateral
motions are now both coupled with the torsional motion in modes 1, 2, 3, 5, and 7. Modes 4 and
6 are still purely lateral motions along the gear center line without torsional effect. Mode shapes
for modes 4, 5 and 6 are shown in Figure 3-17.

tor 2
CW

Figure 3-16 Rotor center line is not in the X-axis

Mode Mo.=4 : Rotor: 1 STRAIGHT LINE Motion: Rotor: 2 STRAIGHT LINE Mation
Shaft Rotational Speeds = 0. -0 rpm
Whirl Speed (Damped Natural Freq.) = 12160 rpm, Log. Decrement = -0.0000

Lateral motion

+0
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Mode No.= & - Rotor: 1 STRAIGHT LINE Metion: Rotor: 2 STRAIGHT LINE Maotion
Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped Matural Freq.) = 17327 rpm, Log. Decrement = -0.0000

Torsional + Lateral

+0

Mode Mo.= 6 : Rotor: 1 STRAIGHT LINE Motion: Rotor: 2 STRAIGHT LIME Motion
Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped Matural Freq.) = 21068 rpm, Log. Decrement = -0.0000

Lateral motion

=

+0

Figure 3-17 Mode shapes for modes 4, 5, and 6

Next let us consider the forced response. Figure 3-18 is the steady state response at station 2 due
to the torsional excitation, same as case 1 discussed before. It shows that modes 1, 2, 3, 5 are
excited by the torsional excitation and purely lateral modes 4 and 6 are decoupled from the
torsional motion and not excited by the torsional excitation. The displacements in X and Y
directions have the same amplitude but different phase. The lateral response orbit now is a
straight line in 45 degree along the pressure line, as shown in Figure 3-19, not in Y direction as
discussed in case 1.
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Lateral Steady State Response at Station 2 due to torsional excitation
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Figure 3-18 Lateral steady state response at station 2 due to torsional excitation at station 1
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Figure 3-19 Lateral response orbit at station 2 due to torsional excitation at station 1



Figure 3-20 shows the lateral steady state response at station 2 due to rotor 1 unbalance. Again,
modes 3, 4, and 5 were excited by rotor 1 unbalance and the amplitudes in X and Y directions
are the same, but phases are different.

Lateral Steady State Response at Station 2 due to rotor 1 unbalance
10— 3

10°F
E Mode 3 3

Displacement (micron)

Rotor 1 Rotational Speed (rpm)

Figure 3-20 Lateral steady state response at station 2 due to rotor 1 unbalance

Figure 3-21 shows the lateral steady state response at station 3 due to rotor 1 unbalance. Modes
3 and 5 were excited by rotor 1 unbalance and the amplitudes in X and Y directions are the same,
but phases are different. Mode 4 is a purely lateral motion at station 2, therefore, not shown at
station 3 in Figure 3-21.

Again, although the bearings are isotropic, however, the orbits in general are not circular and
backward whirl exists between critical speeds. Figure 3-22 shows the response orbits at station 2
due to rotor 1 unbalance in various speeds. Again, backward whirl occurs between 2 critical
speeds.

It shows that the anisotropy of the support property is due to the effect of gear mating.
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Lateral Steady State Response at Station 3 due to rotor 1 unbalance
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Figure 3-21 Lateral steady state response at station 3 due to rotor 1 unbalance
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Figure 3-22 Lateral response orbits at station 2 for various speeds due to rotor 1 unbalance
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Example 4: NASA test rig

A NASA test rig, shown in Figure 4-1, is used as a fourth example before we move on to an
industrial application. This spur geared system has been presented in numerous publications
(Kahraman, etal, 1990, 1992, Singh, et al, 1990). The natural frequencies at zero speed were
presented in all the publications and compared here. For comparison purpose, the shaft shear
deformation is neglected in the analysis. The 2 shafts have the same pitch radii (same speed).
The relevant parameters are shown in the Figure 4-1. To draw the a bearing using a block, go to
Project — Preferences Settings — Model Display Settings — Set Bearing Length = -1 or 0, then,
adjust the Bearing Width.

Shaft Properties: p=7800 kg/m"3, E=207 GPa, G=79.5 GPa

AN
m=1.84 kg
1d= 0.0009 kg-m"2
Driver: ID=0, OD= 37 mm Ip=0.0018 kg-m"2 ‘
R 2 = 4 5 +|:QE
[
i
i
i
L=127 mm ﬁl L=127 mm
i Km=1E08 N/m
i Pitch radii = 0.0445 m
Driven shaft: ID=10, OD=37 mm |
i
|
S P o ] e - o 1—”04(]—
-0
All bearings m=1.84 kg
Kxx = Kyy = 1E09 N/m Id= 0.0009 kg-m*2
Ip= 0.0018 kg-m*2

Figure 4-1 Two shafts system

To compare the results is an easy task and is not the only purpose here. The objective is to fully
understand the dynamics of a multiple rotor system using the available knowledge. It is strongly
recommended that each rotor should be analyzed before analyzing the entire system. At zero
speed, the first 4 natural frequencies of rotor 1 (driving shaft) are: 687, 687, 3387, and 3387 Hz.
The first 4 natural frequencies of rotor 2 (driven shaft) are: 695, 695, 3454, and 3454 Hz. These
8 natural frequencies can be obtained from analyzing each individual rotor or analyzing the
entire rotor model with lateral vibration analysis without gear mesh effect.
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Model Graphic Settings [

[~ CG Symbol o
Iv Station Spmbol Iv Fill Element Calar

[ Unbalance Mag & &ngle | Direction of Fotation

[ Bearing Position Line Size; |1

Description/Header Dizplay

[~ Description
Mo. of Description: |3 " Left & Center { Right
Header/Description Font
Regular -
Font: |,f.\ria| j Style: d
|"f""”a| Size: |Auto Scale -
Scale Factor

Station Symbol: (0.5 Disk Circle:
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Farce Length: Support Size;

Bearing Length: |1 Conztraint Size:
Intershaft Brg width: |2 LG Sembal Size:

I

The mode shapes from analyzing the entire system without gear mesh are shown in Figure 4-2.
As expected that the first pair natural frequencies are corresponding to the first bending mode in
the X and Y directions, respectively. And the second pair natural frequencies are corresponding
to the second bending mode in the X and Y directions, respectively. Noted that the gears (disks)
are at the center of the shaft, therefore, the first two modes (the first bending mode) of each rotor
are not affected by the disk gyroscopic effect due to zero slope at disk. The third and fourth
modes (the second bending mode) of each rotor are strongly affected by the disk gyroscopic
effect due to large slope at disk. Further, the gears (disks) are at the nodal point for the second
bending modes, they are not influenced by the torsional vibration. This will be illustrated by the
whir speed map later.

Mode No. =t Rosar. 1 STRAGHT UNE Motion- Rotor. 2 NO Pracession fode No =2 - Rofor. 1 STRAKGHT LINE Metion: Rator: 2 NO Precossion
Shak Reestionsl Spaeds = 0, -0 rpev Shafl Rotstional Speads = 0 -4 ipm
Vitat! Spaed Domped Haturd Freg | = 41237 rpm. Log Decrement = -0 8030 Wil Spaed (Damged Hatural Freq ) = 41237 1pm, Log Decrement = -0 0000
687 Hz y 687 Hz
Y
Rotor 1 - x Rotor 1 -

Rotor 1 Rotor 1
S N
e "0
-0
" Rotor 2 Rotor 2
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fdode o =3 - Roter 1 NO Preceszion: Rolor: 2 STRAGHT LINE Motion
Shaft Rotaticnal Speads = 04 rpm
Wit Spaed (Damped Matural Freq ) = 41690 e, Log Decrement = -0 0000

695 Hz
M Rotor 2 - x

fdode No = § - Rotor 1 STRAGHT UNE Motion: Rator: 2 NO Precassion
Shaft Rotaticnal Speads = 0 -4 rpm
Witiri Spred |Damped Natieal Freq ) = 200226 rpm. Log. Decramant = -4 (000

3387 Hz
Rotor 1 -x

Rotor 1

T,

+0

2
Rotor 2

Mode Moo= : Raotor: 1 KGO Preceseion: Rator: 2 STRAKHT LIME Motion
Shafl Rolational Speads = 0 4 ipm
i Spaesd [Camgped Matural Frag ) = 207216 rpm. Log. Dacrament = -0, (500
3454 Hz

b Rotor 2 - x

Raotor 1

=

+2

1
Rotar 2

Mode No = 3 Rotor. 1 NO Pracession: Rotor: 2 STRAIGHT UINE Moo
Shak Aceatony Speeds = 0, -0 pm
Whet! Speed Domped Naturd Frag | = 416320 rpm. Log Decremest = -0 8030

695 Hz
Rotor 2 - y

Rotor 1

N
% +O)

-0
Rotor 2

Mode No = 6 - Rotar: 1 STRAGHT UNE Motion- Rator. 2 NO Precesson
Shak Retatwnyl Speede = 0, O rpm
Vit Speed Camped Neoturel Frag | = 203226 pm, Log Decrement = 5 000}

3387 Hz

Rotor 1 -y

ode No = 7 - Rotar: 1 NO Pracession: Rotor: 2 STRAIGHT UINE Mobon
Shak Reeatwonyl Speede = 0, -0 rpm
Vitud Speed Domped Naturad Frag | = 207216 (pm, Log Decrement = 5 0000

484 Hr
N Rotor2 -y

Rotor 1

o,

+0

-
Rotor 2

Figure 4-2 Mode shapes for lateral vibration

The first purely torsional natural frequency of the entire system is 2136 Hz. Note that in this
mode each rotor acts as a rigid rotor and the only torsional flexibility is in the gear mesh. For
gear dynamics, this mode needs a great attention since the gears move out of phase. Also, this
mode will be influenced by the lateral-torsional coupling effect. The mode shape for this
torsional mode is shown in Figure 4.3.
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Shaft Rotational Speeds = 0, -0 rpm
Whirl Speed (Damped Matural Freq.) = 128128 rpm, Log. Decrement = -0.0000

2135 Hz

Rotor 1

N

+0

Rotor 2

LTA

Figure 4-3 Mode shape for torsional vibration

Table 1 summarizes the first several natural frequencies of the entire system (2 rotors) at zero
speed for comparison.

Combined
Purel Rotor 1 | Rotor 2 NASA ..
Mode Torsior}llal Lateral Lateral Late'ral— GRD Mode Description
Torsional
1 687 582 582 Lateral + Torsional
2 687 687 687 Lateral — Rotor 1 x
3 695 691 691 Lateral + Torsional
4 695 695 695 Lateral — Rotor 2 x
5 2136 2525 2531 Torsional + Lateral
6 3387 3387 3387 Lateral — Rotor 1
7 3387 3387 3387 Lateral — Rotor 1
8 3454 3454 3456 Lateral — Rotor 2
9 3454 3454 3456 Lateral — Rotor 2

The mode shapes for the first 5 modes with the combined lateral and torsional motions at zero
speed are shown in Figure 4-4. It shows that the first mode (582 Hz) is the combined lateral
motions of two rotors in Y direction with the torsional motion. Note that in this mode, rotor 1
and rotor 2 vibrates out of phase in the Y direction with large relative torsional displacements at
the gear contact. The second mode (687 Hz) is an uncoupled lateral motion (X direction) for
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rotor 1. The third mode (691 Hz) is again a combined lateral and torsional mode. However,
unlike mode 1, both rotors now vibrate in phase in the Y direction with small relative torsional
displacements at gear contact in this mode. The fourth mode (695 Hz) is an uncoupled lateral
motion (X direction) for rotor 2. The fifth mode (2525 Hz) is a combined torsional and lateral
mode with very large relative torsional displacements at gear contact and small lateral motion in
Y direction for both rotors. Among these 5 modes, for the gear dynamic study, modes 1, 3, and 5
are of the critical modes, which coupled torsional and lateral motions. Modes 6, 7, 8, and 9 are
purely lateral vibration with nodal point at the gear location, therefore, no influence from the
torsional motion on these modes.

Mode MNo.= 1 : Rotor: 1 STRAIGHT LINE Mation: Rotor: 2 STRAIGHT LINE Motion
Shaft Rotational Speeds =0, -0 rpm
Whirl Speed (Damped Matural Freq.) = 34909 rpm, Log. Decrement = -0.0000

582 Hz

Lateral y + Torsional

Mode No.= 2 : Rotor: 1 STRAIGHT LINE Mation: Rotor: 2 STRAIGHT LINE Motion
Shaft Rotational Speeds =0, -0 rpm
Whirl Speed (Damped Matural Freq.) = 41237 rpm, Log. Decrement = -0.0000

687 Hz

M Lateral x - Rotor 1
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Mode Mo.= 3 - Rotor: 1 STRAIGHT LINE Motion: Rotor: 2 STRAIGHT LINE Motion
Shaft Rotational Speeds =0, -0 rpm
Whirl Speed (Damped Matural Freq.) = 41467 rpm, Log. Decrement = -0.0000

691 Hz

Lateral y + Torsional

+0)

Mode MNo.= 4 : Rotor: 1 STRAIGHT LINE Mation: Rotor: 2 STRAIGHT LINE Motion
Shaft Rotational Speeds =0, -0 rpm
Whirl Speed (Damped Matural Freg.) = 41690 rpm, Log. Decrement = -0.0000

695 Hz

Y Lateral x - Rotor 2

Rotor 1

A

+0
-0 Rotor2

Mode Mo.= 5 : Rotor: 1 STRAIGHT LINE Mation: Rotor: 2 STRAIGHT LINE Motion
Shaft Rotational Speeds =0, -0 rpm
Whirl Speed (Damped Matural Freq.) = 151486 rpm, Log. Decrement = -0.0000

2525 Hz

Torsional + Lateral

-0  Rotor 2
Figure 4-4 Mode shape for the combined system
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The whirl speed map for the first 9 natural frequencies is shown in Figure 4-5. It shows that the
gyroscopic effect has little influences on the lowest 5 modes, since the disks (gears) are at the
center of shafts with zero gyroscopic moments in these modes. However, the gyroscopic effect
is significant as speed increases in modes 6, 7, 8, and 9 due to large slope at the gears.

Whirl Speed Map

450[] T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T
i Mode 9 i
4000 | -
- Mode 8 .
3500 | -
= 3000} Mode 7 ]
E - -
" L ]
2 o Mode 6 8
o - .
L 2800F .
[
@ B Mode 5 7
2 i ]
. L J
g L ]
B 2000 -
= | i
p=]
o L J
O L i
E
= L J
0O 1500 -
1000 F -
i Mode 2, 3,4
500 - Mode 1 i
U i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]
0 300 500 900 1200 1600

Rotational Speed (Hz)

Figure 4-5 Whirl speed map for 2 shafts system
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Example 5: A geared industrial compressor

An industrial 3 stages compressor driven by an electrical motor, as shown in Figures 5-1 and 5-2,
is used in this example. Again, it is strongly recommended that each rotor to be analyzed before
performing the lateral-torsional-axial coupled vibration. So, the combined effect can be studied
and also it will minimize unnecessary mistakes which may be caused in the complete system.

Stage 1

LT L LR

e
=
—
—
—
— 30191 rpm

|

I
—
=
| ——
-

Driver @—% 0

2975 rpm
FE— C _-fé '
—
=
=
E
-
éi 42903
Rider Ring Ei pm
== Stage 3
I =
Iﬁa@;&
——
= Ziz
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Figure 5-1 A geared compressor model

The bull gear rotates CCW when viewing from the air discharge side into the motor. Typically,
the bull gear rotor is designed such that the operating speed is far below the first critical speed
and can be reasonably considered as a rigid rotor. Since stability is not an issue for the bull gear
rotor, 2-axial grooved bearings or elliptical bearings are commonly used in bull gear rotor
bearings. For the compressor pinions, typically their operating speeds are above the critical
speeds. The first pinion has 2 stages compressor with a design speed of 30191 rpm. The stage 3
compressor is in the second pinion with a design speed of 42903 rpm. Both pinions are
supported by two 4-pads tilting pad bearings. Note that the rider ring (thrust collar) is used to
transfer the pinion thrust loads into the low speed bull gear thrust bearing. Due to the aero
thrusts, the thrust loads from the pinions are transmitted to bull gear from the collars at the motor
side. The entire rotor assembly is axially constrained by the bull gear thrust bearing, however
not constrained in torsional motion. Therefore there is one rigid body torsional mode with zero
frequency present.

To obtain the linearized bearing coefficients, we need to calculate the bearing loads first. The
bearing loads due to gear forces and aero thrusts, viewed from both sides, are shown in Figure 5-
2. It should be noted that almost every bearing analysis program is based on the CCW shatft
rotation for the bearing coefficients. Proper bearing orientation is extremely important to ensure
the bearing performance reflect the design intention. For the current tilting pad bearings, the
bearings are oriented such that the loads are between pads. The relevant bearing parameters are
given in Figure 5-3.
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Stage 1 Stage 2

2045 @ 79 deg 2515 @ 55 de

1185 @ 252 deg 1611 @ 220 deg

Stage 3

4435 @ 328 deg

5504 @ 211 deg

BG BG Motor
AirSide Side

View from Air Side

Stage 1 , Stage 2
2049 @ 101 deg : \ 2519 @ 121 deg

1186 @ 248 deg 1611 @ 320 deg

4439 @ 212 deg
BG

Air Side

5504 @ 325 deg

BG

View from Motor Side Motor Side

Figure 5-2 Bearing loads
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Y Y
Bearing Data [ Bearing Data -]
L =60 mm L =60 mm
Ds =100 mm Ds =100 mm
Cb=0.08 mm Cb=0.08 mm
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Cb=0.0575 mm Cb=0.0575 mm
2Ch/D = 0.0029 2Cb/D =0.0029 ]
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Offset=05 Offset=0.5 X
ArcLength =72 ArcLength =72
Pivot Angle = 23 U PivotAngle = 5

Load Between Pivots
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Q factor=0.3 lea.ctor =03
Meglect Pivot Effect Meglect Pivot Effect %
{

°/

Load Between Pivots
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A
\Jﬂ
Figure 5-3 Bearing data

Again, in order to fully understand the dynamics of the entire rotor system, it is strongly
recommended that each rotor be analyzed separately first for the lateral vibration, as shown in
Figure 5-4. For the torsional analysis, the entire train must be considered and it has little
significance for the individual rotor to be analyzed for the torsional vibration since the torsional

motion for the first torsional mode is typically occurred around the coupling connected the driver
and driven unit.
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|

Figure 5-4 Individual rotor

model
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Although the program is capable of including or neglecting the lateral, torsional, or axial
vibrations as shown below for the combined entire rotor system, it can also be used to verify the

results from the individual rotor analysis.

.

Lateral-Torsicnal-Axial Geared Vibration Run Time Data

===

Analyziz:

peed & Stability Analysiz

Convert Cross-Coupled
v Bearing Coefficients

If Ratation is Cw

Local  to Global 34

Vibrations [ncluded

v Lateral Iv Tarsional I Al

Steady State Synchronous Besponge Analysiz

RPM-Starting: [200 ¥ tazs Unbalance
0

whil Speed and Stability Analysis
™ Const. Unbalance

RPM-Starting: 2375 Ending: |3500 -
Shaft B owe
Ending: |0 Increment; |3 ™ Dick Skew
Increment: |0 Ewcitation Shaft: |1 [~ Misalignment
Mo of Modes: |40 W Al Synchronized Shafts [~ T4 55 Excitation

LCancel Bun
Transient Analysis
APM: ’07 [ Maszs Unbalance
I Const. Unbalance
Time-Start: {0 [ Shaft Bow
ot ’07 I Disk Skew
e} ™ Gravity ()
Increment: |0 [ Gravity [Z]
Solution Method "' Stalic Loads
[ Time Farzing
| Wilson-theta ™ Misalignment

The natural frequencies at the motor design speed of 2975 rpm for the torsional, axial, individual

lateral, and combined effect are summarized in Table.

Mode | Torsion | Axial | Motor+ BG | Pinion1 | Pinion2 | Combined Description
0 0 Torsional Mode
1 1225 1225 | Torsional + very weak lateral on BG
2 1262 1245 | Lateral BG + Axial
3 1657 1659 | Lateral Motor + BG + weak Axial
4 1803 1803 | Lateral Motor + weal Axial
5 3260 3220 | Lateral BG + weak Axial
6 4892 4890 | Lateral Motor + weak Axial
7 5287 5287 | Lateral Motor + weak Axial
8 7262 7058 | Lateral BG + Pinion 1 (high damping)
9 7631 7252 | Lateral Pinion 1 (high damping)
10 7794 Overdamped in combined system
10 8576 8576 | Axial motion only
11 11245 11292 | Lateral Pinion 1
12 16650 16599 | Lateral Pinion 1
13 17963 17981 | Lateral Pinion 2
14 21064 20358 | Lateral Pinion 1 & Pinion 2
15 21186 21629 | Lateral Pinion 2
16 21648 21543 21631 | Lateral Driver + Axial
17 23304 23276 | Lateral Driver + Pinion 1 + Axial
18 23909 | Lateral Pinion 1
19 25080 26837 | Lateral Driver
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20 26943 26856 | Lateral Driver + weak Axial
21 27042 30809 | Lateral Pinion 1 + Driver
22 32398 38579 | Lateral Pinion 2

23 33185 39979 | Lateral + Torsional + Axial
24 40873 41828 | Lateral Driver

25 42974 41972 | Lateral Driver

26 42102 42285 | Torsional + Lateral + Axial
27 42282 47446 | Lateral Pinion 1 + Pinion 2
28 43393 50045 | Lateral Pinion 1 + Pinion 2
29 46001 51605 | Lateral Driver

The mode shapes for some interesting modes of the combined effects are shown in Figure 5-5
and brief discussion is also provided.

Note that there is a rigid body mode with zero frequency for the torsional vibration and not
shown here. The first flexible mode of 1225 rpm is a primary torsional mode with very weak
coupling in Y direction of the bull gear where the gear is located and lateral motion of the first
pinion. The major torsional deflection occurs around the coupling as expected. Here, torsional
vibration is indicated by the bar symbol and lateral vibration is by the purple line and blue
whirling orbits. The axial vibration is indicated by the dot symbol along the rotor center lines.
This mode has no axial vibration shown. The low log decrement is because this mode is mainly
torsional mode and there is no external torsional damping is applied in this example.

Modes 2 to 7 are mainly lateral motion in the driver (motor + BG) coupled with axial vibration.
The log decrements of modes 2 to 6 are all far above 1 which indicates they are critically damped
modes and not a concern. Mode 7 has a log. Decrement of 0.35, but it is far above the
synchronous excitation from the driver, so not a concern too.

The second mode of 1245 rpm is a lateral mode coupled with the axial vibration. The lateral
motion occurs at the bull gear and the motor side is whirling backward and air end is whirling
forward. The axial vibrations for two high speed pinions are moving out of phase, one to the
right and the other to the left. There is no torsional motion involved in this mode. The third
mode of 1659 rpm is a lateral mode with motion in most entire rotor 1 coupled with very weak
axial vibration. Most of the rotor is whirling forward, except very small session in the right (air)
side of the bull gear is whirl backward. The log decrement of this mode is very high (4.23) and it
is a critically damped mode.

Modes 8 and 9 are also primary lateral motion. Mode 8 is the lateral motion in bull gear and

pinion 1, mode 9 is the lateral motion in pinion 1 only. Mode 10 is a purely axial motion in the
driver. Modes 11 to 22 are primary lateral motions.
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Mode No.= 1 Rotor: 1 MED (85% F. 9% 8) Whir. Rotor. 2 MIED {48% F, £8% B) Whil: Retor: 3 FORWARD Pracessica
Shaft Rotational Speads = 2975, -30191, 42903 pm
Vihiel Speed {Damoed Natural Freq ) » 1225 rpen, Log Decremert = 0.0001

Torsional + very weak Lateral on BG and Pimion 1

(Motor + BG)
(Pinion 2)

Mode No =2 STABLE - Roter. 1 MIXED (51% F. 48% B} Whrl Rotor. 2 BACKWARD : Rotor. 3 MIXED (47% F_ 52% B) Whul
Shat Rotational Speads = 2975, -30191, 42903 rpm
Whirl Speed (Damped Natural Freq ) = 1245 rpm, Log Decrement = 125130

Lateral + Axial

Lateral
Vibration Axial
[N Vibration

'ltorslonl o
Vibration e

Axial
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Mode No = 3 STABLE  Rolor. 1 MIXED (35% F, 4% B) Whi Retor. 2 MOED (35% F. 61% B) Whin. Retor. 3 MXED (79% F_ 20% B) Whirl
Shaft Retational Speeds = 2975, -30191, 42903 rpm
Vihirl Speed {Damped Natural Freq ) = 1659 rpm, Log Decremert = 4 2308

Lateral + very weak Axial

+0
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Mode No.= 8 STABLE  Rolor. 1 MUED (84% F, 15% B) Wit Rotor. 2 MIED (8% F. 91% B) Whin Retor. 3 MIXED (18% F. 813 B) Whirt
Shaft Retational Speeds = 2975, -30191. 42903 rpm
Vihil Speed (Damped Matural Freq ) » 7058 rpm, Log Decremert = 2.4199

Mode No.= 9 STABLE - Rotor. 1 MOED (88% F. 11% B) Whinl: Rotor: 2 MIXED (2% F, 97% B) Whirl. Rotor: 3 MIXED (13% F. 69% B) Whir
Shak Rotational Speeds = 2975, -30191, 42903 rpm
Whirl Speed (Damped Natural Freq ) » 7252 rpm. Log Decrement » 0.9770

Mode No.= 10 - Rotor. 1 MIXED (73% F. 11% B) Wil Rotor: 2 MOED [80% F. 36% B) Whit. Rotor: 3 BACKWARD Precession
Shaft Rotational Speeds = 2975, -30191, 42903 rpm
Vhiel Speed (Damped Natural Freq ) = 8576 rpm, Log Decrement = 0.0000

Axial
Vibration
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Mode No = 11 STABLE - Rotor. 1 MIXED (44% F, 53% B) Whel Rotor. 2 MIXED (34% F. 5% B) Whrt. Rotor: 3 MIXED (3% F_ 81% B) Whir
Shaft Retational Spaads = 2975, -30191, 42903 rpm
Whitl Speed (Damped Natural Freg | « 11292 rpm. Log. Decrement « 15516

Mode No. = 13 STABLE  Rotor. 1 MIXED (12% F. 82% B) Whid Rator. 2 MIXED {54% F_ 42% B) Whirt. Rotor. 3 MIXED (4% F_ 95% B) Whit
Shaft Retational Speeds = 2975, -30191, 42903 rpm
Whirl Speed [Damped Natural Freg } = 17981 rpm. Log. Decrement = 13259

Figure 5-5 Selected mode shapes

Now, let us examine the steady state synchronous response and compare the results between the
combined system and individual rotor. Figure 5-6 shows the steady state responses at stages 1 &
2 bearings from the individual rotor 2 (pinion 1) analysis. Note that since only single rotor is
analyzed and the bearings are 4-pads tilting bearing bearings, the response orbit are circular and
|X|=|Y]. If we analyze the entire 3-rotors system with only rotor 2 unbalance and neglect the gear
mesh and rider ring effects, then the results will be identical and not repeated here.

However, the interest is to study the coupled effect through the gear mesh and rider ring. Figure
5-7 shows the steady state responses due to rotor 2 unbalance at the same stations from the entire
train analysis with combined lateral-torsional-axial vibrations. With this lateral-torsional-and
axial coupling, the system is no longer isotropic and the x and y amplitudes are quite different.
As expected, when the rotor 2 goes through critical speed, it also excites rotor 1 and rotor 3
through the gear mesh and rider ring. Figure 5-8 shows the response at bull gear bearing and
stage 3 bearing due to rotor 2 unbalance. Although the vibration is small, it does exist. Figures
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5-9 and 5-10 show the gear dynamic force between bull gear and rotor 2 and the collar axial
dynamic force due to vibration. It shows that the rider ring dynamic force is more than 10 times
higher than the gear mesh dynamic force. It is evident in some integrally geared compressors
with rider ring design, the vibration is strongly influenced by the rider ring effect.

Steady state unbalance response analyzed from a single rotor (rotor 2)

Stage 1 Bearing
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Figure 5-6 Responses at bearings obtained from the individual rotor analysis
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Steady state unbalance response due to rotor 2 unbalance analyzed from the entire system with combined effect

Stage 1 Bearing

Bode Plot
Stson: 28, Sub-Station 1
Probe 1(¢ 0deg Amp = 95305 phage = 226 & 22935 rom
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Figure 5-7 Responses at bearings due to rotor 2 unbalance obtained from the entire system with

combined effect
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Steady state responser due to rotor 2 unbalance analyzed from the entire system with combined effect

Bull Gear Bearing Stage 3 Bearing
Bode Plot Bode Piot
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Figure 5-7 Responses at bull gear bearing and stage 3 bearing due to rotor 2 unbalance obtained
from the entire system with combined effect

Gear Mesh Dynamic Forces
Gear Mesh: 1, Stnl: 16, Stnd: 27
Tangential Force: Peak =4 5118 at 23442 4 rpm
Axial Force: Peak = 0.089181 at 23746.9 rpm
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Figure 5-10 Gear mesh dynamic force between rotor 1 and rotor 2
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Thrust Collar Dynamic Forces
Gear Mesh: 3, Stnl: 16, StnJ: 26

1000 Collar Force: Peak = 912 .80 at 23442 4 rpm
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Figure 5-11 Thrust collar dynamic force between rotor 1 and rotor 2

LTA
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