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The Influence of Fluid Inertia on the
Dynamic Properties of Journal Bearings

Based on a first-order perturbation solution in a modified Reynolds number an analysis
is presented to determine the effect of the fluid film inertial forces on the dynamic prop-

erties of a journal bearing. The corrections to the regular amplitude and velocity coeffi-
cients are found to be small, but the accompanying acceleration coefficients which may
correspond to a virtual mass of several times the mass of the journal itself, could become
significant for short rotors. Numerical results are given in graphical form with dimen-
stonless coefficients as functions of the operating eccentricity ratio.

Introduction

Consistent with the assumptions inherent in reducing the Na-
vier-Stokes equations to Reynolds equation, the conventional lam-
inar, thin film lubrication theory ignores the inertia forces in the
fluid film [1, 2].2 This is theoretically justified for small values of
the Reynold number (of the order of 1). On the other hand, the
assumption of laminar flow ceases to be valid when there is a
transition to either Taylor vortex flow or to turbulent flow which,
for journal bearings of typical dimensions, occurs at a Reynolds
number value of approximately 1000 to 1500. Thus, there is an in-
termediate range, say for values of Reynolds number of the order
of 102, where inertial effects may become noticeable without af-
fecting the assumption of laminar flow.

Several investigators have examined the problem [1, 3, 4, 5, 6,
7, 8, 9] and found the effect to be small. The investigations, how-
ever, are usually restricted to bearings operating under steady-
state conditions while dynamic conditions have only been consid-
ered for simplified bearing geometries [1, 7, 8, 9]. It is the purpose
of the present paper to extend the analysis to one of the more
common bearing geometries, namely the cylindrical journal bear-
ing, and to consider the influence of the inertial terms on the dy-
namic properties. Based on the previous findings that show the
inertial forces to be small, the analysis employs a first order per-
turbation expansion in Reynolds number as also done in [9].

Apart from a quantitative evaluation of the effect of the iner-
tial forces on the dynamic bearing properties, the primary reason
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for undertaking the investigation is to determine the virtual mass
coefficients which could be significant in certain applications, as
for example short rotors. This is pointed out by Smith [10] whose
analysis, however, is approximate and based on intuitive rea-
soning.

The Governing Equations
With the usul assumptions of thin film lubrication theory the
governing differential equations for a fluid element are [1, 2]:
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The left-hand sides in equations (1) and (3) are the contributions
from the inertia forces which disappear in classical lubrication
theory. u, v and w are the fluid velocity components in the x, y
and z directions, respectively, where y is the coordinate across the
thickness of the film. The fluid pressure is p, the viscosity p and
the density p.

When the journal, with radius R, rotates with angular speed w
and x is the circumferential coordinate, the velocity boundary
conditions become:

y=0:u=v=w-=20 (
5
= u = Rw )
v:%ﬁRw+%
* ®)
w =20

where h is the local film thickness.
The equations are normalized by means of the dimensionless
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quantities:
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where ¢ is the radial journal bearing clearance. In addition, a pa-
rameter A is required to account for the inertia forces:

A= =R 1)

=v] R+

where

pcRw

Reynolds number : R, = (12)

Thus, equations (1)-(6) can be written in dimensionless form as:

du | —du du | —duy _ _8p 8%
x{ﬂ+“ae+véﬁ+wf}__ﬁ+w (13)
dw dw dw _ —dw 8p , %w
— 4+ u= = = — 4= + = 14
3 e + U + ag} T (14)
ou oy dw
T I g
a0 an g 0 15
y=0:u=v=w=0 (16)
- - - —  B8r  °h
y:h u:lw:Ov:£+£ (17)

The last equation, equation (2), only expresses that the pressure
does not vary across the film, and is of no turther interest.

From equations (13) and (14) is seen that the inertia forces are
of the order (¢/R) when the Reynolds number is small (of the
order 1), and it is on this basis that these terms are left out in the
classical lubrication theory.

At moderate values of the Reynolds number, however, the in-
fluence of the inertia terms may become noticeable. To investi-
gate the effect, a first-order perturbation solution is carried out
where the nonlinear equations are linearized by setting [9]:

p=p® +2pM + 00} 18)

u=a9 + xa? + o0 (19)

and analogously for 0 and w. Substituting these expressions into
equations (13)-(17) and collecting terms of like order in A results
in the following zero-order equations:
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Integrating equations (20) and (21) twice yields the well-known
velocity profiles of lubrication theory:
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Inserting 2'® and @w'? into the continuity equation, equation
(22), ' can be determined by integration. Using the boundary
condition at 7 = A, equation (23) results in Reynolds equation:
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Fig. 2 Correction to the direct amplitude coefficient Kyx
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The first order perturbation equations, akin to equations (20)-
(22), are: KXYK
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with the boundary conditions: Fig. 4 Correction to the cross-coupling amplitude coefficient Kxy
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and Ay around this equilibrium position, the dimensionless local.

filmthickness can be written as:

h = hy + Ax cosf + Ay sind (32)

where:

hy. = 1 + x, cosé + y, sind (33)

and where the coordinate angle # is measured from the negative
x-axis. Assuming the amplitudes Ax and Ay to be small the pres-
sure may be expanded in a first order perturbation such that
equation (18) becomes:

E — p o 4 p WAy + p WAy + p (O)Ax + p ‘O)Ay
+ )\{Eom + p,Vay +pymAy +p,;mAx +p;,mAy
+ peaY + pyay} 64)

Similarly, a first order expansion of equation (32) yields:

rt = -ﬁo" + nhy"! (Ax cosf + Ay siné) (35)
Substitution of these equations into equations (25) and (31) and
collecting terms according to the perturbation variables, results
in 12 equations to determine the 12 quantities: po'?', px'?', etc.
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Fig. 8 Correction to the cross-coupling velocity coefficient By

With pr'? representing the general quantity these equations
are of the form:

——{hsﬂﬁi—} (36)

J
_g{h(i?&_} — RHSk(J)
where the right-hand side, RHS,, depends on p'® or p'¥ and
their first-order derivatives (second order derivatives can be elim-
inated by means of the governing equations for p‘® or p‘1'). As
the expressions are quite lengtly they are omitted.

Allowing for film rupture, the adopted boundary condition are:

t=+(L/D):p =0

I

B 37)
0= 6,0), 0= 6,):p=32=0

where 72 indicates the direction of the normal to the boundary
curve. To implement the last condition, consider a point (8¢,{0)
on the free boundary under static conditions. Owing to a pressure
perturbation Ap this point moves the increment (A# A¢{) to a
point (# = 8¢ + Af, { = {o + A{). Requiring the pressure to be
zero on the new boundary curve, a first order expansion yields:

p(6,8) =0 = DBy, &) + ( )er + ( nAg (38)
With p = po + Ap and retaining only first order terms, this equa-
tion reduces to:

1_)(9, §) =0 = Eo (90, éo) + A,i_)(e(), 50)
ap, ap,
+ (a%o)er + (aLgO)OAg (39)

Because po (8o, {0) = (3po/d0)e = (3Po/d{)o = 0, the boundary
condition for the pressure perturbation becomes: Ap(f, (o) = 0

With the boundary conditions established, equation (37) can be
written in finite difference form and solved numerically [1, 14].
By integrating the film pressures the reaction forces are obtained
as:

F

“x /2y e, COSO

F=-1J [ p{ YRao dz

Fy ~(L/2) .91 sind
or in dimensionless form:
Fo- —L
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F, = NDLR/c)
: (40
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where N is the rotational speed in rps (N = w/2x). Substituting
for p from equation (34) the perturbation expansion of the reac-
tion forces becomes:

= = = 0 AT =0y AT AT
F, = F,% + K.,9ax + K,98y + B,, Y ax
= = = d 5 U AT 4 7 WIS
+ B,V ay + MF, P + K, Vax + K Ay
+ B, Pax + B,, YAy + C,,ax + C, Ay} (41)
and analogously for F', where, as an example:
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tdodr (42)
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and similarly for the remaining coefficients. In dimensional form
the reaction forces are:

Fr = (1 + AAFro)Fro + (1 + )\AExx)KxxAx + (1
dAx

+ K K, By + (1 + )\AE,,)B,xZi—t— +Q
= da Bay da*a
+ AABxy)BryFy + CIIW— + c”’?ﬁj—) (43)

and analogously for F. The relationship between the dimensional
and the dimensionless coefficients are:

K, = %uNDL(R/C)ZE,, = sg’ K. {N/m} 44)
W —

B, =S— By {Ns/m} (45)

Co = an2L(R/c)ﬂi2(—:,, {Ns?/m}  (48)

and similarly for the other coefficients. S is the Sommerfeld num-
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Fig. 9 Correction to the cross-coupling velocity coefficient By x
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ber and W is the static load such that:

W = (1 + \AF,)F,, a7

or, in dimensionless form:
= = = .= w 1
0 1) 0y _ =
F,, @ +2F,," = 0 + AaF)F,,” = INDLR/F = §
(48)

Static equilibrium requires that F,,(® + AF,,(0 = 0 which
means that the equilibrium coordinates (%o, ¥0) depend on A. As
the effect is small it has been ignored in order to simplify the cal-
culation of the coefficients.

The coefficients K5, Bxx, Kxy, Bxy, etc., are the 8 regular coef-
ficients which are derived from Reynolds equation without inertia
forces [12]. When inertia effects are included the coefficients are -
modified as shown in equation (43) where:

AK,, = K, V/K,© (49)

AB_,

and similarly for the remaining corrections. These corrections are
small as shown later.

The Acceleration Coefficients

In addition to the usual amplitude and velocity coefficients,
equation (43) shows that, when inertia forces are considered, the
dynamic fluid film reaction forces also depend on the journal ac-
celerations [10]. The 4 acceleration coefficients, Cyy, Cxy, Cyvx and
C,y, are computed from equation (46) where:

cosh
}dedg
siné

Crx (L/D}

L I A

) =(L/D) 8

(51)

and similarly for C,, and C,,. The perturbated pressures p,V
and p,1C are determined from equation (36) in the following
form:
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Fig. 10 The dimensionless direct acceleration coefficients Cxx and Cyy
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where p.'? and p,(® are found from:
5 PR 12 cosf
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In the special case of concentric journal (%, = ¥, = 0 = h = 1)
the solution becomes:

0 cosé
5 5 cosh(L/D sind
whereby (x, = y, = 0):
3
Cur = Cpy = 20 = B pr?s /)
(55)
C,=¢C,=0

xy
For small values of the length-to-diameter ratio this may also be
written:

x, =y, =0, L/D 5 0.5:C, = C,,

= £ L/DPorR?L(R/C) (56)
Assuming the lubricant to be oil while the journal mate-

rial is steel, and setting L/D = 0.5 and R/c = 103, it is found that
C:x and C,, equal 6 times the journal mass. This effect could be
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Fig. 12 The dimensionless cross-coupling acceleration coefficient Cyx

appreciable for small, compact rotors but should be of no concern
in larger machines.

If the complete 360-deg film is considered to contribute, the re-
sults in equations (55) and (56) should be multiplied by 2 such
that the factor 3/5 is replaced by 6/5. This latter value may be
compared with the results in [11] where the factor equals 1, de-
rived on the basis of an ideal, inviscid fluid. The same result is
obtained in [10] from considerations of continuity of accelerated
flow.

Numerical Results

Calculations are performed for a plain cylindrical journal bear-
ing with film rupture. Three values of the length-to-dia ratio are
considered: L/D = 0.1, 0.5 and 1.0, and the results are obtained
as functions of the static equilibrium eccentricity ratio:

,_2 o2
€ = xa +ya

As the actual values of the Sommerfeld number and the ampli-
tude and velocity coefficients can be found elsewhere, Figs. 1 to 9
only show the corrections to these quantities. Referring to equa-
tion (43) the figures give the corrections as:

in Fig.1 : KSO = AF,

%0

in Fig.2 : KXXK = AK

and analogously for the remaining figures. Hence, to arrive at the
true Sommerfeld number and the true coefficients the values ob-
tained on the basis of the conventional Reynolds equation should
be multiplied by (1 + X X correction). As the maximum allow-
able value of X is of the order of 1 to stay within the laminar re-
gime, the figures show that the corrections at most amount to a
few per cent. When Figs. 2, 3, 8 and 9 give large corrections as ¢
tends to zero and fig. 5 shows a similar singularity around ¢ ~ 0.7
the reason is simply that the base coefficients themselves become
zero.

While Figs. 1 to 9 must be multiplied by A before they are ap-
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plied, Figs. 10 to 12 give the actual acceleration coefficients in the
dimensionless form:

. cxr
~ prR:L(R/c)

and similarly for CYY, CXY and CYX. Noticing that pmR2L is
the mass of that volume of oil which could be contained in the
bearing cavity when the journal is removed, and with R/c being
typically of the order of 103 it is seen that the acceleration coeffi-
cients represent an added mass of several times that of the jour-
nal itself. For large, heavy rotors the effect is of no importance,
but it could become quite significant for small, short rotors. It
should be of particular concern in experiments set up to test for
the threshold of instability (oil whip) where the journal frequently
is a sizeable part of the total rotor. If no allowance is made for the
virtual mass effect under such conditions serious errors could
occur where the experimentally observed critical journal mass
value would be considerably less than that predicted from a theo-
retical calculation which does not include the acceleration coeffi-
cients.

CXX

Conclusions

The analysis and the results confirm that the contribution from
the inertial film forces to the load carrying capacity and the dy-
namic reaction forces of journal bearings is quite limited. The
corrections to the regular amplitude and velocity coefficients
amount at most to a few percent which, in general, is less than
the tolerance errors and uncertainties from other sources. In prac-
tice, therefore, these corrections can be ignored.

In addition to the amplitude and velocity coefficients, there are
also associated acceleration coefficients as already shown by
Smith [10]. They act as a virtual mass and, for a bearing of typi-
cal dimensions and design, the effect may be equivalent to an in-
crease of the journal mass by a factor of as much as 5 to 10. While
insignificant in larger machines the effect could be pronounced for
small, compact rotors.

Special attention should be given to experimental apparatus for
testing dynamic response or stability of journal bearings where
the journal often is a significant part of the total rotor for reasons
of convenience and simplicity. In such cases, disregarding the ac-
celeration coefficients could lead to serious discrepancies in corre-
lating experimental and theoretical results.
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Whereas the analysis should account satisfactorily for the iner-
tia forces in the film flow, the effect that these forces may have
on the extend and the instantaneous location of the active film
domaine has not been explored. Indications are that for suffi-
ciently fast motions of the journal, the film domaine will lag be-
hind which probably influences the dynamic characteristics of the
bearing far more than the effects examined in the preceeding
analysis. It is hoped that the presented analysis may serve as a
first step in a more comprehensive study of this problem.
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