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A method s described for calculating the threshold speed of instability and the damped
critical speeds of a general flexible rotor in flutd-film journal bearings. It is analogous
to the Myklestad-Prohl method for calculating critical speeds and is readily programmed
for numerical computation. The rotor model can simulate any practical shaft geometry
and support configuration. The bearings are represented by their linearized dynamic
properties, also known as the stiffness and damping coefficients of the bearing, and the
calculation includes hysteretic internal damping in the shaft and destabilizing aero-

dynamsc forces.

To demonstrate the application of the method, results are shown for an

industrial, multistage compressor.

Introduction

AN important part of the standard design procedure
for a rotor is the calculation of its critical speeds. Furthermore,
in recent years methods have become available to investigate
whether a rotor may experience instability because of the journal
bearings, internal shaft damping, aerodynamic excitation, or
from other sources. This paper describes a computational method
to perform both types of calculations simultaneously.

The critical speeds of a rotor are frequently computed assum-
ing the bearings to act as rigid supports. It is, however, well
known that bearings have flexibility which inherently lower the
critical speeds but, at least with oil-lubricated bearings, shop
tests normally confirm the results of the rigid bearing calcula-
tions. The primary cause of this apparent discrepancy is the
substantial bearing damping which acts in series with the shaft
flexibility, thereby contributing to a stiffening of the bearing.
The effect, which depends on the ratio between shaft and bearing
stiffnesses, is included by the present method. A conventional
critical speed calculation finds, by its very nature, the undamped
resonant frequencies of the rotor. In the general case, as con-
sidered presently, it is the damped natural frequencies which are
to be determined. Thus, denoting any rotor amplitude as z, a
free vibration can be expressed as

z = |z]-eM cos (wt + ) = Re {(z. + ixs)est] (1)
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where [x[ is the amplitude, ¥ is an appropriate phase angle, w is
the damped natural frequency, A is the corresponding damping
exponent, and s is the complex frequency

s =\ + iw @)

Usually A is negative such that the vibration
tially with time. Should A, however, becom e, 1]
plitude will increase with time and the rotor is unstable. Thus

both the critical speeds of the rotor and its threshold of instability

“are determined from a calculation of those values of s, also called

the eigenvalues, at which the system can perform damped free
vibrations.

Damped Natural Frequencies and Their Modes

To study the nature of the eigenvalues, an analysis has been
performed for a uniform shaft supported at the ends in damped
bearings. The analysis is given in the Appendix.

Numerical results have been obtained for a uniform shaft with
a length of 50 in., a diameter of 4 in., a Young’s modulus of 3-107
psi and a weight density of 0.283 1b/in®. For simplicity the shaft
is treated as a uniform beam, disregarding shear deformations,
rotary inertia, and gyroscopic effects. It is supported at the ends
in identical bearings, and with rigid bearings the natural fre-
quencies are 127.11 cps, 508.44 cps, 1143.99 cps, 2033.76 cps, etc.

When the rigid supports are replaced by resilient bearings,
represented by a spring coefficient and a damping coefficient, the
results are shown in Figs. 1 and 2 for bearing stiffness values of
20,000 and 60,000 b in., respectively. The abscissa is the damp-
ing exponent A sec™!, equation (1); the ordinate is the corre-
sponding damped natural frequency w in cps, and the values on
the curves give the bearing damping coefficient in 1b-sec/in.
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Using as an example a bearing damping coefficient of 500
Ib-sec/in., Fig. 1 shows that the two lowest modes are critically
damped. The third shows up at a frequency slightly below the
first rigid bearing critical speed; the fourth mode comes in just
above the second rigid bearing critical, and similarly for the higher
modes. Hence, the critical speeds observed in a test would agree
well with the results obtained on the basis of rigid bearings, but
the mode number diifers from the critical speed number.

Stiffening up the bearing as shown in Fig. 2 results in the second
and third mode being critically damped instead of the first and
the second, as in Fig.'1. In this case, the first critical speed corre-
sponds with the first mode and, as before, the frequency is just
below the value computed with rigid bearings. For the second
and the higher critical speeds, the situation is the same as pre-
viously stated.

In the analysis, in the Appendix, it is shown that a maximum of
two modes can be critically damped for this simple shaft-bearing
system. As discussed later, this seems to be generally true, at
alest for systems that are reasonably close to being symmetric.

In an actual rotor, the bearings usually have different stiffness
and damping properties in, say, the vertical and horizontal di-
rections. Thus each mode will split up into two, one mode corre-
sponding to the minimum bearing stiffness and one mode to the
maximum bearing stiffness. In the absence of any damping and
with no interference from other modes, it is readily seen that the
rotor will be in a state of backward precession between the two
modal frequencies and, although the presence of damping and the
overlapping of modes complicate the picture, it is normally found
that one mode has predominantly forward precession while the
other mode is predominantly in backward precession. This is
further amplified by the gyroscopic moments in the rotor. As
an example, Fig. 3 shows the damped natural frequencies of the
same uniform shaft as just considered but now supported in plain
cylindrical bearings. The journal diameter is 4 in., the radial
clearance is 0.002 in., the bearing length is 1 in., the oil viscosity
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Fig. 1
Bearing stiffness 20,000 Ib/in. Bearin
Ib. sec/in. by values on curves.

Damped natural frequencies of uniform shaft in flexible bearings.

g damping coefficient given in

Nomenclature
A = cross—sec‘flonal area  of  Kusy Kapy| _ support  stiffness  coeffi- 6 =
shaft, in.2 K, ... . . . .
) . cients with units: lb/in.,
B = 4 X 4 matrix of support s
= . . Ib/rad, lb-in/in. or 1b-
damping coeflicients . € =
B.. B in/rad
Bf” “”} = support damping -coeffi- I = shaft length, in.
20y - .. cients  with  units: M., M, = bending moments, lb-in. 0, ¢ —
Ib-sec/in., lb-sec/rad, m, = mass at station no. n, ’ B
Ib-in. -sec/in. or lb-in.- Ib-sec?/in. \ =
sec/rad; first index is N, = modal norm
direction of reaction; s = N + dw, the complex fre-
second index is ampli- quency, rad/sec _
tude direction { = time, sec p
D = 4 X 4 complex matrix of Ve, Vy = shear forces, 1b Q =
residual bending mo- X, = modal function no. n for a B
ments and shear forces free-free beam w =
E = Young’s modulus, psi z, y = radial shaft displacements,
fo, fi = bearing reactions at shaft m. o =
ends, b z = coordmatme along axis of
G = shear modulus, psi . Shaft_’ -
- . Z, = shaft impedance at the
I = cross-sectional transverse ends of a free—free beam
moment of inertia of SO celree beam,  Indexes
. Ib/in.
shaft, in.¢ . ) z =
.. . . a = cross-sectional shape fac-
¢ = Imaginary untt . tor for shear deforma-
Jpn = polar mass moment of in- tion of shaft (e ~ 0.75 y =
ert.m at station no. n, for ecircular cross sec-
Ib-in. -sec? tion) n =
Jrn = transverse mass moment v = phase angle between stress n =
of inertia at station n, and strain in hysteretic
Ib-in. - sec? damping 0,1 =
K = 4 X 4 matrix of support A = det(D), residual determi- =
stiffness coefficients nant

— 27\ /w, logarithmic de-
crement of damped
shaft vibrations

logarithmic decrement of
internal shaft damping,
divided by 7

angular  shaft
ments, rad
damping exponent of free

displace-

vibrations of  shaft,
sec™!
mass density of shaft,

Ib-sec?/in.4

angular speed of shaft,
rad/sec

frequency of free vibra-
tions of shaft, rad/sec

fundamental resonant fre-
quency of simply sup-
ported beam, rad/sec

a-direction; in the z-z-

plane
y-direction; in the y-z-
plane
= rotor station number
= in Appendix, the mode
number
at the shaft ends
differentiation with re-

spect to time
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weight, is 88.9 Ib. For this type of bearing there are four stiffness
coefficients and four damping coeflicients which are functions of
the bearing Sommerfeld number and, therefore, depend on the
rotor speed.

The results are obtained from the analysis in the Appendix.
With the rotor speed as abscissa and the damped natural fre-
4 quency as ordinate, a number of the modes are shown in Fig. 3.
The parameter values on the curves give the logarithmic decre-
ment instead of the damping exponent

2w\

-\

logarithmic decrement: 6 = — = — —  (3)
w frequency, cps

When the value of 6 exceeds !, that particular mode is well
damped. As just discussed, each rotor mode actually consists of
two modes, one with forward precession and one with backward
precession, identified by the letters “F’’ and “B,”” respectively, on
the curves. In addition, “I5” identifies even modes where the end
amplitudes are in phase, and “Q’’ are | f__curm odd modes where the
end amplitudes are out of phase. The first rotor mode is even,
the second is odd, and so on. In Fig. 3 the backward preces-
sional modes of the first and second rotor modes are critically
damped and are, therefore, not shown.

On the figure is a curve for the synchronous frequency at which
any mass unbalance excites the rotor. The intersections between
this curve and any of the modal frequency curves give the damped
critical speeds of the rotor. It is seen that the first and second
modes never become excited while the third mode is synchronous
at approximately 125 c¢ps or 7500 rpm. This would in practice be
recognized as the first critical speed of the rotor in close agree-
ment with the 127 cps calculated for rigid bearing supports. A
similar agreement is seen between the fourth mode and the second
rigid bearing critical speed of 508 cps but this speed cannot be
reached because the rotor becomes unstable in oilwhip at 9160
rpm.
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Fig. 3 Damped natural frequencies of uniform shaft in plain cylindrical
journal bearings (diameter = 4 in., length = 1 in., radial clearance =

0.002 in., load = 88.9 Ib, oil viscosity = 6.9 centipoise).
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Fig. 2 Damped natural frequencies of uniform shaft in flexible bearings.
Bearing stiffness = 60,000 Ib/in. Bearing damping coefficient given in
Ib. sec/in. by values on curves.

The whirl frequency at onset of instability is 78 cps, very close
to one-half of the rotational frequency, as would be expected. The
rotor whirls in its first mode (with forward precession) but this
mode is not the first critical speed, as just discussed. The thresh-
old of instability is, therefore, not at twice the first critical speed,
as is otherwise an accepted rule of thumb although, as seen, it
equals twice the frequency of the_first mode. This example
demonstrates that even though a rigid bearing critical speed cal-
culation may successfully predict unbalance response peaks, the
same results cannot necessarily be used ta predict_the speed at

which oilwhip is encountered.

Analysis

For the purpose of compuling the damped, natural frequencies
(eigenvalues), a rotor-bearing system can be represented mathe-
matically by a stiffness matrix, a damping matrix, and an inertia
matrix from which the eigenvalue problem can be formulated.
The dimension of the resulting matrix, however, equals 8 times
the number of mass stations in the system which, in a practical
rotor calculation, may mean a matrix size of, for example, 240
by 240. Further complications arise from the matrix being un-
symmetric, requiring special modifications in the available stan-
dard methods for calculating eigenvalues. For these reasons an
alternative method is desirable and, in the following, a computa-
tional procedure is developed, based on the widely used method
by Myklestad and Prohl [1, 2].1

1 Numbers in brackets designate References at end of paper.

The rotor is supported in fluid-film bearings whose dynamic
properties are given through a set of stiffness and damping coef-
ficients. The bearing reaction, for example, in the z-direction
can be expressed as

—K.x — Koy — K0 — Keopd
- 1)’“/.1] - Bzﬁé - B.rqb(i)

reaction in a-direction =

— B, (4)
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and similarly for the reactions in the y, 6, and ¢-directions (‘“dot”’
indicates differentiation with respect to time). There are 32
coefficients in all which can be arranged in a stiffness matrix K
and a damping matrix B, respectively.

The coefficients are obtained from the lubrication equation
(Reynold’s equation) as the gradients of the hydrodynamic
forces. A numerical scheme for such a calculation can be found
in [14]. For conventional journal bearings, only the radial coef-
ficients, namely, K.z, K.y, Kyz, K,y, and the four corresponding
damping coefficients, are of importance. On the other hand, for
very short rotors or at higher-order shaft modes the angular
coefficients may also be of significance.

Equation (4) also describes certain aerodynamic forces in
turbomachinery. In axial flow compressors and turbines, a
radial displacement of the wheel in a stage sets up a transverse
force, proportional to the displacement. With the notation of
equation (4) the coefficient of proportionality becomes [25]

T -
K. = —Ky, = 8 % 5)

where 7 is the stage torque, r is the pitch radius, 4 is the vane

height, and B is a dimensionless parameter, giving the gradient
of the normalized stage efficiency curve as a function of the
clearance-to-vane height ratio (8 is of the order of 1). The re-
maining stiffness and damping coefficients are equal to zero.

As in the conventional Myklestad-Prohl method, the rotor is
represented in the calculations by a series of lumped masses, called
stations, which are connected by uniform shaft sections. Sta-
tions are provided at the two free ends of the rotor, at the bearing
center lines, at places where heavy components are mounted on
the shaft such as wheels, impellers, or thrust collars, and at loca-
tions where the shaft diameter changes significantly. The shaft
section between two stations can then be assumed to be uniform
and its mass may be treated either as being distributed [8], or it
may be lumped at the ends of the section at the stations. When
the latter procedure is chosen, as in the present analysis, there
must be a sufficient number of stations to represent adequately
the highest mode in the frequency range of interest. The radial
amplitudes at station number n are z, and y,, and the correspond-
ing angular amplitudes are 6, and ¢,. For free vibrations of the
form given in equation (1), these quantities become complex and
the equations of motion for station n are (see Fig. 4)

- V,:cn - V:cn szm,,x,,
—V'un _ Vin M Yn
]I’[/zn M:m SQJT,,B,L + SQJpn¢n
My, My, 2 1n®n — QS pnb,,
Tn
+ (K + B0 (©)
n

In the further analysis, the derivatives of the variables with
respect to s are also required

xn.
f e,
mn
D)Mm( jm )M;m(_”n (abA)y )Mx‘n,,(
} Ve fl o Fl Voo ! lvxlm
Fanl o0 Iy Frnul 801
STATION STATION
n n+1
Fig. 4 Sign convention for radial displ t, angular displ t,

bending moment, and shear force

4

AV [ adVa, ( o o
ds ds S ds
AV, AV, oy
ds ds St ds
A “ a1 a8 dg,
- n an 2 n Z¥n
ds ds Hrn e T oW
am’,, aM,, de, o,
PR — 2 —_— =
ds ds §%Jn QTen
dz,
ds
Ay, 28Mpy, Tn
+ (K B ds 287”"1/71, + B Yn
Bt B g %5100 + Qs T 2|00
ds 28JTn¢n - QJPnen ¢n
g
ds
(7)

The shaft sections are assumed to have internal material dumping
of hysteretic type where the dissipated energy is independent of
frequency. The stress leads the corresponding strain by an angle
v which is a material property. The hysteresis loop in the stress-
strain plane is an ellipse whose area, proportional to sin 7, gives a
measure of the dissipated energy such that

€
+ €

sin y ~ ——

V1

where e is equal to the logarithmic decrement for the shaft. The
relationship between bending strain and bending stress becomes
[3]

do 1 1 .
& = EI M, cosy — Tl M, sin y
de 1 1 ®)
& = E} M, sin vy + Bl M, cos 7y
or
d_é) = o (M, — eM,)
dz  EI\N1 4+ e
9)
d¢ 1

(M, + €M)

dz EIv1 + e

When the whirl orbit is circular, this effect may be accounted
for by making the E-modulus complex [30].

The adopted form of internal shaft damping is representative of
material hysteretic damping and dry friction. It is independent
of frequency. In much rotor dynamic analysis the internal
damping is considered in another form, namely, as frequency-
dependent, viscous damping which is proportional to the en-
trained strain velocity [4-6, 9]. In that case the shaft equations
become

1 dé dé de do d¢
— = — . - _r = (1 - _r
EI M dz te <dz ¢ dz) (1 + se) dz + Qe dz

; ] 6 4o
1oy % d¢ _ o 40\ _ do _ o 90
=g e <dz ¢ dz) = A+, — Ry,

where e is equal to the logarithmic decrement of the viscous
damping. These equations take the place of equation (9) when
viscous damping is considered.
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Whereas the hysteretic form of damping always is destabilizing,

internal viscous damping does not begin to act destabilizing until
the rotor reaches a certain speed which, in the special case of un-
damped, isotropic supports, equals the first critical speed

The hysteretic form of internal damping, used in the following,
is believed to be a more valid representation for a prawtical rotor
than viscous damping, but the subject matter is not well under-
stood. From the conventional beam equations, modified by
equation (9), the transfer equations for a shaft section become
(see Fig. 4)

+ 1.6, + ! [[”201’ 1)
Tn = In nUn " "'1 an T € ,n
- EDNV1+e L2 '
(DY e e
6 (aGA), e
1 1.2
Ynit = Go + lnhn + - —77—[ (M + €M)
(ENA1 + e L2
+ lls (ZEI)" (v Vv’
6 (aGd),) VT V)
7 + ! |:[ m M’y
n4l = T ——| i ey — €Iy,
! EDN1 + e ’
LY 11
+ o (I/ /xn - GV/;,,">] ( )
2
1
¢n+1 = ) S [["(‘U ,yn + 6«11/1%)
(B1),N1 + €

[
+ 5 (V/un + élen)}

Mapyr = My + LV o0
Mynyp = My + LV,
Vema = V'
T/:;,m-l = V'

The equations for the derivatives of the variables with respect to
s are obviously identical to the foregoing equations.

The two ends of the rotor are assumed to be free. Thus, with a
total of IV rotor stations, the boundary conditions are

J[.vl = 41[1/1 =Va = Vyl =0 (]2)

Moy =My =Viey=Viyy=10 (13)

The calculation procedure is analogous to the one used in the
Myklestad-Prohl method. Thus, with an assumed value of s, a
total of 4 caleulations is performed. In the first caleulation,
x; = 1l whiley; = 6, = ¢ = 0. Inthesecond calculation, y; = 1
while z; = 6, = ¢ = 0, and similarly, in the third and fourth
caleulations, with 6 = 1 and ¢, = 1, respectively. With the
starting values being independent of the value of s, the starting
values of the derivatives are zero

doe _ dys _ dby

_ W _ iy _ Ve AV
ds ds ds

_den A Ay dVa Ve
ds ds ds  ds  ds

(14)

Thus, in each of the four calculations, the values of the variables
and their derivatives are known at the first rotor station. There-
after repetitive nse of equations (6), (7), and (11) makes it possi-
ble to go through the shaft station by station until the last
station, number N, is reached. The results of the four caleula-
tions may be combined in & matrix equation
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My x1
M,
, 204 . D W (15)
Vi 6
V/yN ¢1

where D is a4 X 4 matrix whose first column has as its elements
the values of M'.x, M'yn, V'zn, and V',x obtained from the first
rotor calculation with z; = 1, and similarly for columns 2, 3, and
4.

To satisfy the boundary condition of equation (13), equation
(15) must be equal to zero. The values of s for which this is satis-
fied and where the solution is not trivial, are those values which
make the determinant of D equal to zero

A =det (D) =0 (16)

Assume that for some value s =
determinant is A = A,.

A~A + (s — su)-<@A> =0
dS 0

so, the corresponding, computed
A first-order expansion yields

17

Here dA/ds is the derivative of the determinant, calculated from

{ZA _ +

ds

Ay (18)

k=1

where A is the determinant of the matrix D where the elements
in column %k have been replaced by their derivatives as obtained
from the four rotor calculations.

IEquation (17) may be solved to yield a new estimate of the

eigenvalue s
1A
(lS 0

To prevent the solution to converge toward an already obtained
root, assume that a total of J roots has been found. As A is a
polynomial in s, these roots can be eliminated by division whereby
equation (17) is replaced by

s =

(19)

A l A
e s — sy [ =0 (20)
. ds o
II (so — s5) , I (s =)
j=1 J= 0
Hence equation (19) is replaced by
dA o/ 1 -1
s = A () A 21
s =8 0 |:<ds>0 0 ]gl o — s]:| (21)

The roots occur either as real, separate roots, or in conjugate
pairs. In the latter case, both roots should be eliminated in
equation (21) when one of them has been found.

Starting with some estimated value of s equation (21) can be
used repeatedly until the difference between two successive values
becomes sufliciently small. In the calculations performed to ob-
tain the results in the present paper, the accepted error is such
that the eigenvalues are determined to an accuracy of 8 signifi-
cant figures or better. Typically the number of iterations re-
quired for convergence is 5-10.

Galculations for an Industrial Compressor

To illustrate the application of the method, calculations are
performed for an 8-stage centrifugal compressor, typical of ma-
chinery for chemical processing plants. The rotor weighs 1400
Ib; it has an overall length of 103 in. and a bearing span of 80.7
in. Overhung at one end is the coupling while the thrust collar
is overhung at the opposite end. The center of gravity is almost
midway between the two identical bearings, which have a journal
diameter of 5 in., a length of 1.5 in,, and a radial clearance of
0.0035 in. The lubrication oil has a viscosity of 16.9 centipoise
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at 120 deg F, decreasing to 8.1 centipoise at 160 deg F. The de-
sign speed of the machine is 8500 rpm.

A standard critical speed map for the rotor is shown in Fig. 5.
It gives the undamped critical speeds as a function of bearing
stiffness, assuming the two bearings to be identical. Such a
diagram is normally prepared as a check of the design of the shaft
and the bearings from a stiffness point of view.

Also shown on the diagram are the horizontal and vertical
stiffnesses, labeled Knin and Ku,j, respectively, for a 5 shoe
tilting pad journal bearing as considered later in Figs. 7 and 8.
Because of a small difference in load between the two bearings,
there are two curves for each of the stiffnesses. Where the stiff-
ness curves intersect the curves for the shaft are the undamped
critical speeds of the rotor. It is seen that to reach the design
speed of 8500 rpm (142 rps) the rotor passes through five critical
speeds and is approaching a sixth critical speed. When damping
is included, however, the situation changes significantly as shown
later.

For later reference, Fig. 5 shows that with rigid bearings, the
first four critical speeds are:__62.7 rps, 229 rps, 370 rps, and ap-
proximately 500 rps. To explore the possibility of supporting
the rotor in plain cylindrical journal bearings with dimensions
as just given, Fig. 6 shows the resulting damped natural fre-
quency diagram. The same explanatory comments apply as
given in connection with the discussion of Fig. 3. It is found
that the rotor passes through four damped critical speeds, namely,
the first mode with forward precession at 2748 rpm (6 = 0.857),
the first mode with backward precession at 3637 rpm (6 = 0.208),
the second mode with forward precession at 4180 rpm (6 = 2.27),
and the third mode with forward precession at 6840 rpm (6 =
1.12). ¢ is the logarithmic decrement, defined in equation (3).
The backward precessional modes of the second and third rotor
modes are critically damped over the speed range and begin to
appear at 8500-9000 rpm as seen in Fig. 6. Three of these four
critical speeds are so well damped that they cannot be expected
to amplify any unbalance vibrations significantly. Only the
critical speed_of 3637 rpm will be clearly observed by measure-

ments and it will_be identified as the first critical speed. At a
frequency of 60.6 cps, it is seen to be quite close to the first rigid
bearing critical of 62.7 cps.

Although they result in a satisfactory rotor performance from
an unbalance response point of view, the plain cylindrical bear-
ings cause the rotor to become unstable in oilwhip. In Fig. 6,
the lowest mode (EF) loses its damping at 6100 rpm and is un-
stable beyond this threshold speed because of the negative
logarithmic decrement. The whirl frequency is 49.2 cps, a little
less than half the rotational frequency, and it is interesting to
note that this frequency stays virtually constant with increasing
speed past the onset of instability, a fact frequently observed in
tests.
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Fig. 6 Damped natural frequencies of 8 stage compressor in plain
cylindrical journal bearings

Becoming unstable, the rotor whirls in the forward preces-
sional mode of its first mode whereas it is the hackward preces-
sional mode which shows the largest unbalance response and,
hence, will be identified as the first critical speed. The instability
threshold speed, therefore, will be substantially less than twice
the observed critical speed. With a threshold speed of 2400
rpm below the design speed of the rotor, it is difficult to devise
means for modifying the plain cylindrical bearing that will insure
stable operation at top speed. The simplest remedy is to employ
tilting pad journal bearings.

The bearing dimensions are the same as used for the plain
cylindrical bearings. The tilting pad bearing have five shoes of
60-deg arc length, centrally pivoted and set without preload.
The bearing load vector passes through the pivot of the bottom
pad.

The resulting diagram for the damped natural frequencies is
shown in Fig. 7. As with the plain cylindrical bearing, the rotor
passes through four critical speeds, but with the exception of the
critical speed at 3550 rpm which now is the forward precessional
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Fig. 5 Critical speed map for 8 stage centrifugal compressor
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Fig. 7 Damped natural frequencies of 8 stage compressor in tilting pad
journal bearings (5 pads)

mode of the first rotor mode, the other eritical speeds are strongly
damped. Thus there is no sacrifice in unbalance response per-
formance, and the rotor has been made inherently stable against
oilwhip.

To check the margin of stability, calculations have been per-
formed with destabilizing aerodynamic forces at each of the &8
impellers and with an internal hysteretic shaft damping of 0.1 in
logarithmic decrement to simulate any dry friction in the shrink
fits of the wheels and sleeves. No noticeable change is found in
the modal damping exponents.

The rotor, however, is also provided with floating oilseals 6.8-
in. inboard of each journal bearing. From experience it is known
that such seals on occasions behave as if they were not free, and
in that case they act as fixed, unloaded plain cylindrical bearings
which is a potential source of instability.
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Fig. 8 Damped natural frequencies of 8 stage compressor in tilting pad
journal bearings (5 pads) with oil seals

Simulating the oilseals as unloaded cylindrical bearings with a
length of 1.25 in., the resulting frequency diagram is shown in
Fig. 8. A comparison with Fig. 7 shows that the seals cause a
shift in the mode curves, although the change in the first critical
speed is small, and, of greater importance, the rotor becomes un-
stable at 8280 rpm. Therefore, to insure adequate stability
margin the destabilizing capability of the seals should be re-
duced. The simplest method is to cut one or several circumfer-
ential grooves in the seal surface, thereby preventing the buildup
of the hydrodynamic pressures in the film to hecome t00 large.

When it is not possible or feasible to make modifications in
those components which are responsible for the instability, the
rotor may be stabilized by providing external damping by means
of damper bearings. This is illustrated in Fig. 9 which applies to
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Fig. ¢ Stabilization of 8 stage compressor in plain cylindrical

journal bearings,

mounted in damper bearings with stiffness = 100,000 Ib/in. and damping coefficient
given by the abscissa; dofted curve applies to damper bearing at rotor center

Journal of Engineering for Industry



the compressor rotor supported in plain cylindrical bearings and
running at 9000 rpm. The damper bearings are built in between
the bearing housings and the pedestals. They have a stiffness of
100,000 1b/in. while the damping coeflicient is varied over a
range as shown in Fig. 9. The critical mode is the forward pre-
cessional mode of the first rotor mode, identified as “Ist,F,” and
it is stable when the damping coeflicient is between 40 and 4000

Ib-sec/in. The optimum damping value is appro)ii_lgg_tﬁgly 600

Ib-sec/in. which, at the same time, also improves the damping
of the other modes.

Even though the damper bearings could be made somewhat
stiffer than the selected value of 100,000 Ib/in., they still may be
too soft for the application. In that case an alternative method
is to provide a damper bearing which acts directly on the shaft.
Obviously, the most convenient location would be one of the shaft
ends outboard of the bearings, but calculations show the effect to
be negligible.

Instead, calculations have been performed with a damper
bearing located at the center of the rotor, and the results for the
first mode (forward precession) are given by the dotted curve in
Fig. 9. The bearing is assigned a nominal stiffness of 500 1b/in.
for centering purposes, and its damping coeflicient is varied over
a range as shown. As can be seen, the bearing is very eflicient
in stabilizing the rotor but, in practice, it would be difficult to
provide a damper bearing at this particular location.

Summary and Conclusions

A method has been developed to ealculate the damped natural
frequencies (the eigenvalues) of a general flexible rotor supported
in fluid-film journal bearings. The rotor model also incorporates
internal hysteretic shaft damping and destabilizing aerodynamic
forces.

The method is basically an extension of the Myklestad-Prohl
method for caleulating critical speeds, which utilizes the compu-
tational procedure of the well-known Holzer method. As such,
the method can readily be applied to a wide variety of rotor and
support configurations and is easily programmed for numerical
computation. The program is simple with a fast execution time.

The caleulated eigenvalues establish the stability margin of the
rotor system, conveniently expressed in terms of the logarithmie
decrement of the eigenvalue closest to the threshold of instability.
If the margin is insufficient, or the rotor even is found to become
unstable, the program can be used to explore possible means of
improvement, either by reducing or eliminating the sources caus-

ing the instability, by design modifications of the shaft or the
bearings, or by providing stabilizing external damping through
damper bearings. In performing such investigations, and to
optimize corrective measures, the program can be a valuable
design tool.

The obtained damped natural frequencies also establish the
actual critical speeds of the rotor, including the stiffening effect
of the damping in the bearings. These results give a more realistic
base than the conventional critical speed caleulation for assessing
any potential trouble from passing through or operating close to a
critical speed. In addition, knowing the logarithmic decrement
at the critical speeds and, thereby, the response amplification
factor, means are provided for evaluating the rotors sensitivity to
mass unbalance.

APPENDIX

The eigenvalues for a uniform shaft, supported at the ends in
identical bearings which are represented by a single stiffness and
a single dashpot, may be determined from impedance matching
at the bearings. TIgnoring contributions from shear deformation,
rotary inertia, and gyroscopic moments, the conventional beam
equation is

20 2
?f) + pd 0% _ 8(2)-fo+ 6z — D-fi  (22)

where fo and f; are the bearing reactions and 6(z) is the delta
funection.

The solutions to the homogeneous equation are the modal
functions, X,, for a free-free beam. The associated resonant fre-
quencies, w,, are the solutions to the transcendental equation

cosh <7r ‘/w"> - COs <7r ‘/w”> =1
Wy Wy

where wy is the lowest resonant frequency of the corresponding
rigidly supported beam

(23)

71'2 ]
wo = ;‘/ﬂ (24)
. pA
The solutions are
W = wy =0
ws/wo = 2.26689
ws/we = 6.24876
n >0 wy/we > (n — 3/2)*
The modal functions are orthogonal
1
0
f pA- X, Xodz = { (= m) (25)
0 N, (n = m)
.V, is the modal norm
M (X (n=1)
N, = {5 (X)) (n =2) (26)
LX) (0> 3)

where M = pAlis the total shaft mass and (X,), is the assigned
value of X, at z = 0.
The normal coordinates, ¢,, are introduced by

©

Z 1\V/c Ak

k=1

T =

(27)

Assuming a solution for g of exponential form, equation (27) can
be substituted into equation (22). Making use of equation (25),
the solution becomes

n

Xdofo + (Xl | A
1\/'" (82 + wnz) “ (28)

With a bearing stiffness, K, and a damping coefficient, B, the
bearing reaction is

fo = —(K + sB)-z(0) @)

and analogously for fi. Because of symmetry, z({) = %x(0) and
(X.)1 = &=(X,)o where the plus sign applies to the even modes
(n 0dd) and the minus sign to the odd modes (n even). Thus, by
combining equations (26)-(29), the eigenvalues for the shaft-
bearing system, s, are determined from the equation

3

iy

3 l
- flf-(K—{—sB):'i
m

TEl Bl
17 1 1 -
|+ 4 Z S
2 (i)Z n=1.3,- <,S>2 + (‘i’f)z
| Wy Wo Wo
= 4\ | — 3 | _ (30)
A +4 > G
JoE oo
[ L \Wo Wo W/ ]
Z, is the shaft impedance, defined through this equation.  The

equation may be solved numerically. Typical results are shown
in Figs. 1 and 2 where m*EI /I3 = 2.9378-105 and K is equal to
20,000 and 60,000 1b/in., respectively. .
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With s real, it is found from equation (30) that there can exist
at most two pairs of real roots, one pair for the even modes and
one pair for the odd modes. Hence, a maximum of two modes
will be critically damped. When the bearings are of the fluid-film
type they cannot, in general, be represented by a single stiffness
and a single damping coefficient. Instead of just one impedance,
four impedances are required

Zow = I{:rx + sBex (31)
and similarly for Z,,, Z,., and Z,, where the first index gives the
direction of the reaction force and the second index gives the
amplitude direction. By matching impedances at the bearings,
the eigenvalues are determined from the determinantal equation

ZJJI Zr Zz
e 2 oo )
Ly (Zw + Z:)
where the shaft impedance, Z,, is given by equation (30). The

solution becomes

. S
—Z, = (Z22 + Zyy) =+ ‘/li: (Zez — Ziyy)? + ZoyZys (33)

DO | =

Whereas the one-dimensional bearing in equation (30) only
yields one eigenvalue per shaft mode, there are two eigenvalues
with the two-dimensional fluid-film bearing (an eigenvalue is
considered to consist of a pair of roots). Corresponding to the
two eigenvalues, each mode has a forward precessional com-
ponent and a backward precessional component. As in the pre-
vious case, equation (33) shows that there are, at most, two pairs
of real roots. Thus a maximum of two mode components can be
critically damped, one even and one odd mode component.

Typical results are shown in Fig. 3 where the shaft is the same
as considered in Figs. 1 and 2 but the bearings are of the plain
cylindrical type with dimensions as given in the discussion.
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