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SYNOPSIS A second order perturbation method is presented to calculate nonlinear unbalance orbits of

a multimass rotor supported by misaligned journal bearings. The theory of short journal bearings is
employed to determine analytical expressions for first and second order bearing characteristics to be
applied in the perturbation approach. It is shown that for many practical applications a good agree-
ment between second order unbalance response and exact numerical solutions is obtained. Both static
bearing loads of a multibearing system and stability thresholds of the rotor are calculated in terms
of bearing misalignment. Ranges of high sensitivity of the stability thresholds with respect to bea-
ring misalignment can be observed which may explain significant deviations between theoretical predic-—

tions and experimental data.

1 INTRODUCTION

Nonlinear bearing characteristics, bearing misa-
lignments, and residual shaft bow are present in
almost any real rotor—bearing system and may con-—
siderably change its dynamical properties. Since
an exact mathematical treatment of the influences
of bearing nonlinearities, misalignments, and
shaft bow is rather complicated it is desirable
to have approximate solution techniques which can
easily be applied by design engineers to most of
their practical problems.

Nicholas, et al (1) discussed the influence
of shaft bow upon the unbalance response of a
flexible Jeffcott rotor in two isotropic bea-
rings. Bannister (2) introduced twenty numerical-
1y evaluated second order bearing coefficients in
order to determine nonlinear unbalance response.
Stationary bearing loads of statically indetermi-
nate multibearing systems including nonlinear oil
film effects are calculated in (3), and Nasuda
(4), investigated the influence of bearing misa-
lignments upon stability limits. Nonlinear unba-
lance response and stability limits of a rigid
Jeffcott rotor in two short journal bearings are
obtained in (5) by applying an averaging method.

In this paper Bannister's method (2) of in-
troducing second order bearing coefficients is
applied to the theory of short journal bearings
and simple analytical expressions for those coef-
ficients are presented. Furthermore, the short
bearing characteristics are used to determine the
static equilibrium position of a multimass rotor
in a misaligned multibearing system. Since simple
analytical expressions are available to determine
static bearing loads for short journals the nume-
rical effort to calculate stability thresholds is
reasonably low even for rather complicated sy-
stems. It is shown also that for small values of
unbalance and residual shaft bow a nonlinear un-
balance response of the rotor may approximately
be obtained from a linear recursive routine using
first and second order bearing characteristics.

2 THEORY

2.1 Equations of motion

Fig 1 shows the non—assembled configuration of a
rotor bearing system. Initial shaft bow and bea-
ring misalignments are defined with respect to
the center line (z—axis) between the first and
the last bearing station. From this, shaft bow
and lateral bearing misalignment for a n-—stations
model of the rotor may be represented in the form

fete)t =
={alcl(t),...,0,...,6jcj(t),...,o,...,éncn(tﬂ

idlsl(t),...,o,...,Gij(t),...,O,...,énSn(t)}T
(D)
and
{m} =
{mlx""’O""’Hﬁx"°"0""’manT
Emly,...,O,...,nﬁy,...,O,...,mny} (2)

respectively. In Equation (1) Cj(t) = cos(wt+B.)
and Sj(t)=sin(wt+8-) with w being the angular
speed of the shaft. At stations where no bearings
are located the corresponding misalignment values
in Equ.(2) are defined to zero. The influence of
slope misalignments between the shaft and the
bearing axis is neglected in this investigation,
see (2).

The equations of motion of the rotor are de-
scribed with respect to the x-y-z reference frame
as defined in Fig |1
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where

{z} = {xl,....,xniy],....,yn}T (4)



is the vector of lateral displacements of the
shaft at the various stations in x- and y-direc-—
tion, respectively. [M], [Cg], [C1] are symme-—
tric matrices which represent mass and external
and internal damping characteristics, respecti-
vely, of the rotor. Note that gyroscopic effects
are not considered in Equ.(3). [Kg] and [K;] are
symmetric and skew-symmetric stiffness matrices
due to shaft flexibility and internal damping,
respectively. Note that [Kg] and [Ky] are singu-
lar. {Fo} is a static load vector due to weight,
for example, and {§(t)} is the shaft bow as given
in Equ.(l). The unbalance excitation is described
by

{u(e)} = {Me
M

5 1
1cos(wt+d>1),...,M.nencos(wt+<1>n):

e151n(wt+¢l),...,Mhen51n(wt+¢n)}

(5)
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with ej being the unbalance eccentricities at
stations i = 1,2,...n. For the reason of simpli-
city unbalance couples are not considered here.
Nonlinear bearing forces acting upon the rotor
are described by a nonlinear vector function
{Fg({x}, {x},w)}which appears at the right hand
side of Equ. (3).

2.2 Perturbation approach

In many practical applications as horizontal ma-
chines, for example, the unbalance and shaft bow
excitation forces are small compared with the
static weight forces such that

W U(E) HIRGS(D) Y = efF (8)}<< {F_) (6)

holds in Equ.(3) where e<<l1 is a small parameter
and {F, (t)} is of same order of magnitude as the
static load vector {Fo}.

By expanding the shaft displacements into a
series of the form

E®} = {2} + 2z (©) = {z,) + ﬁek{ck(t)}(7)

the nonlinear bearing forces can be expressed up
to second order terms as follows

{Fy{z}~{m},{z},0)} =

=(Fy ({2}~ {m}, (0},0) }- -2 (1K 1 (g, 1[G, 1 (E, D)~

- %le §€1+J ({ci}TCKKB}{cj }+2{;i}TCKCB) {ij +
{éi}T(cc§>{ij}> o

After inserting the above equations into the

equations of motion (3) and truncating the ex-
pansion by neglecting terms of 0(e3) it follows

([Rg1+[R 1) (=} = {F_}+{Fy({z_I~{n},(0},w)} (9)
[k 1{6(t) }+u{U(t))
(10)
[1)(Z, 1+ [C1{E, H[KI{z,} = - 3z Y (kK (2, )
—{zl}T@(CB}{él}— —;—{él}T@cE}{él}

[M1{Z, #[Cl{z, +[K]{z,} =

(11)

where

K] = [kg] + [R ] + [K}]

[c]

(12)

bt = da, 1% g3 .

Equ. (9) represents a set of 2n nonlinear rela-
tions to be solved for the static equilibrium po-—
sition {z } of the shaft for a given misalignment
{m}. From’the linear set of differential equa-
tions (9) and (10) {z;} and {z5} , respectively,
can be solved in a recursive manner. The final
solution including second order terms is then
composed in the form

{z(t)} = {z ] + {zl(t)} + {z,(£)} + ... (13)

In Equ.(8) to (12) [KB] and [Cg] are wellknown
bearing stiffness and damping matrices of first
order to be calculated at the equilibrium state
{%0} = {z,} - {m} and {2} = {0}. Second order
bearing coefficients to be taken at the same
equilibrium state are assembled in three-dimen-
sional spatial matrices as

. 3 Fy;
<?KB) Ty 9z.9z o (14)
3 k
for stiffness, and
2Ty
(keg) = - 9z.0%, || o (1)
3k
for stiffness-damping, and
C :) : azFB:i._\
(ool B e (16)
B azjazg/ o
for damping, where i, j, k = 1,2,...2n indicate

the plane, row, and columm numbers, respectively,
of the above matrices. It can be shown that each
plane of <?Kﬁ> and <CCB> is symmetric with re-
spect to its rows and columms while <KC§> is not
symmetric. Therefore, each bearing of the rotor
contributes with twenty independent second order
coefficients to the system. In Equ.(8) and (11)
symbolic expressions of the form {a}T <kK> {b}
appear. This operation performs a colummn vector
of which the i'th component is the bilinear form
of {a} and {b} with respect to the square matrix
located in the i’'th plane of the spatial matrix
<KK>. In general, the number of bearings in a
real rotor bearing system is much less than the
number of stations. Therefore, the spatial matri-
ces (kKB> P (KCB) , and (pCﬁ} are extremely weak
populated and an ecconomic storage scheme is re-
commended when calculating the right hand side
of Equ.(11); see Ref.(6).

2.3 Characteristics of the short journal bearing

In a local r-t-z reference frame of a single bea-
ring, as shown in Fig 1, the bearing characteri-
stics can be evaluated in terms of the static
shaft eccentricity ¢ and a corresponding modi-
fied Sommerfeld recigrocal

(l-ei)z

= [ a7
e 16€§+ﬂ2(]-8§)

where S = uNLD/w/w2 is the common Sommerfeld
reciprocal. N denotes the shaft speed in rev/s

i n®
S = SO(D)



and p is the dynamie viscosity. L and D repre-
sent width and diameter of the bearing, respecti-
vely, and ¢ = C/(D/2) is the clearance ratio.
The static bearing load is denoted by W. From (7)
dimensionless bearing stiffness coefficients

-

B 4eo(1+e§) m
C (1-€§)3 2(1‘85)3/2
o R
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and damping coefficients
r 2
m(142¢2) b sxoal
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of first order are obtained. Dimensionless second
order coefficients are derived in (6) as follows
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It can be seen that from the twenty independent
second order coefficients five are identical zero
for the short journal bearing. Note that the
above matrices, as indicated by a prime, corre-
spond to a local r—-t-z reference frame of the
bearing. For any other x-y-z reference frame the
corresponding first order coefficients are ob-
tained from

(22)

[K or €] = [T][K' or ¢*][T]T (23)
where
cosd - sind
[T] = (24)
sin®d cos®

is an orthogonal unitary transformation matrix
with & being the attitude angle of the r-axis
with respect to the x-axis, see Fig 1, Second
order bearing coefficients corresponding to a
x-y—z reference frame can be determined from

(KK,
@) - -
(kK]
_ [ITIlRR" ] cose - IKK']tsiné][T]T
[TI[[KK']_sino + [KK']tcosé][T]T
(25)

In Fig 2, for example, a logarithmic plot
of three dimensionless second order stiffness
coefficients (KKYXX, KKyxy = Kyyy, KKyyy)cz/W
for the short journal bearing is” shown in terms
of the modified Sommerfeld reciprocal S as de-
fined by Equ.(17). In this example ¢ is chosen to
be the load attitude angle, i.e., the x—axis is
parallel with the direction of the static load.

2.4 Unbalance and shaft bow response

Both unbalance and shaft bow generate synchronous
harmonic excitation forces acting upon the rotor.
When introducing complex notation the right hand
side of Equ.(10) can be written in the form

{X}coswt+{Y}sinwt =

[Rg 18 (8) o’ (U(e) }

{®, jelwt +{R’;‘}e—iwt
(26)

where {R.} = {X-iY}/2 represents a complex valued
first order excitation vector with {RT} being the
complex conjugate of {R{}. The components of {X},
{Y}, and {Rl}’ respectively, can be obtained by
inserting Equ. (1) and (5) into Equ.(26). From the
linear differential operator in Equ.(10) a fre-
quency response matrix



[etny] = [K] + ialc) — P 27)

is defined with which a complex amplitude re-
sponse vector

1z} = 6] (R ) (28)

can be evaluated for the first order v = 1 by
applying a proper solving routine for linear al-
gebraic equations with complex coefficients. From
{Z{} and the right hand side of Equ.(11) second
order excitation vectors

R }= - %{{ZI}T ({mcl;)—zm@c];)+w2@c}3}> {zf}}

(29)
and
Y %”%Zl}T <§%Kﬁ>+21w<%cé>'wz<§cﬁ§> {Zl}}
(30)

are determined. A second order response {Zo}and
{Z,} is then calculated from Equ.(28) for v = 0O
and v = 2, respectively. According to Equ.(13)

an approximate solution for the complete response :

of the rotor up to the second harmonic is finally
obtained in the form

iwt i2wt

{z(£)} & {zo}+2Re{{Zo}+{Zl}e +{z2}e }

(31)

where Re stands for real part. The static posi-
tion (zero-state) of the rotor without shaft bow
and unbalance is represented by {z_}. The unba-
lance and shaft bow response is described by a
synchronous component {Z;}, a constant shift {Zy}
and a nonsynchronous (twice speed) component
{z2}: Both {Z,} and {Z,} are caused by nonlinear
bearing effects. Note that {Z ], {Zl}, and {Zj}
are complex valued vectors carrying both ampli-
tude and phase informations of the rotor re-
sponse.

3 NUMERICAL RESULTS

3.1 Static bearing loads and stability thresholds

Fig 3 shows a schematic diagram of a five-sta-
tions model for a symmetric rotor. The model has
two major mass stations and three bearing sta-
tions. The continuous mass of the shaft is symme-—
trically lumped at the five stations. In the fol-
lowing a vertical misalignment my # O is applied
to the center bearing with respect to the outer
bearings while the horizontal misalignment my is
kept zero. Table 1 shows the rotor bearing data
as used in the numerical calculation.

Table 1 Rotor and bearing data

Mass of the rotor 2M+Mg = 16.8 kg
Shaft stiffness EI = 3350 Nm?
Bearing span L =0.24m

center/outer station
15/7.5 mm
25/12.5 mm

0.002/0.0024

Bearing length
Journal diameter
Clearance ratio

In Fig 4 the dimensionless static bearing-load
to rotor-weight ratio is drawn as a function of
the vertical misalignment for various values of
the shaft speed. The solution was obtained by ap-
plying a Newton-Raphson iteration to the nonline-
ar system Equ.(9). The static bearing forces {Fp}
were evaluated from the theory of short journal
bearings (7). The dotted lines in Fig 4 repre-
sent asymptotic solutions corresponding to zero
speed (stationary rotor) and infinite speed, re-
spectively. Stability thresholds, limiting the
speed of the real machine, are not plotted in
this figure. For small positive values of verti-
cal misalignment the center bearing load decrea-
ses slightly and approaches a minimum while the
outer bearing loads increase, and vice versa for
small negative misalignments. If the magnitude

of misalignment becomes unrealistic high then all
bearing loads increase rapidly, approaching an
asymptote of which the corresponding rate of
change is determined from the bending stiffness
of the shaft and the bearing spans only.

In Fig 5 the load ratio for the center bea-
ring is represented in terms of the shaft speed.
Corresponding to a given vertical misalignment
the zero speed load may be either zero or finite.
When the speed goes to infinity the load ratio ap-—
proaches an asymptotic value which is given from
the dotted line (N =00) in Fig 4. For any misa-
lignment a corresponding stability limit for the
shaft speed exists which is indicated in the dia-
gram. It is interesting to note that, in this
example, small changes of the vertical misalign-
ment do significantly influence the bearing loads
while the stability threshold keeps almost un-
changed.

In Fig 6(a) the stability threshold of the
present rotor bearing system is shown in terms of
the vertical misalignments mx. A horizontal misa-
lignment my is not applied in this example. The
absolute minimum of the stability threshold of
the rotor is 292 Hz and appears at a misalignment
value of my = -2 Um which is about 1/10 of the
center bearing clearance or 1/120000 of the outer
bearing span. It can be seen that for small misa-
lignments from -4 pym to 11 pm the stability thre-—
shold is less sensitive due to changes in the mis-—
alignment. Outside of that range the speed limit
increases rapidly with increasing magnitudes of
the misalignment.

A more flexible rotor is obtained by increa-
sing the bearing span to L = 800 mm and decrea-
sing the shaft bending stiffness to EI = 1620 Nm?
see Table 1. The corresponding stability map is
shown in Fig 6(b). Note that the stability level
at zero misalignment drops down from 293 Hz for
the rigid shaft to 110 Hz for the flexible one.
Beside that two narrow gaps appear in the neigh-
borhoods of my, = —=400 um and my = +800 um where
the stability limit drops down dramatically with-
in a very small range of misalignments. For ex—
ample, if the center bearing of the flexible
shaft version is vertically misaligned by about
-1/2000 of the outer bearing span the stability
threshold drops down to about 50% of the predic-
ted value for a perfectly aligned configuration.
The physical reason for the stability drop of the
whole system is a substantial decrease in one of
the bearing loads due to misalignment, combined
with a high flexibility of the shaft. In such ca-
ses a high sensitivity of the stability limits
due to changes in bearing misalignments can oc-



cur and may explain deviations between experimen-—
tal. results and theoretical predictions.

3.2 Nonlinear unbalance orbits

The accuracy of the perturbation approach as pre-
sented in Equ. (31) was tested by a simple infle-
xible Jeffcott rotor supported by twa short jour-
nal bearings. The exact steady state unbalance
response was obtained by numerical integration of
the equations of motion. Fig 7 shows a compa-
rison of various rotor orbits corresponding to
various unbalance eccentricities. As long as the
assumptions, as made in the perturbation appro-
ach, are fulfilled a very good agreement between
the exact solution and the second order approxi-
mation is obtained. If the unbalance response
amplitudes reach the same order of magnitude as
the bearing clearance the second order approach
may still be acceptable good (for example, see
orbit for e = 300 ym). However, when the shaft
whirls arround the bearing center the approxima-
tion is not valid any longer. Therefore, self-
excited vibrations beyond the stability thre-
sholds and unbalance response for vertical ma-
chines with cylindrical journal bearings cannot
be treated by this method.

Fig 8 shows a symmetric unbalance response
of a two-mass three-bearing rotor as described in
Table 1. The bearings are assumed to be perfectly
aligned. Note that the shaft orbits at the outer
bearing stations show more nonlinear effects than
the center bearing orbits. The reason is that the
center bearing is less loaded and operates at a
lower bearing eccentricity ratio. It may be of
interest to note that once the unbalance and/or
shaft bow response of first and second order is
evaluated by Equ.(31) it is convenient to go back
to Equ. (8) and calculate dynamic bearing loads of
first and second order which may be useful for
further bearing design.

4 CONCLUSION

The equations of motion for a multi-mass rotor
that may be initially warped and is supported by
a misaligned multi-bearing system with nonlinear
characteristics are presented in this paper. The
influence of bearing misalignments upon static
bearing loads and stability thresholds of the ro-
tor is investigated. It is shown that regions of
extremely high sensitivity of the rotor stability
limits with respect to misalignments may occur in
a system. Therefore, when calculating stability
maps of a rotor bearing system it is highly re-
commended to study the influences of bearing
misalignments at the same time.

By employing the theory of short journal
bearings simple analytical expressions for second
order bearing coefficients are presented which
make it possible to evaluate nonlinear unbalance
and shaft bow response of a multi-mass multi-
bearing rotor. The major advantage of the method
is that once the equilibrium state of the rotor
is obtained, the unbalance response up to the se-
cond harmonic is evaluated by a purely linear re-
cursive routine. A disadvantage is that vertical
rotors in cylindrical journal bearings cannot be
treated. For horizontal machines the method
yields good results for most of the practical
applications.
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