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Skew

Synchronous Unbalance Response
of an Overhung Rotor with Disk

This paper deals with the influence of disk skew on the synchronous unbalance response
of flexible rotors in damped bearings. A simple overhung rotor is treated to illustrate the

effects of various combinations of unbalance and disk skew on the amplitude and phase
angle response at the disk and bearings. The paper shows that it is impossible to balance
the rotor at all speeds by single plane balancing even if three correction planes are em-
ployed. The presence of disk shew may be best detected by monitoring the far bearing for
a rapid phase angle decrease after passing through the first critical speed.

Introduction

Within the past ten years, the technology for the design of high-
speed turbo-rotors has become very sophisticated. These advanced
design capabilities have supported the continuing emphasis in in-
dustry to build rotating machinery with larger capacities. Larger ca-
pacity designs often require longer, more flexible rotors capable of
operating above several critical speeds. In order to safely operate
through these critical speeds, a good balance is necessary to control
rotor amplitudes and bearing forces.

Many extensive multi-plane balancing techniques, based on the
influence coefficient method, have been developed in this country.
These techniques have assumed that (1) the transverse axes of the
rotor disks are perpendicular to the elastic centerline of the shaft, and
(2) the shaft is not distorted. With these assumptions, the synchronous
rotor excitation is due only to asymmetric radial mass distributions
or disk eccentricities. However, in an actual rotor the shaft centerline
may be bowed and the disks can be skewed, which induces effective
external forces and moments on the shaft. A rotor might appear to
be well balanced at a particular design speed when balanced with a
technique that considers only the radial unbalance forcing function.
However, the rotor may be considerably out of balance at other op-
erating speeds as a result of the shaft bow and disk skew effects. These
influences can induce large amplitudes of motion on the rotor when
it is operating in the vicinity of critical speeds. Ultimately, these large
amplitudes can lead to extensive rotor and bearing damage.

Extensive publications are available on the dynamic unbalance
response of complex flexible rotor systems by such authors as Lund
and Orcutt [1], Kawamo, et al. [2], Kirk and Gunter [3], Wolfe and
Wong {4], Barrett, et al. [5], and Koenig [6]. However, their investi-
gations have focused primarily on rotor response due to the action of
radial unbalance forces, but do not include shaft bow and disk skew.
Kikuchi [7] made a significant contribution toward developing the
matrix transfer equations for a multimass rotor with shaft bow and
disk skew. However, his formulation has several discrepancies which
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are pointed out in [8]. Nicholas, et al. [9] presented a very complete
treatment of the influence of shaft bow on the single mass rotor in rigid
bearings.

The incorporation of disk skew is considerably more complicated
than the treatment of the radial unbalance alone. In order to examine
the influence of disk skew, two additional equations of motion must
be considered to represent the disk angular motion and gyroscopic
moments. When the general Euler rotation angles are implemented
to develop the dynamic equations of motion for a general precessing,
nutating gyroscope, these equations are highly nonlinear. Conse-
quently, only limited solutions can be obtained analytically. For ex-
ample, Lund’s [10} original synchronous unbalance response equations
include the non-linear gyroscopic terms for a disk (however, perma-
nent disk skew is not considered). This treatment requires an iterative
procedure to include these nonlinear effects. Yamamoto [11] pre-
sented the general equations of motion for a skewed disk, transformed
into linearized stationary coordinates. The Yamamoto approach
employed the transformation of the Eulerian equations to a fixed
coordinate system. Then, the governing dynamic equations of motion
are obtained by applying a disk kinetic energy expression to Lag-
range’s equations of motion. The resulting equations are then lin-
earized for small displacements and rotations. In the treatment of
rotating machinery, the disk angular displacements and the shaft
slopes are small in comparison to the characteristic length of the rotor.
Therefore, the Yamamoto formulation may be used to describe the
disk linear dynamic equations of motion.

The case of a single, overhung skewed disk on a uniform elastic shaft
was treated by Benson [12] at the University of Virginia. Benson
demonstrated that permanent disk skew can have a pronounced effect
on the dynamics of the rotor shaft and that the single plane balancing
procedure is not adequate to balance the overhung skewed disk at all
speeds. This analytical formulation is of considerable value as it
provides insight into the dynamic behavior of an overhung rotor
system. However, this procedure is not readily adaptable to the
evaluation of a multimass stepped rotor with skewed disks.

Salamone and Gunter [13] presented the governing transfer matrix
equations to include the effects of disk skew and shaft bow, in addition
to unbalance, for a general multimass rotor in fluid film bearings. The
importance of these two additional effects was illustrated in an
analysis of a multimass water pump. It was reported that bow and
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Fig. 1 Single mass unbalanced rotor with overhung skewed disk on flexible damped bearings

Table1l Rotor Model Parameters*

I, = 4.082 X 106 N-cm?
(1.4224 X 105 1bf-in?)

I, = 2.039 X 106 N-cm?
(7.106 X 104 Ibf-in2)

ky = kg =13171.11 N/em
(7520.9 1bf/in.)

¢y = ¢cg = 51.28 N-s/cm
(29.28 Ibf-s/in.)

L = 255.25 cm R =50.8cm
(100.49in.) (20.0 in.)
al = 340.33 cm r =5.08cm
(133.99 in.) (2.01n.)
ds, = 10.16 cm w = 5.08 cm
(4.01in.) (2.0in.)
W, = 3132.04 N e, = 0.025 cm
(704.14 1bf) (10 mils)
7, = 0.0684° U, = 8114.53 gm-cm

(112.66 oz-in)

* Refer to Fig. 1

skew can significantly alter the rotor response due to unbalance;
particularly at the critical speeds.

Another formulation which has been successfully used to express
the dynamical equations of motion of a complex rotor bearing system
is the modal representation of Childs [14]. In the Childs derivation,
the products of inertia have also been included, although the effects
of disk skew and products of inertia were not explored.

In the treatment of disk skew in this paper, the angle of the disk
skew 7 is considered to be very small. Under these circumstances, it
can be shown that the product of interia term is proportional to the
product of the difference between the polar and transverse moments
of inertia and the skew angle. An effect equivalent to disk skew can
be generated by two radial out of phase unbalance components, which
are separated by a finite axial distance on the disk. The resulting
system is mathematically identical to a small disk skew, and the re-
sulting unbalance components produce a bending moment about the
disk center.

The results of [13] have inspired further study of disk skew effects
to better understand the fundamental rotor behavior and the impact

n—N OMenclature

on balancing. Because of the complexity of the multimass rotor be-
havior with shaft bow and disk skew, it is desirable to first examine
a single mass overhung rotor on flexible damped bearings with a
skewed disk. The cases presented herein illustrate the potential im-
pact of disk skew in comparison to, and in combination with, the
commonly treated unbalance excitation.

Dynamic Motion of the Overhung Thin Disk Rotor

Description of the Rotor System. The single-mass overhung
rotor model, as shown in Fig. 1, is a dimensionalized version of the
model analyzed by Benson [12]. This model was used for verification
of the general multimass matrix transfer equations in [8] and [13]. It
should be noted that this is strictly an arbitrary rotor configuration
which has been selected to illustrate the effects of disk skew on the
synchronous rotor response. The dimensional characteristics of the
thin disk rotor system are given in Table 1. Note that the bearing
coefficients are assumed constant with rotor speed. The values of
stiffness and damping were calculated from the nondimensional ex-
pressions in [12). Bearing cross-coupling and shaft weight are ne-
glected.

A = amplitude ratio, 8/e,
e, = radial unbalance mass eccentricity, L
[ = frequency ratio, w/we,

Kij = stiffness, FL~!

m = disk mass, FT2L"!
mj = mass at station j, FT2L ™!

B; = angular location of disk skew at station
J, RAD
& = rotor displacement, L

I, = polar mass moment of inertia of disk, ¢ = time, T # = complex rotor slope, RAD
FLT? U = complex unbalance, U, + jU,, FL 7 = complex disk skew angle, 7, + j71,,
I, = transverse mass moment of inertia of w = disk thickness, L RAD )
disk, FLT? = complex rotor displacement, L w = angular rotor shaft rotational speed,
i=v- «; = angular location of unbalance at station T-!

K = constant J, RAD
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w¢r = angular rotor critical speed, T™!
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For a “thin” disk, the polar moment of inertia I, is greater than the
transverse moment of inertia /,. In this analysis, it is assumed that
the polar is twice the transverse. Note that this system will have only
one synchronous critical speed of forward precession. The Benson
analysis also considered the thick disk configuration in which the
transverse moment of inertia I, is greater than the polar moment of
inertia I,,. In that case, there are two critical speeds of forward syn-
chronous precession.

Rotor Equations of Motion. The general transfer matrix equa-
tions used in this analysis have previously been derived and presented
in [8] and [13], respectively. These multimass matrix equations be-
come greatly simplified for the single mass overhung rotor illustrated
in Fig. 1. Benson [12] expressed eight equations of motion that spe-
cifically apply to this rotor system, with isotropic bearings and a
massless shaft. These eight equations were expressed as the following
four complex equations:

me,w2ei® m 0 0 0q¢Z

T, - I)ei® o1 o ofjé
elwt y =

0 0 00 7

0 J 0 0 of'Z,

C 0 0 OW .‘

4 0 —jwl, 0 0]}0

0 0 ¢, o0llz,

L0 0 0 Cyt \Z,

K.. K:s K:1 Ki2 7 (2
Koo Ko, Ko, | )0
(SYM) K Ki2 Z,
Kz = Y2y

(1)

Examination of these equations of motion illustrate several im-
portant features. First, it is observed that there are two forcing
functions acting on the disk deflection equation Z and slope equation
6 which are generated by radial unbalance and disk skew. The second
feature, observed from the moment forcing term, is that the sign of
the term is dependent upon whether the polar moment of inertia is
larger than the transverse moment of inertia. In the case of a thick
disk, where the transverse is larger than the polar, the skew gyroscopic
moment would be opposite in sign compared to the moment for a thin
disk. Therefore, considerably different dynamic effects are observed
with disk skews on thick disks as compared to thin disks. This feature
will be discussed in detail in a future paper.

Synchronous Response of the Overhung Thin Disk Rotor.
The rotor response results for five computer cases are illustrated in
Figs. 2-7. These are plots of the dimensionless amplitude and phase
angle versus frequency ratio for the three rotor locations corre-
sponding to the near bearing (closest to disk), the far bearing and the
disk. The amplitude of motion é is made dimensionless by dividing
by the unbalance eccentricity e,. The speed w is made dimensionless
by dividing by the rotor critical speed on rigid supports w.,. The rotor
synchronous response was calculated for various combinations of
unbalance and disk skew. Note that for this rotor system, there is only
one critical speed which is approximately 60 percent of the rigid
support value. This reduction from the rigid value is due to the flex-
ibility of the bearings. In Cases 1-5, the values of unbalance and disk
skew correspond to those originally used by Benson. This was done
in order to verify the accuracy of the matrix transfer procedure.

Fig. 2 illustrates the disk amplitude versus speed for various cases
of disk unbalance and skew. With unbalance only, it is seen that the
disk peak amplitude is 9.5. When the rotor is operating well above the
critical speed, the dimensionless amplitude is 1. Therefore, the rotor
has an amplification factor of 9.5 at the critical speed.

Fig. 3 represents the disk phase angle change versus speed for the
various cases of disk skew and unbalance. For the case of unbalance
alone, the rotor experiences a 90 deg phase shift at the critical speed.
Above the critical, this phase angle increases to 180 deg and then re-
mains constant for speed ratios in excess of f = 1. This phase angle

Journal of Engineering for Power

behavior corresponds to the phase angle response of the single mass
Jeffcott model.

In Cases 2 and 3, positive and negative disk skew only are consid-
ered. For the amount of disk skew assumed, Fig. 2 shows that the
amplitude at the critical speed is approximately 2. Above the critical
speed, the amplitude will decrease with increasing speed. This
physically corresponds to the situation in which the disk is straight-
ening out and is attempting to rotate about its principal inertia axis.
For the case of radial unbalance only, at super critical speeds, the disk
will rotate about its mass center. This will cause a circular orbit or
radius e, which represents the displacement of the mass center from
the shaft elastic axis.

For the case of disk skew only, Fig. 3 shows that the disk phase angle
will change through 90 deg at the critical speed and on to approxi-
mately 180 deg for f = 1.0. For the case of negative disk skew, the
phase angle change observed at the disk is almost identical to the
response observed with radial unbalance. For positive disk skew, the
phase angle changes are 180 deg out of phase with the negative disk
skew phase angles and vary from 180 deg to approximately 360 deg.
One slight variation in the phase angle behavior, in comparison to the
response with pure unbalance, is the phase behavior at supercritical
speeds in which f > 1. Here it is seen that the Case 2 phase angle re-
duces slightly from 180 to 150 deg for f varying from 1 to 5. It will be
seen later that the observation of the phase change on the rotor at
supercritical speeds is an indicator that disk skew is present in the
system.

In Case 4, a combination of unbalance and negative disk skew is
assumed. In this situation, the unbalance moment acts in conjunction
with the radial unbalance to increase the rotor shaft motion at the disk
location. The response of Case 4 is equivalent to a linear vector su-
perposition of Cases 1 and 2. Since Fig. 3 shows that the phase angle
change for radial unbalance and negative disk skew is similar, the
vector combination of positive unbalance and negative disk skew will
always result in an increase in rotor response. This can be observed
in Fig. 2, Case 4, where the amplitude at the critical is 11.5. For Case
5, unbalance and a positive disk skew are assumed. In this situation,
the maximum amplitude at the critical speed has reduced to 7.5. Note
that by shifting the disk skew by 180 deg, the rotor amplitude has been
decreased from 11.5 to 7.5.

In the analytic equations of motion developed by Benson or in the
matrix transfer equations of motion, the system is assumed to be
linear. Therefore, the principle of linear superposition of loads may
be applied. It will be shown later, that if the unbalance in this case
were reduced by a factor of 4.75, then the combination of unbalance
and positive disk skew would result in zero amplitude at the critical
speed. This observation was not originally made in the Benson anal-
ysis.

If one were to observe the amplitude of an overhung disk with a
combination of unbalance and disk skew, Fig. 2 shows that the un-
balance response looks very similar to the standard response as ob-
tained for the single mass Jeffcott rotor. That is, the amplitude
reaches a peak and then reduces to a constant value. Fig. 3 shows that
the phase angle changes observed at the disk for various combinations
of both unbalance and disk skew are also very similar in appearance
to the standard single mass Jeffcott model without gyroscopic effects.
Hence, it is not readily apparent from the observation of the disk
unbalance response and phase angle that there may be disk skew
present in the system. For the speed range from 1 to 5, there is a slight
reduction in the phase angle for the case of disk skew alone. Since this
phase angle change in quite small, it would be difficult to determine
the amount of disk skew present in the system by observation of the
phase angle change at the disk end. The best way to determine if a
system has disk skew is to observe the motion at locations other than
the disk. Next, it will be shown that the amplitude of motion and the
phase change at the near and the far bearing locations, can be used
to indicate disk skew effects. These amplitude and phase character-
istics are not observed in the overhung rotor system with conventional
radial unbalance only.

Fig. 4 represents the amplitude of motion for the various cases of
radial unbalance and disk skew as observed at the near bearing. For
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the case of radial unbalance only, the maximum amplitude at the near
bearing is approximately one-half of the amplitude at the disk loca-
tion. Upon passing through the critical speed, the dimensionless un-
balance response is approximately 0.7 and remains constant with

speed.

The shape of the curve with unbalance at the near bearing is

similar to the observed amplitude at the disk location. For the case
of disk skew only, the maximum amplitude at the near bearing is 1,
which again is approximately one-half of the amplitude at the disk
location. Above the critical, the amplitude reduces and reaches a
minimum at approximately f = .9. However, as the rotor speed is in-
creased above f = 1.0, the rotor amplitude increases with speed.
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The associated phase angle changes for the near bearing are shown
in Fig. 5. The important characteristic to observe is that disk skew
causes an increase in amplitude with little increase in phase angle. At
first one would suspect that the rotor amplitude of motion is slowly
building up due to the approach of a second critical speed. However,
for this system there is no second critical speed of forward synchro-
nous precession. The buildup in rotor amplitude is due to the skewed
disk attempting to straighten out and rotate about its principal inertia
axis.

Fig. 4 illustrates that the worst combination is radial unbalance and
negative disk skew. This case causes a maximum amplitude of 5.3 to
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occur at the near end. The minimum response at the near bearing
occurs at a speed ratio of f = 1.2. Above this speed, the rotor amplitude
continues to increase in value. However, from the phase relationship
for the combination of unbalance and negative disk skew a conven-
tional 0-180 deg phase shift is again observed.

If a positive disk skew is incorporated with the radial unbalance,
there is a reduction in the amplitude of motion at the near bearing.
The amplitude of motion continues to reduce and actually goes to zero
at a frequency ratio of f = 2.1. At this speed, the near bearing is per-
fectly balanced. Associated with the reduction to zero amplitude is
areversal in the phase angle from 180 deg to a value approaching 15
deg. This phase angle reversal has also been observed in rotors with
flexible foundations [3] and radial unbalance only. From the large
phase angle shift, one might improperly conclude that the rotor is
going through a housing or support resonance. However, the overhung
rotor in this analysis does not have a flexible foundation. Therefore,
it is disk skew that causes this unusual behavior.

Figs. 6 and 7 represent the amplitude and phase angle changes for
the various conditions of unbalance and disk skew at the far end
bearing. For the case of unbalance only, (Case 1), the maximum am-
plitude is 1.05 at the critical speed. At speeds well above the critical,
the amplitude reduces to an asymptotic value of 0.07. Thus we see that
for this model, radial unbalance at the disk causes a maximum dis-
placement of 9.5 at the disk, 4.5 at the near bearing and only 1.06 at
the far end bearing. The phase angle for Case 1, at the far end, varies
from 180 to 360 deg with a shape that is similar to the Case 1 phase
angle change observed at the disk and the near bearing. However, the
far end bearing phase angle is 180 deg out of phase to the disk or near
end bearing. Therefore, with unbalance alone, the amplitude response
at the far bearing is only approximately 10-15 percent of the response
observed at the disk and is out of phase with it.

If we examine Fig. 6 for the far end bearing with disk skew alone,
the maximum amplitude is 0.22 at the critical speed, which again is
only 10 percent of the value observed at the disk. However, the in-
teresting phenomena observed in this case is that upon passing
through the critical speed, the amplitude reduces and reaches a
minimum at f = .9 and then continues to increase with speed. The
examination of Fig. 7 for the phase angle change due to disk skew is
even more revealing. The phase angle change through the critical is
only 150 deg instead of 180 deg. After passing through the critical
speed, the phase angle reduces over 100 deg from its maximum value
at f = 9.7. Above f = 1.5, the phase angle gradually begins to in-
crease.

From the data examined, it can be concluded that a rapid phase
angle reversal at the far bearing, after passing through the critical
speed, is indicative of a significant disk skew in the overhung rotor
system. This reversal of phase angle has an important effect on the
far bearing response when both unbalance and disk skew are present.
At all of the rotor stations, the phase angles due to positive unbalance
and negative disk skew are in-phase when passing through the critical
speed. This implies that the vector addition of the two effects will
result in an increase in amplitude at all stations along the rotor at the
critical speed. After passing through the critical speed region, the far
end phase angle with negative skew deviates from the phase angle due
to unbalance alone. This then causes a reduction in amplitude at the
far bearing. Another important characteristic to observe at the far end
bearing is that at f = 0.9, the amplitudes due to unbalance alane, and
in combination with disk skew, all cross over. Therefore, while the
Case 5 amplitude is less than the unbalance amplitude at the critical
speed, it has the highest amplitudes of all five cases at speeds above
f=09.

In all cases where disk skew is present, the far end shaft amplitude
increases with speed above f = 1.5. This type of behavior is not ob-
served at the disk. Therefore, in order to detect a possible condition
of the disk skew in an overhung wheel, it is desirable to monitor the
amplitude and phase angle behavior at both the near and the far end
bearing positions. For example, with unbalance and disk skew, the
near bearing amplitude of motion may increase at speeds above the
critical speed without any associated phase angle change as in Case
4. At the far bearing location, the amplitude may increase at super-
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critical speeds with increasing or decreasing phase angles. The be-
havior, as shown by Figs. 6 and 7, has been observed numerous times
in industry, not only with overhung rotors, but also with conventional
rotors with inboard disks. The increase in amplitude above the critical
speed with and without a change in phase angle has often been per-
plexing to investigators, particularly in the case when the operation
is far removed from a second critical speed. Figs. 4-7, for the behavior
of the near and the far bearings, show that disk skew can cause phase
angle shifts which cannot be generated by radial unbalance alone. The
reversal of phase angle change at the far bearing after passing through
the first critical speed, and the increase in amplitude, is an indication
of a skewed disk or a moment unbalance distribution acting at the
opposite end of the machine. Notice that this phase reversal is not
observed at the disk, itself.

Balancing the Overhung Thin Disk Rotor

From the behavior of the single mass overhung rotor with unbalance
and disk skew, it is observed that the characteristic bearing ampli-
tudes and phase angles significantly differ from those of the con-
ventional single mass Jeffcott model. It is then desirable to consider
various techniques to balance the overhung rotor configuration with
a skewed disk. The previously discussed case of positive disk skew only
(7 = +0.0684 deg) was selected as the rotor excitation to be balanced
out. No radial unbalance is assumed. Figs. 8-10 are the balancing plots
of amplitude versus rotor speed for the far bearing, near bearing, and
disk, respectively, for the various balancing cases considered.

Balance No. 1—Single Plane Disk Correction at the Critical
Speed. Fig. 2, for the disk motion with various combinations of disk
skew and radial unbalance, showed that the combination of positive
disk skew with positive radial unbalance caused a net reduction in
amplitude over the case with only unbalance. It is therefore logical
to assume that if disk skew is initially present in the wheel without
radial unbalance, that a radial unbalance correction weight could be
placed on the wheel to cancel, or balance-out, the disk motion while
passing through critical speed.

The first balance was intended to balance out the amplitude due
to disk skew (7 = +0.0684) using a single plane correction on the ov-
erhung disk by taking amplitude and phase measurements at the far
bearing location. The balancing speed is the first critical speed (f =
0.6). The disk correction is determined by linear superposition using
the amplitude and phase readings from the far bearing probe (Figs.
6, 7) due to the assumed unbalance from Case 1 and positive disk skew
from Case 3. The dimensionless amplitude responses at the far bearing
due to unbalance and disk skew are: Ar = total far bearing amplitude;
Afy = far beairng amplitude due to unbalance at the disk = 1.059 L
270 deg; A, = far bearing amplitude due to positive disk skew = 0.225
L 90 deg; U = Case 1 unbalance at disk = 8114.53 L 0 deg gm-cm
(112.66 L 0 deg oz-in) and; U = unbalance correction at disk.

The amplitude of motion at the far end bearing is a linear super-
position of the influences of disk skew and unbalance as follows:

Ar,
w=(

* UB) + Afp,

_ 1.059L 270 deg

= Up +0.225190deg (2
811453L0deg e (2

Specifying that the unbalance correction weight Ug will cause the
total amplitude A at the far end bearing to be zero. The required
amount of balance correction weight is given by

__0.225L90deg _ 1724.03L 0 deg gm-in
0.00013L 270 deg  (23.93 L 0 deg oz-in)

With the correction, Fig. 8 indicates that the resulting far bearing
amplitude at the first critical is reduced to 0.025 from the initial
amplitude of 0.225. The near bearing ampliiude (Fig. 9) is reduced
from 0.88 to 0.05, and the disk amplitude (Fig. 10) is reduced from 1.93
to 0.11. After this balance, the rotor can safely pass through this
critical without danger of excessive amplitudes at the bearings and
the disk. Fig. 10 shows that by taking influence coefficients at the far
bearing, when operating through the first critical speed, the disk may

UB=
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Fig. 10 Amplitude at the disk versus speed for various balancing cases

be successfully balanced. The disk amplitude then remains well be-
haved with low level motion throughout the entire speed range.
However, Figs. 8 and 9 show that beyond the first critical speed, the
amplitudes of motion at both bearings increase, with the largest
amplitude occurring at the near bearing.

Balancing No. 2—Far End Correction above the Critical
Speed. The second balancing correction is intended to balance cut
the far bearing amplitude at a post-critical speed value of f = 3.0 with
a single plane correction at the far bearing. It will be assumed that f
= 3.0 is the operating speed. The correction from balance No. 1 is to
remain on the disk.

The balance correction is determined by the method of influence
coefficients with the following equation
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U,=0,» —:—-Z—IT (3)
Ze— 2y
where Z, = rotor amplitude vector before the trial weight at the bal-
ancing speed = Z, e=/¢1; Z, = rotor amplitude vector after the trial
weight at the balancing speed = Z3 e ~/¢2, U, = unbalance trial weight
vector = U;e=i#L0, = rotor unbalance vector = U,e ~#+. Then the
magnitude of the balance correction is

IUCI = |U.| (4)

and the correction phase angle is then 180 deg out of phase with the
unbalance. Thus

¢c = ¢u + 180 deg (5)

For balance No. 2 at the far bearing for f = 3.0 the balancing infor-
mation is: Z, = 0.2264 e~/50-35deg dim; [, = 720.27 ¢ —/12965deg gryy-cm
(10 e—/12965deg oy _in): Z, = 0.53868 ¢~/14253deg dim.

The resultant balance correction is U, = 275.37 e~/1950118deg gy _cm
(3.8232 ¢ —/195.0118deg 7.ip). Balance No. 2 was successful in reducing
the far bearing amplitude (Fig. 8) from 0.2264 to 0.0 at f = 3.0, without
disturbing the first balance at f = 0.6. The near bearing and disk
amplitude remained unchanged as indicated in Figs. 9 and 10, re-
spectively.

Balance No. 3—Near Bearing Correction above the Critical
Speed. The third balance is intended to reduce the near bearing
amplitude (Fig. 9) at operating speed (f = 3.0) without disturbing the
previous two balance improvements. The balancing information is:
Z,=0.7716 e~/9507deg dim; U, = 720.27 e~/190deg g _cm (10 ¢ ~/190deg
oz-in.); and Z, 0.59723 ¢ —/5-806deg dim.

The resultant correction is then U, = 3091.15 ¢—/177:6197deg gm_cm
(42.9167 ¢ —/177.6197deg gz_ip ).

Balance No. 3 was successful in reducing the near bearing amplitude
(Fig. 9) from 0.7716 to 0.0 at f = 3.0. However, the amplitude at the
first critical (f = 0.6) significantly increased from 0.06 to 0.735. The
other two rotor locations also show detrimental results. At the far
bearing (Fig. 8) the amplitude increased from 0.02 to 0.17 at the first
critical, and from 0.0 to 0.34 at the operating speed. In fact, at speeds
above the first critical, the far bearing amplitudes are worse than the
original response caused by the skewed disk (Case 3) before balancing.
The amplitudes at the disk (Fig. 10) indicate an increase from 0.14
to 1.58 at the first critical. At operating speed, the amplitudes are the
same as for the initial rotor before balancing.

From these three balancing runs, it is evident that while the single
plane balancing technique is sufficient for balancing out the ampli-
tudes for a specific rotor location and speed, it is not successful in
balancing the overall overhung rotor over the operating speed range.
It is then desirable to try balancing with a couple correction.

Balancing with a Couple Correction

A couple correction consists of two correction weights separated
by the thickness of the disk and 180 deg out of phase with each other.
This produces an equivalent balance moment vector, whereas the
single plane corrections produce equivalent balance force vectors.

Starting with the original rotor with positive disk skew only (Case
3), a trial couple is applied to the disk to balance the rotor at the first
critical (f = 0.6). Then the influence coefficient technique (equation
(3)), as previously described for single plane balancing, is used.
However, the trial weight vector becomes a trial couple vector. The
balancing information is: Z; = 1.9312 e~/24566deg dim; U, = 720.27
e—/%eg gy _cm (10 e~/0de8 0z-in couple); and Zg = 1.9028 ¢—/245.66deg
dim.

The resulting couple balance correction vector is then

U. = 48978.15¢~/%d¢€ gm-cm (680 e~/%de€ 0z-in. couple)

With this correction, Figs. 8-10 indicate essentially zero amplitudes
for all three rotor locations throughout the speed range.

There are numerous rules of thumb for estimating reasonable
amounts of residual unbalance for analytical rotor response analyses.
However, it is often difficult for a designer to physically arrive at
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reasonable values of the disk skew angle. For small disk skew angles,
it can be shown that two balance correction weights placed on a disk
180 deg out of phase and separated by distance w is equivalent to a
uniform disk skewed an angle 7 from the vertical.

The transformation angle to principal directions for a disk with a
couple unbalance is given by

211
tan 20, = ———— (6)
P oln—In
The product of inertia term is given by
U
Iy = f prdm=—L£ D
v Kg
For small disk angles
Uw
bp=r1=—""— 8)
i K, - 1,)

Where 7 = disk skew angle (radians); U = equivalent unbalance
couple, gm-cm (0z-in); w = disk thickness, cm (in.); I, = disk polar
weight moment of inertia, N-cm? (lb-in.2); I, = disk transverse weight
moment of inertia, N-cm? (1b-in?); and K = constant = 102 gm/N (=
16 oz/1b).

As an example, the equation (8) was applied to the overhung rotor
discussed in this paper. The known parameters are I, = 4.082 X 106
N-cm? (1.422 X 10% 1b-in2); I, = 2.039 X 106 N-cm?2 (7.106 X 10* 1b-in2);
w = 5.08 cm (2.0 in.); and 7 = 1.194 X 103 rad (0.0684 deg).

The equivalent unbalance couple can then be calculated from
equation (8)

U=71K(, - I;)/w = 4.8979 X 10* gm-cm (679.9 0z-in.)

This is the same answer as was found by the influence coefficient
method with the trial couple.

Summary

The sample problem of the overhung rotor with disk skew illustrates
the influence of disk skew on unbalance response and phase angle
changes. It produces an effect which cannot be obtained with the usual
unbalance distribution on a flexible rotor. This effect is the occurrence
of a rapid reduction in phase angle at the far bearing upon passing
through the critical speed. The sample problem also shows that it is
impossible to balance the rotor at all speeds with single plane radial
unbalance corrections in the presence of a skewed disk. The equations
of motion to include disk skew or shaft bow may be expressed in ma-
trix transformation form or by a modal formulation as has been done
by Childs [14] or Gunter and Choy [15]. A condition for modal bal-
ancing a particular critical speed can be obtained from [15] by setting
the modal forcing function Py; for the i-th mode equal to zero. This
results in the condition

(b,j‘mjeu,-[wz cos (wt + ;) + w sin (wt + aj)]

+ ¢;'t7iIp — Ip)j[w? cos (wt + B;) + wsin(wt +3;)] =0 (9)
Where ¢; = i-th mode shape and ¢;” = i-th mode shape slope. From
the above condition, it is apparent that if the unbalance is selected

to balance out one critical speed due to the presence of disk skew, the
system will not be balanced at high critical speeds.

Conclusions—Thin Disk Overhung Rotor

1 A skewed disk will excite the first critical speed of an overhung
rotor.

2 A radial disk correction can always be selected to balance out
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the effect of disk skew at the first critical speed.

3 Although the rotor balance may be acceptable at the first critical
speed, the bearing forces and rotor amplitudes may be unacceptable
at higher speeds. This system cannot be adequately balanced by single
plane procedures.

4 Amplitudes and phase angles monitored at the overhung disk
appear to be similar to the behavior of the elementary Jeffcott rotor
model. Hence disk skew effects cannot be distinguished from unbal-
ance by monitoring the motion only at the disk location.

5 The response characteristics at the bearings of the overhung
rotor can differ considerably from Jeffcott behavior when disk skew
is introduced. The amplitude is not constant above the first critical-
instead, it increases with speed.

6 At the far bearing, a rapid decrease in phase angle above the first
critical speed is an indication of significant disk skew. Hence, a probe
at the far bearing end can indicate disk skew.

7 Two unbalance weights placed on a disk 180 deg out of phase
and separated by an axial distance w can create an equivalent disk
skew in the rotor. Hence, any grinding of impeller wheels in which the
correction planes on the front and back are 180 deg out of phase can
create equivalent disk skew effects.
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