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ABSTRACT b subscript, bearing
The following paper deals with the stability N subscript, constraint mode
analysis of turbomachinery using component modal [c] damping, N-m/s
synthesis. In the problem of complex damped . St
eigenvalue analysis of rotating machinery, there Jij modal cross coupllng‘coefflcxent
exists the possibility of real positive roots (o damping coefficient = 2C/Mw _  (dim)
which may cause the rotor to become unstable at a (D] 2 onad ¥ 2 o’ < (dim)
particular threshold speed. The cause of self- FERendcynanCAay temhma TS,
excited rotor instability may be attributed to £ frequency ratio = (w _/w )2 = 2Kb/K (dim)
; : : T C s
several areas, such as hydrodynamic fluid film (1] i I ey & B ey oy
bearings and seals, aerodynamic cross-coupling, I 2x ; Tah B A e s
and internal rotor frictionm. The instability Kg=-m
observed on turbomachinery is usually associated 5 = _ 2
VvLEh the loweot pymten: esgenvalue. [Ip] n X n polar moment of inertia matrix, Kg-m
K.b bearing stiffness, N/m
Modal analysis has been extensively used in the -
dynamic analysis of structures and rotating shafts Ks shaft stiffness, N/m
for a number of years. There are a number of K 2 Kb/K = stiffness ratio (dim)
modal sets which may be employed in the analysis. =
These modal sets are normal modes; constrained and (K] = x n stiffness matrix, N/m
rigid body modes; and free-free with rigid body [M] n x n mass matrix, kg
modes. It has been determined that the use of the M ol Ao S el
constrained flexible modes plus rigid body modes .5 e e DEehiXg
produces the exact characteristic equation. Mro normalized modal mass cross-coupling
A standard method of damped eigenvalue analysis eoefa. (dim)
for a multistation rotor is by the complex matrix n order of system
transfer method. However, with 1long connected vealli pakt DE P lamos s adls
trains, this procedure runs into numerical diffi- P e P mp ’
culty. In the constrained modal method, accurate q generalized coordinate
undamped constrained modes may be calculated using : 2 .
a minicomputer with 100 station rotors. The 9 genensldzed copteraitkrenordinats
required constrained planar modes may also be q, generalized rigid body coordinate
generated by any of the large finite element b el
codes. A numerical procedure has been developed E: suhacsiptaigid:body
to generate the characteristic polynomial directly s complex root = p+iv, rad/s
for solution of the complex roots or for analysis -
€]
of stability by the Routh procedure. Gyroscopic {U} . gemeral shaft x,y:displacement: vector
effects, as well as bearing cross-coupling may be {X} displacement vector, m
included in the analysis, and stability may be A Jeoior: Esupliateinvetae sodtul sratijs
quickly determined on a 16 bit processor, with g comple op X
accuracy rivaling a main frame computer using the A complex conjugate root
matrix transfer method.
w natural frequency, rad/s
NOMENCLATURE W constrained natural frequency, rad/s
A amplification factor = 1/2£ (dim) We Lssigid:bady matusal ifeequency,: sadjs
Ai i'th coefficient of characteristic polynomial e nortalizarion Cactor, red/s
: : d
[l B = DR masasad damping matrix Y imaginary part of complex root, rad/s
[B] 2n x 2n mass and stiffness matrix SO0 (T 50 moumal mude
A normalized frequency = A/wC (dim)

[B]k k'th Leverrier matrix

g

orthonormal mode



BACKGROUND AND 1INTRODUCTION

In the analysis of the dynamic characteristics of
high speed rotating machinery, such as compressors
and gas turbines, it is desirable to determine the
damped eigeavalues of the system. The magnitude
of the real coefficient of the damped eigenvalue
determines the rotor amplification factor of the
system. A more serious problem with rotating
machinery at high speeds is the occurrence of
self-excited whirl motionm. Self-excited whirl
motion or rotor instability may be caused by such
factors as aerodynamic cross-coupling effects of
the impellers, labyrinth and fluid film seals, and
hydrodynamic journal bearings. In the linearized
rotor-bearing system this is indicated by the
occurrence of a positive real root.

A major contribution to the field of rotor-bearing
stability was presented by Lund in 1974, when he
described the complex matrix transfer procedure to
calculate the stability characteristics of multi-
station turborotors, including generalized linear
bearing coefficients. This paper represented a
major advancement in the field of stability analy-
sis. There are, however, inherent oumerical
difficulties associated with the matrix transfer
method. In the absence of scaling of the transfer
matrices, numerical round-off errors occur on
large station systems which generate inaccurate
eigenvalues and eigenvectors. This procedure may
be somewhat alleviated by using double precision
and scaling of the matrices. However, it cannot
be completely avoided.

In this paper, a method based on constrained
normal modes plus rigid body modes is presented to
determine damped eigenvalues. The results of this
procedure are compared to the normal modal method
for a simplified system. The area of modal analy-
sis is well developed and is extensively employed
by structural engineers to simplify the dynamical
representation of the system. One of the standard
methods of modal analysis is to eliminate the
damping or dissipation terms in the equations of
motion and solve for the undamped normal modes of
the system. By expressing the deflection as a sum
of the undamped normal modes, the modal dynamical
equations of motion may be generated. One of the
typical assumptions in structural dynamics is that
the modal damping cross=-coupling terms are small
and are thus eliminated. In the case of a turbo-
rotor with hydrodynamic fluid film bearings or
squeeze film dampers, the modal cross-coupling
damping terms can never be eliminated. The as-
sumption that the normal modal equations of motion
are uncoupled is based upon the approximation that
the damping matrix is proportional to the mass or
stiffness matrix. In the case of rotating ma-
chinery with bearings or seals, this situation
never occurs in practice. It is only valid if the
damping of the system is extremely light and of
the order of only 1 or 2 percent of critical damp-
ing. Even retaining all cross coupling modal
damping terms, the normal mode approach may not
necessarily yield accurate results.

Fig. 1, for example, represents a 72,000 1b.
(32,727 Kg) gas turbine with 54 stations. The
first two normal modes for this system are shown
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Figure 1. Cross Section of 54 Station Gas Turbine

in Figs. 2 and 3. The normal modes were generated
on a HP-9845B Desk Computer with a 16 bit pro-
cessor. In an attempt to analyze the damped
eigenvalues of this system on a main frame com-
puter, numerical difficulties were encountered
with the matrix traansfer procedure. The analysis
of the 70 MW power generation gas turbine as shown
in Fig. 1 will be presented in a later paper.

The method of modal analysis appears to be a very
attractive procedure to describe the dynamical
behavior of such a complex system. The area of
modal analysis has received extemsive treatment
and classical descriptions of this method are
given by the various researchers in structural
dynamics, such as Hurty and Rubinstein. Modal
analysis has been extensively applied to rotating
machinery by Bishop, Parkinson, and Black in Eng-
land and Childs, Nelson, Gunter, Choy and Li, etc.
in recent papers in the U.S. This is just to men-
tion a few of the many papers in this area.

The procedure is attractive from the standpoint
that the various system modes normally need to be
calculated only once. Modes are then used as
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building blocks to describe the generalized equa-
tions of motion usually in terms of undamped modes
of motion. The required undamped planar con-
strained modes may also be obtained from standard
finite element codes. -

There are various sets of mode shapes that may be
employed as functional sets to span the vector
space of equations. These mode sets may be
roughly classified in the catagories of normal,
constrained, and free-free rigid body mode sets.
Dynamic analysis may also be performed by the use
of complex modes as outlined by Foss and also
expanded upon by Lund. The undamped modes may be
used to generate the complex damped modes. Al-
though a number of papers have been written in
various fields on modal analysis, few papers have
been written on the errors generated by the trun-
cation to a finite number of modes. Li and Gunter
in 1981 presented one study on modal truncation
error in component mode analysis of a dual rotor
system.

However, considerable research is still required
in this area. In this paper it is shown that the
use of normal modes may not generate accurate
results even if the modal cross coupling damping
terms are retained. The use of component modes
along with rigid body modes is shown to generate
the exact eigenvalues. An excellent presentation
on component mode analysis is given by Nelson.

The generation of the damped eigenvalue problem
requires the initial solution of the undamped
planar problem, assuming the bearings are node
points. Once the rotor modal mass and frequencies
are obtained, then the rotor elastic properties do
not have to be further calculated. The entire
stability analysis may be performed on a 16 bit
microcomputer with extremely good accuracy.

GENERAL EQUATIONS OF MOTION
The introduction of linear viscous damping into a

dynamical system results in the following general
matrix formulation:

M) {&} + [c]{x} +[K]l{x} = F(t) (1)

For a multimass flexible rotor with shaft bow the
general equations of motion are of similar form to
Eq. (1) as follows:

(A1 (U} + (€] (8} + [K] {U) = (FCO} + (K] {U,)

2)
where
) (xy))
© . Jey
{u} = Y {ugl = Gy )
W) (d:d)/
and

The damping matrix can be decomposed into the
gyroscopic and bearing damping submatrices for
future convenience as follows:

0 0 0 0 o] (7€) ['cx’.} [‘C“.I
tc1= |0 0 LR 6L RD | ERER 1N i oS | SRR R A
0 0 0 0 (el el el e g1
()] [‘-urp.l 0 ] CFES R el t‘c‘y~1 (€1

The general stiffness matrix may also be decom-
posed into two submatrices representing the sym-
metric shaft stiffness matrix and the linear
bearing stiffness matrix.

S R G0 (] 0 (Rl (Rl [x‘yl (L")

i [k ] (kygl 0 0 + | Ragl [Kgql (Ky, ] (Kyyl
o 0 le ] legl “ﬂl IK,.I (!”1 IK”)

(] 0 (kg ] kgl (Fe] (Rl (K] [R]

The generalized eigenvalue problem for the damped
system is formulated by setting F(t) =.0 and
assuming the displacement vector {U} to be of the
form:

vy = (x} (3)

The generalized eigenvalue problem may be written
as:

[A%[(M] + AlC] + (K] {X} = 0 %)

Since {X} is in general a nonzero vector, Cramer's
rule requires that the determinant of the coeffi-
cients must vanish. This leads to the following
equation:

| A%[M] + ALC] + (K] | =0 (5
Eq. (5) represents a polynomial of the form
P(A) = (A - Al)(A = Az)(A - Ka) = =5 (Res AZn) (6)
In general the roots A, are complex for under-

damped systems. Since the M1, [C] and (K] ma-
trices are all real coefficients, the coefficients



of the characteristic equation are all real num-
bers. The complex roots A. have a corresponding
complex conjugate root Ai.

For a full system of n degrees of freedom (no
zeros in the mass matrix), the order of the poly-
nominal is 2n. In the case where none of the roots
are critically damped, the characteristic poly-
nomial is of the form:

P(A) = (A - Al)(A - Al)(A - AZ)(A - Az)
- (A - An)(h - hn) &)
The root Ai is of the general form:

A, =P, +iv,
1 1

i (rad/s)

X, =P, - iv, 68
b 1 1
The resulting motion corresponding to the ith root

is of the form:

p.t
{uy = {X}i e [cos vit + i sinv.t]  (9)

Hence if the real component P of the complex root
A is greater than zero, the system motion grows
exponentially with time and the system is said to
be unstable in the linear sense.

From a practical standpoint, it is not desirable
to expand out the characteristic polynomial of a
large order system as shown in Fig. 1. From the
theory of invariants of the characteristic poly-
nomial it is seen that the polynomial may be
written in the form:

2n 2n+1

+ A A e osie A A+ A =0

) =3 1 2n-1 2n

(10)

The coefficients of the characteristic polynomial
are called the invariants and

The last coefficient is equal to the product of
the eigenvalues, and hence becomes extremely
large, even for small order systems. By means of
modal analysis and proper scaling, the coeffi-
cients of the characteristic polynomial may be
kept within bounds.

FORMULATION OF THE DAMPED EIGENVALUE PROBLEM BY
NORMAL MODAL ANALYSIS

The general solution of the damped eigenvalue
problem as given by Eq. (2) is difficult to eval-
uate numerically. The complexity of the system
may be reduced by using the constrained planar
modes along with the rigid body modes. This
reduces the multimass system to only a few degrees
of freedom in which the normalized characteristic
polynomial may be rapidly generated and solved.

Unlike the conventional normal mode method pre-
viously employed by Choy and Gunter, and Li and
Gunter, the constrained modal method produces more

accurate eigenvalues with fewer modes required.
In order to understand why the constrained modal
method (which is also the procedure recommended by
Nelson) is superior to the conventional normal
modal method, a reduced rotor model is examined in
detail by the various procedures.

Example 1. Consider ' the threé-mass system as
shown in Fig. 4. Damping coefficients of C = 1
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Figure 4. Cross Section of 17 Station Three-Mass
Rotor .

lb-sec/in. (175 N=-sec/in) are applied at each
bearing. This 17 station test rotor may be repre-
sented by the 5 degree of freedom system as
follows:

[} 0 0 0 0 1 [} 0 0 [}
[} 1 0 0 o 0 0 0 o 0
MA2 0 [\] 1 ] 0 + CA [ 0 [} [} [}
0 [} 0 1 0 0 0 0 [} 0
0 0 0 0 0 [} 0 0 [ 1
1.218 -.689 .348 -.089 .015
+ K 1.326  -1.276 .526 ~.089
1.852 -1.276 .348 =0
(sm) 1.326 -.489
1.215

Where the coefficients M, C, and K are given by:

M = .00465 1b - sec>/in  (0.815 kg)
C=1.00 1b - sec/in (175 N-sec/in)
K = 1,000 1b/in (175,000 N-sec/in)

Table 1 represents three sats of modes obtained
for Example 1 with no damping. The first set of
modes represent the normal modes with a bearing
support spring rate of 1,000 1lb/im. (175,000 N/m)
located at the bearings as shown in Fig. 4. Fig.
5 represents the first three normal mode shapes
for this three-mass model. Figs. 6 and 7 repre-
sent the first and second animated mode shapes for
the three-mass system. The second set of modes in
Table 1 represent the constrained normal modes.
These modes are obtained by constraining the
motion at the support locations. The third set of
mode functions represent the free-free modes.
These modes are obtained by assuming no support
restraint acts at the end of the station. The
first two modes of this set are rigid body modes
of zero frequency and the third mode is the system
first free-free bending mode.



Table 1 CRITICAL SPEED ANALYSIS OF BENTLY
Three-Mass System Mode Shapes and Eigenvalues 3 - MASS ROTOR SYSTEM
UNDAMPED SYNCHRONOUS SHRFTMODES
Wee 2.8 Kg Lte 214.4 mm
( I Undamped Displacemeat Modes
f moDE 1 rnm'q 18 HZ ¢ %48 RPM)
FREQ  ¢/min (Hz) 968.6 (16.1) | 3618 (50.3) 7911 (131.9)
rad/s 101.62 378.85 828.4 BN
¥ Modal Lb-sec’/in. .0095 .0093 .0091
k (1.666) (1.632) (1.597)
Station 1 .087 0.334 -0.608 ?
2 0.724 1.000 -0.6906 e R :
3 1.000 0.0 1.00 i H
4 0.724 -1.000 -0.6906 . H
s 0.057 -0.33 -0.608 i 1§
S13 0 onan DINSSNa TEWE Y oo w2
§i2 it
g ; e
§;,', ’ gl:
11 Constrained Normal Mode
NO. OF STHTION_g:;‘-;Z s
TREQ  t/min (Az) | 995 (16.6) | 3947 (36) 370 (1412 e
rad/s 104.17 413.3 886.9 L : = x = . .
W Hodal Lb-sec?/in. 003 0003 5093 Figure 6. Animated First Mode of Three-Mass Test
(kg) (1.632) (1.632) (1.632) Rotor
Station 2 0.7071 T.00 ~0.7071 - "
3 1.000 0.00 1.000
4 0.7071 1.00 =0.7071 CRITICRL SPEED ANRLYSIS OF BENTLY
3 3 - MASS ROTOR SYSTEM
UNDAMPED SYNCHRONOUS SHAFTMODES
Wt= 2.8 Kg Lt= ?14.4 mm
111 " Free-Free Modes
FREQ  r/min (Hz) 0 0 4870.5 (81.2)
rad/s 510
M Modal Lb-sec?/in. .01395 0.0093 .0069
(kg) (2.648) (1.632) (1.211)
Station 1 1 2 -3.00
2 1 1 -0.50
3 1 0 1.00
o 1 -1 -0.50
s 1 -2 3.00
NO. OF STATIONS = 12
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Figure 7. Animated Second Mode of Three-Mass
CRITICAL SPEED ANALYSIS OF BENTLY Test Rotor :
3 - MASS ROTOR SYSTEM
UNDAMPED SYNCHRONOUS SHAFTMODES : ;
Wee 2.8 Kg Lt= 714.4 ma The system equations of motion are reduced by

assuming the displacement vector {X} may be repre-
. sented in terms of the normal modes (I of Table 1)
2 ¢ 362t RPM) 1 ( 348 REM)

N — as follows:

o
{X} = =z q, {0}, (11)
j=1 3 i

Substituting Eq. (11) into Eq. (1) results in:

z n n =
e MjE E0g, o () e T ke U 5
25 3 7873 Rem) §=i j=1 q.] {¢}J ! j=1 qJ A J
O
iy (12)
No. OF BERRINGS. (hSERLS) = 2 n
; i ol 4 . . + [K] X q. {0}, = F(t)

Figure 5. Mode Shapes of Three-Mass Test Rotor T
Multiply Eq. (12) by {q>}i and employ the ortho-

The modes listed in Table 1 are called displace- gonality conditions that

ment modes. The maximum value of the displacement T

mode is unity at a mass station. Since Guyan {¢}i M] {9}. =0 if ivgj

reduction was used to determine the free-free Yz M, ifi=j (13)

modes, the displacement at the bearing locations, T

which are massless, is greater than unity. {Q)}i [K] {¢}j =0 if i # j ;
= i=3] (14)

M.w? if
b N 1




For the three mass system as shown in Fig. 4, the
modal equations of motiom are given by:

) ; . . gt
Gy * €19y T, *:6 g0, R wig, = 0

) £ ) 5

4y * C399, 7" Chp%5 F€iqay e, =0 (15)
= ; . . e

43 * C319; * G359 * C3393 * w3q, = 0

It is important to note that the equations of
motion expressed in terms of the generalized
coordinates of undamped modes, are coupled through
the modal cross coupling damping terms C.,.,. In
the analysis of the vibrations of large strittural
systems, it is the normal procedure to ignore the
modal cross coupling terms.

This approximation is valid for structural systems
with light damping and separation of modes. As a
general rule, however, if the damping is acting at
discrete locatioms, such as a bearing or a squeeze
film damper, the modal equations will _not un-
couple.

The condition that the modal equations uncouple is
given by:

[C] = a[M] + B[K] (16)

Therefore, in order that the modal equations of
motion uncouple, the damping matrix must be pro-
portional to the mass or stiffness matrix. This
condition is rarely encountered in actual struc-
tures in which the damping is located at only
several discrete locations, as is the case with
the action of bearings and seals on rotating
machinery.

The modal damping coefficients are given by:

=L
Cij = 5 [C1¢i1 ¢j1

*Lg 95 ysl

The modal equations become:
4, + 0.684 q, - 7.30 a5 + 10,286 q; = 0

g, +23.5 iz * 143,527 q, = 0 a7)

45 = 7.30 q, + 77.82 a5 + 686,246 q, =0

Because of symmetry of the modes, the second mode
is completely uncoupled from the first and third
modes. Hence the second mode of vibration appears
to act as a single degree of freedom system. The
first and third modal coordinates q, and q, will
be coupled only through the damping matrix. It
will be seen that both the first and second damped
eigenvalues are in considerable error for moderate
values of damping and only approximately correct
for small values of damping using the normal mode
representation. If the assumption of modal un-
coupling is assumed, the results are in consider-
able error even for small wvalues of damping.

The characteristic polynomial generated by the
normal mode method is of 6th order, whereas the
characteristic polynomial for the complete system
is 8th order. The second mode damped natural

frequency actually increases with damping, whereas
the modal equations predict the opposite trend.

If the modal cross coupling coefficients are
ignored, then the equations of motion are un-
coupled and are of the form:

= g 2 2 -

4, + 2§ w q +tuwiq =0 18)
and the characteristic polynomial for the system
is @

2 4 + wd =

ki 2 §i wy Ai w} 0 (19)

Where A, = P, + i v, and
1 q == b S

Pi = - §i mi (20)
v, = w Jl_-zf (21)

For the case where §i<<1,

When the damping coefficient £, is much less than
1 % -
1, then the damped natural frequency v, is equal
i
to the undamped natural frequeacy, w, .

Note that for the single degree of freedom system,
the damped natural frequency reduces with in-
creasing damping or £ value. This is not neces-
sarily the case in multidegree of freedom systems
such as Eq. (2). Increased damping causes the
system eigenvalues to increase, approaching the
constrained values in the limit of infinite damp-~
ing. This is opposite to the behavior of the
single degree of freedom system as given by Egq.
(21).

It will be seen that it is necessary to have a
third order polynomial instead of a second order
polynomial to obtain the characteristic behavior
in which the damped natural frequency increases
with damping.

The coupled eigenvalue equations for the system
using the first and third normal modes may be
written in matrix form as follows:

[ A2 + C A -a{ ! ‘Cl3 A ] [-3!-] " (22)
Car-2 1A+ Cyy At u] 95
The characteristic polynomial for the coupled two

degree of freedom system is given by expanding the
determinant of the coefficient matrix.

From the knowledge of the invariants of the char-
acteristic equation, the polynomial may be nor-
malized in order to avoid the numerical diffi-
culties associated with the generation of high
order polynomials.

Let A = QA
aor s (23)
where Q = Jw1w3 .
The transformed polynomial is now of the form:
At + A A3+ A A2 +A A+1=0 (24)

3 2 1



Note that the first and lasg_coefficiénts of the
transformed equation, Ao and AA are unity.
Table 2
Influence of Damping on System Using
First and Third Normal Modes

Damping P1 Y1 93 v3
Q Q 101.42 (] 828.4
1 -.339 101.3 -38.9 827.44
10 -3.37 101.6 -389.1 727.6 _30
50 -13.6 109.3 -154.4 7.6 x 10_;9
100 -12.7 120.1 -62.2 6.6 x 10_;,
1000 -1.54 126.8 =5.57 | -4.49 x 10

From Table 2, it is seen that as damping in-
creases, from 1 lb-sec/in. (175 N-s/m) to 1,000
lb-sec/in. (175,000 N-s/m) at the bearings, an
optimum value is reached by which maximum damping
is achieved for the first mode. This damping
value appears to be around C = 50 lb-sec/in (8,750
N-s/m). (It will be shown later that the optimum
damping is only 10 1lb-sec/in.) However, for the
third mode, it is seen that as damping increases,
the damped frequency of the third mode diminishes
rapidly.

From a physical standpoint, this result is not
correct, as the damping increases and approaches
®, then, the values of P. should approach zero and
the values of the dampled frequencies Vv, and Vv

should approach the values of the constraine

natural frequencies of w__. = 104.2 and w__ = 886.9
rad/s. For the case ofc%he first modef the asy-
mptotic value of v, approaches 126.8 rad/s rather
than the value of HOA.Z. Hence for large values
of damping, the use of normal modes is consid-
erably in error for the third mode and only ap-
proximately accurate for the first mode. A sim-
ilar problem also exists with the prediction of
the second mode damped natural frequency.

The reason for this discrepancy in the calculation
of the damped frequencies by the normal mode
procedure is that the characteristic equation for
the system is 8th order. Using three normal
modes, only a 6th order system can be developed.
Hence this characteristic increase in the damped
frequency with increasing bearing damping cannot
be predicted using only the normal modes. This
situation may be remedied by the introduction of
two additional rigid body modes.

However, rather than introduce the rigid body
modes with normal modes, we shall examine the use
of the constrained modes along with the rigid body
modes. For example, if the constrained mode is
used in conjunction with a rigid body mode, then
it can be demonstrated that this system will
generate the correct 3rd order characteristic
equation for the simple Jeffcott rotor on damped
flexible supports.

FORMULATION OF THE DAMPED EIGENVALUE PROBLEM BY
CONSTRAINED MODES

The displacements for the sample three-mass system
will be given by:

{x} =

MW

2
' < DI [ ii R (25)

p &
It is important to note that the constrained modes
are not necessarily orthogonal to the rigid, body
modes.  The displacements {X} may be expressed in
terms of either the displacement mode shapes {¢}
or in terms of the orthonormal mode shapes {®}
where

o}, = 3 o}, e

1

Table 3 represents the five orthonormal mode
shapes required to describe the three-mass system
of Fig. 4. The first three mode shapes listed in
Table 3 are constrained modes and the last two are
rigid body cylindrical and.conical modes.

Table 3
Orthonormal Mode Shapes and Eigenvalues
For Three-Mass System

Constrained Modes Rigid Body
Mode No. 1 2 3 4 S
Freq. r/min 995 3,947 8,470 [ [+]
rad/s 106.17 413.3 886.9
4-Modal Mass
(Lb-sec?/in.) .0093 .0093 .0093 0.01395 .0093
Scation 1 0 0 0 8.467 20.739
2 7.332 10.370 -7.332 8.667 10.370
3 10.370 0.0 10.370 8.667 0.0
3 7.332 -10.370 -7.332 8.467 -10.370
5 0 Q 0 8.467 =20.739

The displacements can be written in general as:

S

X}= I q {8}, 27)
i=1

Applying the above _displacement relationship and

multiplying by {®}  gives the following set of

modal equations for the generalized coordinates

.o .o .o 2 =
CPL TR T el e

.e 2
g, +H +H, 0

24 94 g g Wy

.. .o e 2 =
Gy % Moy G v illye Ho o i® = 0 ie (@8)
2

]

Q r W, G WM, T P Uy * C e, TP

. . T s . * 2 0
G T Mgy Gy * Yoy 9y + Mgg Gy F g g ¥ Mgy

It is seen that the mass system is not diagonal
and is given by:

1.00 0 0 0.9856 ]
0 1.00 Q Q 1.00
] = Q Q 1.00 -0.1691 Q (29)
0.9856 0 -0.1691 1 0
0 1.00 0 [} 1

The coefficients for the damping matrix are given
by:

[cl =cC 0 (30)
. 143.38
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The total stiffness matrix of the system is com-
posed of the bearing stiffness matrix plus the
stiffness matrix of the shaft corresponding to
free-free end conditions:

(K] = [ K1 + [K]g (31)
The constrained frequencies are given by:

5 T
w2 = {w}cir EET, PRI WL

= o1, (Kl {o)

ci et

In the absence of external bearings acting at the

interior points X2 to Xé' The components wciz are
given by:
w .2 = 104.172 = 10,851.4
cl
w2 = 413.32 = 170,816.9
c2
w .2 = 886.92 = 786.591.6
3
The rigid body frequencies are given by:
T
2 =
S A Wk B Tl S Rt A

=01 TR, (o)

Since [K]S is a singular matrix of order 2,

T A i}

A 2 = = =
ugg® = oyt TRl e
4Kb
T
2 = : = = ——
W, W, LK (o), 860,212 = —
The modal stiffness matrix is given by:
0.108516 [ [ o 0
o 1.7082 0o [} ]
(Xl goqa1 * 108 o o 7.8659 0 0 (35)
] ) ] 1.633 o
0 o o o 8.6021

The diagonal modal [K] matrix may be normalized by
dividing the elements by wclz'
1

= 9

[K]modal X f3 (36)

rhi
Fhi

where

- wl
> i )2 37
cl

The diagonal damping matrix is normalized by
dividing by w This normalization procedure is
equivalent to a dimensionless time transformation

of the form w t = t. The normalized [C] matrix
is given by:
0
_ 0
[Cl =cC 0 (38)

1.376
2.065

The system modal equations of motion are given by:

(Ml fa} + (€1 fa¥+ [ E 1 fal =0 (39
GENERATION OF CHARACTERISTIC EQUATION
The s.ystem given as follows,
M1{&} + [Cl{x} + [K]{x} = F(t) (40)

may be converted into a system of coupled first
order equations by:

= [ Yo a0 8 ]
t]] H - x
(1 lc) {x} o (x) {x} {F(e)}

The form of the 2n order equatiom in {y} is given
by:

o

(Al {y} + (B] {y} = {Q} (42)
Consider the homogeneous equation with {Q} = 0.

Let ik
{y} = {Y}e (43)

(D1 {y} = A {¥}

Where A = % inverse complex root

(D] = -[B]"? [A] (44)
e -[H]-" 0 ] 0 [M]
o 48w (K" (Ml (c)
= | eecccccecoce- fecemceecceneaa (45)
o mIKL AL L iR D)

The above system may be iterated directly to
determine the complex eigenvalues or the char-
acteristic polynomial may be expanded by the

application of Leverrier's algorithm. The char-
acteristic polynomial is given by:
I [D] - A[I} | =0 (46)

If the above matrices were used in Leverrier's
algorithm, then considerable numerical difficul-
ties would result. The K M and K !C matrices may
be scaled as follows:

Let
Qt =1

Q2[M] {#} + Qlc] {x} + (K] {x} =0 7
Q2[K]™! [M] {&} + Q[K] ! [C] {x} + {x} =0 (48)

Let the choice of Q be the first constrained
natural frequency (104 rad/s).

The normalized matrices are given by:



(2) The normal mode set vields only the correct
damped eigenvalues for low values of damping. The
free-free mode set should be avoided. These
particular modes do not form a complete set of
functions to properly span the vector space.

(3) The undamped normal modes are generated by
setting the damping equal to =zero. When these
modes are used to express the dynamical equations
of motion, the existence of damping caused by
bearings or seals will cause modal cross=coupling
damping terms to appear which couples the equa-
tions of motion. The normal structural procedure
is to ignore the modal cross-coupling damping
terms by assuming that the damping matrix is
proportional to the mass or the stiffness matrix.
With real turbomachinery, such a condition never
occurs and the equations of motion cannot be
considered to be uncoupled unless the modal damp-
ing coefficients are extremely low, of the order
of two percent of critical damping.

(4) For the case of moderate to high values of
bearing damping, the use of the normal modes will
not result in the correct eigenvalues, either as
to the real part (the damping) or the imaginary
part (the damped natural frequency). The pre-
diction of the first damped mode is only mod-
erately accurate, using the normal modes. How-
ever, the second and third damped modes are con-
siderably in error for large values of bearing
damping. In previous work presented by Li and
Gunter, on analysis of gas turbine engine vibra-
tions by the normal mode approach, many higher
order modes had to be retained in order to main-
tain accuracy of the lower mode response.

(5) There is only one set of modes that was found
to generate the exact characteristic polynomial.
This was the use of the constrained flexible modes
plus the addition of two rigid body modes. This
particular modal set has the advantage that the
constrained normal modes are obtained by specify-
ing 0 bearing displacements. Therefore, the
constrained modes are independent of bearing
stiffness.

(6) In this paper, it was shown how the exact
characteristic polynomial may be generated by the
use of Leverrier's algorithm. By means of this
algorithm, the coefficients of the characteristic
polynomial may be rapidly determined. These
characteristic coefficients may be examined by
Routh's criteria for stability, or the charac-
teristic equation may be solved directly. Nor-
mally, one should not attempt to generate the
characteristic polynomial for large order systems,
as the «coefficients of the polynomial become
increasingly large. In this paper, it is shown
how a simple scaling procedure may be incorporated
with the generation of the characteristic poly-
nomial in order to keep the coefficients within
bounds. The scaling procedure was found to be
most successful and coefficients for twentieth-
order polynomials can be easily generated. This
procedure has been adapted to the general sta-
bility analysis of turborotors, including eight
bearing stiffness and damping -coefficients per
bearing and shaft gyroscopics.

(7) The constrained modal method may be readily
applied to the stability analysis of turborotors.
The required planar modes may be generated by a
standard finite element program.

(8) The accuracy of the constrained modal method
is superior to the normal modal method. In many
cases only 1 constrained and 2 rigid body modes
are necessary for stability calculations.

(9) The computer run time using the comstrained
modal method is two orders of magnitude faster
than the complex matrix transfer method.
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0.0000 .0377 .0251 .0126 0.0000
0.0000 L3163 L3739 .2409 0.00G0
[Kl."(!] = 0.0000 .3739 .5321 -3739 0.0000
0.0000 .2409 .3739 .3163 0.0000
0.0000 .0126 .0251 .0377 0.0000
- -
- -
1.0400 0.0000 0.0000 0.0000 .0000
i . 7800 0.0000 0.0000 0.0000 .2600
(x] “{c] = .5200 0.0000 0.0000 0.0000 .5200
.2600 0.0000 0.0000 0.0000 .7800
.0000 0.0000 0.0000 0.0000 1.0400
- -

The assembled dynamic matrix D is given by:

0.0000 0.0000 0.0000 0.0000 0.0000 | 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 1.0000 0.0000 0.0000 0.00Q0
0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 1.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 1.0000 0.0000
o] = |0:0000_0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 00000 0.0000__1.0000
(o] = |32356672]75377"-0351 - 0126 0.0800 | "=1.0406 00000 0.0000 0.0000  ~~-0500
0.0000 -.3163 -.3739 -.2609 0.0000 | =.7800 0.0000 0.0000 0.0000 =.2600
0.0000 -.3739 -.5321 =.3739 0.0000 | -.5200 0.0000 0.0000 0.0000 -.5200
0.0000 -.2409 =.3739 =.3163 0.0000 | -.2600 0.0000 0.0000 0.0000 =.7800
0.0000 -.0126 -.0251 =.0377 0.0000 | =.0000 0. 0.0000 0.0000 -1.0400

Let the characteristic equation be expressed in
the form:

n n=1 n=2

+ A + + =

A A A, A A =0 (49)
The coefficients of the characteristic equation
may be determined by Leverrier's algorithm as
follows:

A1 = -trace [D] (50)
(B]I = [D] + A [1]
A2 = -4 trace [[D”B]1]

or in general,

o>
[}
'
|

Ltrace (DI(B_ 115 01 (5D

and

(8], = [DI(B,_ 1 + A (1] (52)
Using Leverrier's algorithm, an eighth order
polynomial is generated. Table &4 represents the
damped roots for the 3 mass system with the damp-
ing varied from 0.1 to 100 lb-sec/in. The roots
generated by expanding out the complete M, K and C
matrices were identical (within numerical bounds)
to the roots generated based on the use of con-
strained and rigid body modes. Since the 5 modes
used form a complete set, the exact characteristic
polynomial is generated. The exact solution for

Table 4
Damped Roots of Three-Mass Rotor Systems

e By Wy A P, v, Ay Py A Ay
0.1 | -.03 100.6 1453.0 | -1.19 378.7 158.6 ~%.05  828.3 10Z-
1.0 | -.362 100.6 146.6 | -11.00 382.0 17.3 -28.4 847.4 14.9
2.0 | -.67 100.5  75.1 | -17.51 389.8 11.1 -28.02 868.1 15.5
5.0 |=1.43  101.0  35.6 | -15.98 406.6 12.7 -16.79 882.7 29.8
7.0 |<1.71  101.5  29.8 | -12.71 410.1 16.1 -10.87 884.5  40.7
10.0 |-1.86 102.1  27.7]| =-8.4 412.6 21.8 -7.72  885.6 57.3
12.0 |-1.82 102.5  28.2 | -8.00 413.1 25.8 -6.46  885.7 68.3
. 15.0 |-1.71  102.9  30.1 | -6.50 413.7 31.8 -5.19  836.0 85.4
| 20.0 |-1.48  103.3 349 | -4.93 416.2% 42.0 <3.90 886.2 113.5
| $0.0 | =71 103.9  73.5 | -2.00 &14.7% 103.9 -1.55  886.% 285.7
1100.0 | =36 106.0  143.2 -.89 413.7 231.7 * * *

the first mode was generated also by using only
the first constrained and the first rigid body
mode. In comparison with Table 2, the first
damped mode based on the undamped normal modes is
only accurate for small ranges of damping and the
third mode is completely in error.

From Table 4 it is of interest to note that as the
damping is increased, the damped natural fre-
quencies increase from the undamped normal mode
and approach the constrained normal mode values.
It is also of importance to note that the optimum
damping for all three modes is mnot identical.
This fact is important when designing a squeeze
film bearing for a gas turbine which must operate
through multiple modes. For example, with the
three-mass test rotor, the optimum damping for the
second and third modes is between 1 to 2 Lb-sec/
in. (175 to 350 N-s/m) damping, while the optimum
damping for the first mode is 10 Lb-sec/in. (1750
N-s/m). Even with the inclusion of optimum damp-
ing for the first mode, the lowest possible ampli-
fication factor is given as 27.7.
]

CONTRAINED MODAL ANALYSIS APPLIED TO TURBOROTORS

The gas turbine rotor as shown in Fig. 1 is con-
siderably more complicated than the simplified 3
mass system previously illustrated. The major
extensions are the influence of rotor gyroscopic
moments and bearing cross coupling coefficients.
Both of these effects cause the rotor X-Y direc-
tions to be coupled.

This extension to the general case may be readily
accomplished by the constrained modal method.

Let %

o 2
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The modal equations are of the form
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For the study of rotor stability, it is usually
only necessary to retain the first constrained
flexible planar mode and the two rigid body modes.
The resulting stability calculations are greatly
superior to the normal modal method employing 3 or
4 flexible modes. Note that the rotor gyroscopic
terms enter as skew symmetric terms in the damping
matrix.

SUMMARY AND CONCLUSIONS

(1) There are three sets of undamped modes of
motion that may be used as building blocks or
modal sets to determine the system damped eigen-
values or forced response. These modes are called
the normal modes, the constrained normal modes,
and the rigid body free-free modes.
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