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Optimization techniques are employed to design squeeze film dampers Sfor minimum
transmitted load to the bearing and foundation in the operational speed range. The
rotor systems are modeled by finite element formulation. The maximum transmitted
load in the operational speed range is the objective function that is minimized using
mathematical nonlinear programming (NLP) techniques. The damper design
parameters are the radius, length, and radial clearance. Stability of the equilibrium
solutions are investigated in the design procedure. Design derivatives have been
determined in closed form expressions without resolution of the inherently nonlinear
problem. A parametric study of the transmitted force is carried out to show the in-
Sfluence of damper parameters on the response and to demonstrate the merits of ap-
plying optimization techniques in damper design. Two numerical examples are
Dpresented that illusirate the effectiveness of optimizing squeeze film damper designs

Jor reducing transmitted load.

Introduction

In high speed rotating machinery such as aircraft en-
gines, generators, and compressors, the rotors may experience
high vibrational amplitudes due to unbalance, thereby
transmitting large forces to the bearings and the support struc-
ture. Modern high-speed gas turbine engines which require
lightweight, hence, more flexible rotating assemblies make the
design problem more difficult. It has been shown by several
authors that appreciable attentuation of the unbalance
displacement response and bearing forces can be obtained by
using squeeze film dampers (SFD’s) mounted in appropriately
designed flexible supports (Lund, 1965; Gunter, 1966, 1970;
Kirk and Gunter, 1972, 1973; Reiger, 1971). Recent publica-
tions (Mohan and Hahn, 1974; Cunningham et al., 1975;
Gunter et al., 1977; Fleming, 1975; Rabinowitz and Hahn,
1983) have also presented the design methodology for sizing
these nonlinear dampers. In particular there is a range of sup-
port damping and stiffness values which will improve rotor
performance. Values outside this design range may result in
substantially worse performance than that exhibited in the
absence of SFD’s (Mohan and Hahn, 1974; Cunningham et
al., 1975; Barrett and Gunter, 1975).

However, the design of SFD’s using automated optimiza-
tion techniques has not been adequately addressed. The objec-
tive of the present study is to employ nonlinear programming
techniques to design SFD’s for minimum transmitted force to
the bearing and foundation in the operational speed range. If
the SFD is modelled-using short bearing theory and the oil film
is assumed to be@_}lﬁ cavitated, closed form expressions are
obtained for thei squeeze film nonlinear forces with the
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assumption of centered circular synchronous operation
(Gunter et al., 1977; Taylor and Kumar, 1980). A solution
technique developed by McLean and Hahn (1983) is used to
determine the synchronous unbalance response of general
large order systems incorporating SFD’s. This procedure
reduces the determination of unbalance response to a solution
of a set of simultaneous nonlinear equations of order equal to
the number of damper coordinates. The advantage of this
technique is its ability to reduce the computation time and
convergence difficulties. Once orbit eccentricities have been
obtained, the unbalance response at other stations and the
bearing forces can be easily determined. The design
parameters used for a typical SFD are the damper radius,
length, and radial clearance. The general consideration in the
design of SFD’s is to minimize the maximum transmitted load
to the support structure in the operational spin speed range
subject to constraints on the foregoing design variables as dic-
tated by practical limitations. Stability of the equilibrium solu-
tions can be investigated in the optimal design procedure to
ensure stable operation. This involves the analysis of linear-
ized perturbation equations about the equilibrium solutions.
The design derivative (design sensitivity analysis) portion of
any optimization algorithm constitutes a major segment of the
total calculation. Thus, it is important to carry out the design
sensitivity analysis as efficiently as possible. This is especially
true for the design of nonlinear dampers in large order flexible
rotor systems. The design sensitivities for SFD’s are deter-
mined in closed form so it is not necessary to use finite dif-
ferences to compute the sensitivity coefficients. The Min-Max
design problem can be reduced to the parametric optimal
design problem through introduction of an artificial design
variable and a new constraint (Haug and Arora, 1979). The
method of feasible directions (Vanderplaats, 1973; Rajan, S.
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Fig. 1 Squeeze film damper

D., 1984) is employed for the solution of the design problem
with only a penalty of an additional dimension in the design
variable space.

Squeeze Film Damper Equations

A SFD is shown schematically in Fig. 1. Tt consists of a
cylindrical journal, rolling element bearing, and a centering
spring. It is assumed that the shaft precesses in a steady state
circular concentric orbit about the fixed origin. The centering
spring, shown in Fig. 1, can be considered as part of the SFD
and is preloaded to offset any gravitational forces. The
kinematic variables are defined as shown in Fig. 2. The
geometric center of the displaced journal is located by polar
coordinates (e,$). Two unit vectors, n, and A,, are oriented as
shown parallel and perpendicular to the eccentricity vector,
respectively. Two unit vectors, ny and A, serve as an inertial
(fixed) reference frame. A third set of unit vectors, i, and A_,
define the (y,z) rotating reference frame. The centering spring
is assumed to be isotropic and linear. The derivations of the
nonlinear squeeze film forces are well documented in the
literature (Barrett and Gunter, 1975). The resulting equations
for the hydrodynamic forces in polar coordinates (r,7) are
given by

k= _I;:?Ls {¢e< a —222)2) K é(zﬁl—?)e:/)z )}" @
F, =%§L3{"3€ (ﬁ) +é( ) )i @

Assuming circular synchronous motion, ¢=9 and e is con-
stant, equations (1) and (2) become
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Fig. 2 Geometry and coordinate systems

The force in equation (3) appears as a stiffness coefficient
times a displacement and it acts in a direction opposite to the
bearing displacement. The equivalent bearing stiffness is:

uRL? . 2¢
K=t g2 _ 5
0 C} (1 i 62)2 ( )

Since the bearing outer race is precessing and not rotating,
every point in the journal has a velocity equal to e¢. The force
in equation (4) therefore appears as a damping coefficient
times a velocity and it acts in a direction opposite to the jour-
nal motion. The equivalent bearing damping is:
n uwRL? T
e 20—y

These nonlinear forces in polar coordinates can be trans-
formed to the fixed and rotating reference frame by the
following coordinate transformations:

Fy cos¢ —sing F,
bot e 1
F, sing coso F,

for fixed frame coordinates, and

©)

. —uRL3 (. 2e )
B ey ®
" —uRL3 (. T %
i {‘i’e ( 2(1—e2)2 ) } = e
Nomenclature
a = weighting factor
b = design variable vector (N¥x 1)
B = linearized damping coefficient
defined by equation (31)
C = damping coefficient
C = damping factor
f? = transformed damping matrix
C, = squeeze film damper radial
clearance
D, = assembled damper dynamic stiff-
ness matrix defined by equation
(22)
e = displacement
eccentricity = (y? + z2)1/2
E = Young’s modulus
E, = nonlinear hydrodynamic force
vector
S = objective function
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F = force vector
g = inequality constraint
k = stiffness coefficient, linearized
stiffness coefficient defined by
equation (30)
K = stiffness matrix
L = damper length
M = mass matrix
M = transformed mass matrix
n,, i, i, i, fi,, i, = unit vectors defined in Fig. 2
N = number of degrees of freedom
NV = number of design variables
ND = number of squeeze film dampers
NS = number of design support loads
p = displacement vector (rotating
frame)
P, = reduced force vector defined by

equation (19)
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E, cosf —sinf F,
= . ®)
F, sinf cosf F,
for rotating frame coordinates
where cosf =% , sinf = : ), (10)
e

Note that ¢ =0+ Q¢ is a function of time, hence, the forces ex-
pressed in the fixed frame are also functions of time.

By substitution of equations (3) and (4) using (5, 6, 9, 10),
into equation (8), the time independent hydrodynamic forces
in the rotating reference frame can be expressed as

e

Steady State Solution

The use of finite elements for simulation of rotor systems
has received considerable attention within the last few years.
The works of Ruhl (1970) and Ruhl and Booker (1972) are the
first examples of the studies using finite elements in rotor
dynamics. Ruh!’s finite element included translational inertia
and bending stiffness but neglected rotatory inertia,
gyroscopic moments, shear deformation, axial load, axial
torque and internal damping. At about the same time
Thorkildsen (1972) developed a finite element which was more
general than Ruhl’s in that it also included rotatory inertia and
gyroscopic moments. Nelson and McVaugh (1976) used
Rayleigh beam theory to develop a finite rotating shaft ele-
ment which included the effects of translational and rotatory
inertia, gyroscopic moments, and axial load. Later, Nelson
(1980) added shear deformation to the Rayleigh beam theory
to develop a Timoshenko beam element. In addition the ele-
ment and system equations were developed in both a fixed and
rotating reference frame. When analyzing systems with SFD’s
for steady state centered circular orbit response, it is con-
venient to use a rotating reference frame. The advantage of us-
ing such coordinates is that the time independent
hydrodynamic forces can be determined by a relatively simple
iterative procedure.

The assembled system equations of motion in both a fixed
and rotating frame, details of which can be found in the paper
by Nelson (1980) may be written as

(11)

M&+§(i+£<q:Q(le) (12)
for fixed reference coordinates, and
Mp +(C+20M)p + K—PM+9C)p=F (.,  (13)

for rotating reference coordinates.

Note that (q,p) are the system displacement vectors in fixed
and rotating reference frame, respectively, and (Q, F) are the
vectors of the system unbalance excitation and hydrodynamic
forces in fixed and rotating reference frame, respectively. If Py
represents the steady state circular response of equation (13),
then p, = p, =0, and equation (13) reduces to

K-0M+9C)p, =F, (14)
For simplicity of notation, define
S=(K-2*M+9QC) (15)

as the system dynamical stiffness matrix.

For an N degree of freedom system, equation (14) consists
of N nonlinear algebraic equations. A solution technique for
determining the SFD eccentricities for flexible rotor systems
such as defined by equation (14) is presented by Greenhill and
Nelson (1981). Suffice it to say that as the number of
simultaneous equations increases, the difficulties of con-
vergence and of ensuring that all possible solutions have been
found increase significantly. Recently, McLean and Hahn
(1983) developed a solution technique for determining the syn-
chronous unbalance response of general large order systems
incorporating SFD’s. Their procedure reduces the problem to
solving a set of simultaneous nonlinear equations in the
damper orbit eccentricities of an order equal to the number of
damper coordinates. The technique is valid for all types of
nonlinear supports where the radial and tangential forces are,
for circular motions, functions of displacement and bearing
parameters only. For a flexible rotor bearing system with
multiple SFD’s the procedure is presented below.

Partitioning equation (14) into a set of damper station coor-
dinates, p, and its complement p,, yields

':§cc §cd j, {ﬁc} {Fc }
Ssc Saa Py F,+E,

{%} is the reordered system unbalance force vector (N 1)
d

16)

where

Nomenclature (cont.)

q = displacement vector (fixed frame)
Q = system unbalance excitation and
hydrodynamic force vector (fixed
frame)
R = damper radius
S = system dynamical stiffness matrix
defined by equation (15)
Sr = reduced dynamical stiffness matrix
defined by equation (20)
t = time
TR = transmitted force
(XYZ), (Xyz),
(Xrt) = coordinates defined in Fig. 2
¥, 2 = displacements
e = damper eccentricity ratio=e/C,
p = squeeze film damper fluid viscosity
p = mass density
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= angle between axes OY and Or
angle between axes Oy and Or
spin speed

maximum transmitted load

= disc mass eccentricity

Il

IS @S NN
Il

Subscripts

centering, complementary set
squeeze film damper

index

iteration number

lower limit

circular orbit, steady state

= radial, reduced

tangential

upper limit

= displacement direction

e

NCu~xobhxwun
]

=
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and Ed is the nonlinear hydrodynamic force vector (2ND X 1).
From the upper half of equation (16)

Po=Se'(F.—Seby) 17
which when substituted into the lower half yields
(SueSe'Fe—F4) + (840~ 8485 Sea) B = Ey. (18)
For simplicity of notation, define
P =S.8:'F.~F, 19)
S: =841 =S4c8e"Sca (20)

Equation (18) can then be rewritten as
b, +S.pa=E,(b,p,) @1
Note that
Ed =—=D;py (22)

where D, is an assembled dynamical stiffness matrix from
equation (11) and the elements of D, are functions of the ec-
centricity ratio and damper parameters.

The damper displacement vector p, can then be obtained
from

P, +[S,+ Dy (b,pg)1D,=0 (23)

The damper displacement p, can be solved from the nonlinear
equations (23) using some type of iterative solution scheme
(Greenhill and Nelson, 1981; Hibner, 1975; IMSL) to deter-
mine the damper eccentricities and the associated equivalent
stiffness and damping coefficients. Once the damper displace-
ment vector p, has been found, the complementary displace-
ment p,. can be obtained directly from equation (17). From
these displacements it is easy to calculate the element internal
forces, moments and the forces transmitted through the
bearings.

The magnitude of the transmitted load through a typical
support station (Fig. 1) is given by

IR=(TR,*+ TR H\2 24
where
TR, = (Ky+K.)y—Q(Cy+C,)z (25)
TR, =Q2(Co+C.)y+ (Ko +K,)z

Stability and Sensitivity Analysis

The design of a rotor bearing system is an iterative process
in which the parameters that influence the design performance
are modified until the desired design objective is achieved. It
should be noted that the variation of the squeeze film
parameters can alter the location of peak responses and can
also produce designs with multivalued responses. Whenever
multiple solutions exist, all intermediate solutions are unstable
and the high eccentricity responses usually produce large
transmitted loads. Caution must, therefore, be used with this
type of problem to be certain that the optimization procedure
is applied in a range of values where the solution is in high or-
bit eccentricity and is also stable. The question as to which of
the equilibrium solutions is stable or unstable (in the linear
sense), can be investigated from the eigensolutions of the
linearized perturbation equations as presented by McLean and
Hahn (1984).

Design gradient (sensitivity) analysis plays an important role
in modern structural optimization, since this allows the use of
many of the more powerful gradient-based mathematical pro-
gramming algorithms (Vanderplaats, 1982; Mangasarian,
1972). These derivatives are used in calculating the design
change vector for each iteration. It may be noted that the
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design derivatives are also important in their own right. They
represent trends that are important to the designer in changing
the design estimate (Nelson et al. 1985). Thus, it is important
to carry out the design sensitivity analysis as efficiently as
possible if the algorithm is to be applied to large practical
structures. Arora and Haug (1979) discussed a general pro-
cedure for calculation of design sensitivities that is employed
in the current work. This work generalizes the previous works
by considering the stability and sensitivity in the same model
for the use of obtaining an optimal design.

If the steady state solution p, in equation (13) is perturbed
by ép to p, whereupon F, changes to F(p,p,b), the first order
perturbation equations of motion are given by

! h dF ! A
Moj + (_c+ 2001~ [a—] . )5{) + (K—Q2M+ e
- K—02M+0C

[ w-[Es e

The derivatives in equation (26) are evaluated at the current
design point b, and associated solution p,. Note that the coef-
ficients of 6p, 6p and 6p in equation (26) are constants. The
stability of the equilibrium solutions p, are established by the
eigenvalues of the perturbed solutions 6p from the
homogeneous form of equation (26). If any of the eigenvalues
have nonnegative real parts, the solution is regarded as
unstable in the linear sense.

The steady state unbalance response sensitivity can be deter-
mined by setting ép=6p= 0 in equation (26). Since

op=vpTob, 27

the gradient of the unbalance response with respect to the
design vector, evaluated at the current design point, can be
determined by

wor=(e-orae-[2]) T[], e

For a typical damper, the partial derivatives in equation (26)
can be evaluated in the (7, ) coordinates and then transformed
to the rotating references frame (y, z) by the coordinate

transformation
Ae cosf, sinf, Ay
= (29)
egAd —sinf, cosf, Az

The transformation of the forces is given by equation (8) with
F, and F, established by equations (1), (2). The perturbed
linearized damper stiffness and damping matrices in (y,z) and
(r,%) coordinates are related by:

{ oF {Kyy K, cosf, —sinf,
p |, K, K, 2 sinf, cost,
K. Ky cosfly sinf,
(30
Ky Ko g —sinfy cosf,
dF B SiB; cos, —sind,
|, |B, B, sind,  cosfy
B, B, cosfl, sinf,
(31
B,. B, |b —sinf, cosf,

where
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Optimal Design Procedure

Typically, design objectives for rotor systems include place-
ment of critical speeds (Rajan, M., et al., 1987), minimization
of response amplitudes and bearing loads, optimal choice of
balance planes, and maximization of the onset of instability
speed. In this work we restrict our attention to the minimiza-
tion of transmitted load for steady unbalance with SFD’s. The
damper design parameters are the damper radius, length, and
clearance. The maximum transmitted load to the supporting
structure in the operational speed range is the objective func-
tion that is minimized and is subject to the bounds on the
design variables. The design problem can be formulated as
follows: Find the design vector b to minimize

Y =Max
[0, 071

NS
Y a,TR;(b, b, Q) (36)

subject to

b, <b<b, (37)
L

the q, represent weighting factors and Q; , @, are the lower and
upper bounds of the operating speed range.

The Min-Max design problem can be transformed to a stan-
dard nonlinear programming formulation by replacing the ob-
jective function by an artificial design variable by, , and ad-
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ding an additional contraint g. The design problem is then
written in the standard format.

Minimize
f= by (3%)
subject to the constraints
gt iy (39)
bNV+1
b, <b=<by (40)

Any gradient-based nonlinear programming technique can
iteratively locate a local minimum point to the problem by us-
ing the following four quantities (Rajan, S. D., 1984) at the
kth design step:

(1) Value of objective function; f=byy. ;.

(2) Value of constraint; g= (¥/bnp.)—1.

(3) Gradient of the objective function with respect to the
design variables; Vfi=Vfo= ... =V yy=0; Vs =1

(4) Gradient of the active constraints with respect to the
design variables: Vg;=1/byy,, (0¥/9b)), i=1, 2...NV;
Venvi1= —¥/bipi
All these quantities can be obtained by the previous analyses.
Using these function and gradient values, the solution tech-
nique computes the change in design to determine a new
design point repetitively until the convergence criteria are
satisfied. It is to be noted that the solution obtained may not
be the global minimum. However, the chances of arriving at
the global minimum can be increased by considering several
sets of different starting values for the design parameters. At
the optimum, the objective function value f is equal to the
maximum transmitted load in the operational speed range y,

e., the constraint g is active in optimum.

Numerical Examples

In order to demonstrate the automated design procedure,
two numerical examples are presented. The first is taken from
Gunter [9] and is a single mass centerd by preloaded springs.
This simple system is instructive; however, the primary use of
the design procedure is for large flexible rotor systems. Thus,
a flexible system is also presented to illustrate the ability of the
algorithm to deal with more complicated configurations.

Centered Single Mass System. The physical parameters of
the system are summarized in Table 1.

The operational speed range considered is from 100 to 2000
R/s. For the baseline design, the maximum transmitted load
occurs around 915 R/s and has a value of TR =1669.4 N. Us-
ing the analytical procedure described earlier, a parametric
study of the transmitted load is first carried out to understand
the influence of the damper parameters on the transmitted
load. Subsequently, the damper radius, length, and clearance
are considered as design variables and the results are sum-
marized in Table 2.

Table 1 Design data
m = 33.43 Kg R = 64.8mm R, = 50.0mm R, = 70.0mm
7 = 12.5um = 22.7mm L, = 15.0mm L, = 35.0mm
K, = 2.154x107N/m  C, = 100zm C, =50.0pm C, = 120.0um
4 = 2.66x10-3N-5/m? :
Table 2 Optimal designs
Case <{design variable> R(mm) L{mm) C.(pm) TR(N) Q(R/s)
0 baseline design 64.8 22.7 100.0  1669.4 915
1 & 64.8 227 <59.1> 888.6 1190
2 L 64.8  <35.0> 100.0 839.1 960
3 R <70.0>  22.7 100.0  1616.2 915
4 ¢, ,L,R <70.0> <35.0> <90.1> 1724.9 1110
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Fig. 3 Variation of transmitted load with damper radial clearance
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Fig. 4 Variation of transmitted load with damper length

Case 1: The variation of the transmitted load versus spin
speed with damper clearance as a parameter and all other
variables held constant is shown in Fig. 3. For the lowest value
of clearance shown, 50 um, the journal does not possess a
peak value in the operational speed range. However, the
transmitted load gradually increases with speed to the upper
limit of the operational speed range and has a value of
TR=1202.8 N. When the clearance is increased, however,
peak values appear, and the maximum transmitted load occurs
at different speeds for different damper clearance values. The
optimal design is found to be C,=59.1 um with a maximum
transmitted force of TR =888.6 N at 1190 R/s.

Case 2. Figure 4 shows the transmitted load versus spin
speed with the damper length as a paraneter and all other
variables held constant. It is shown that increasing the damper
length monotonically lowers the maximum transmitted load.
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Fig. 6 Transmitted load for each design case

A jump phenomena can be observed for the lowest value, 15
mm, of damper length.

Case3. InFig. 5, the transmitted load is shown versus spin
speed with damper radius as a parameter and all other
variables held constant. The maximum transmitted load
monotonically lowers as the damper radius increases.

Case 4: The damper clearance, radius and length. are all
considered to be design variables. The optimal design is deter-
mined to be R=70 mm, L=35.0 mm, C,=90.1 yum with a
transmitted load of TR=724.9 N at 1110 R/s. The maximum
transmitted load corresponding to the optimum damper in
case 4 is less than that corresponding to the optimal designs of
the other three cases. This optimum design reduces the max-
imum transmitted load by 57 percent compared to that cor-
responding to the baseline design. The results of the optimiza-
tion study are summarized in Table 2 and Fig. 6.
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Table 3 Rotor configuration data

Element!? Length

(cm)

4.27
4.62
1.60
9.68
.46
16.51
15.24
15.24
15.24
10 15.24
11 14.93
12 7.92

OO NP WN -
]

'E = 20.69x10% N/cm2

Inner radius

Outer radius

(cm) (cm)
1.42 2.95
1.42 2.95
1.42 2.95
1.42 2.95
1.96 2.95
2.69 2.95
2.69 2.95
2.69 2.95
2.69 2.95
2.26 2.95
1.42 2.95
231 2.95

p = B193 kg/m3

Table 4 Rotor concentrated disc data

Station Mass
No. (kg)

N OV

Table 5 Rotor bearing data

Station Stiffness Damping
No. (N/cm) (N-s/cm)
3 17,510 0
6 969,500 0
13 133,680 0
Table 6 Baseline and bounds on the damper parameters
R = 50.8mm R, = 44.45mm R, = 57.15mm
L = 25.4mm L, = 20.32mm L, = 30.48mm
C, = 152.4um C, = 76.20zm C, = 254.0m
L U
I ——~ Fem)
CCOr——— ——

Fig. 7 Rotor schematic

Flexible Rotor Example. A flexible rotor system is taken
from Rajan, M., et al., (1987) as a second example. The rotor
is modelled as a 13 station (12 element), 52 degree of freedom
assembly with station locations as indicated in Fig. 7. Details
of the rotor configurations and material properties are listed
in Table 3. The rotor includes four rigid discs located at sta-
tions 1, 4, 5, and 12 with mass properties listed in Table 4. The
rotor assembly is supported on a rigid foundation by isotropic
undamped bearings with properties listed in Table 5. An SFD
is included in parallel with the support stiffnesses at stations 3
and 13. The baseline and bounds on the design values for these
two dampers are listed in Table 6.

The unbalance distribution for the rotating assembly consists
of a cg eccentricity of 10.16um for the concentrated disc at sta-
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Polar Inertia
(kg-cm2x10-2)

11.38 19.53
7.88 16.70
7.70 17.61

21.71 44.48

Diametral Inertia
(kg-cm2x10-2)

9.82
8.35
8.80
22.24

(0]
w3= 1602 rad/s \

MODE 3

(0]
w2=690 rad/s
MODE 2
-1
|
w, = 446 rad /s
(0]

MODE |

Fig. 8 Critical mode shapes

tion 12. The first three undamped forward synchronous
critical speeds are 383, 690, and 2300 R/s and the modes
shapes are shown in Fig. 8. The operaticonal spin speed range is
selected to be 100 R/s to 2000 R/s which includes the first two
critical speeds. By inspecting the mode shapes associated with
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Fig. 9 Transmitted load at station 13

the critical speeds, it is seen that an unbalance load at station
12 will have a larger influence on the bearing load at station 13
than on the other bearings. Thus, the objective function is
chosen here as the transmitted load at station 13. Other
choices, such as the sum of the loads at all bearings, could be
used with only a slight increase in computational burden. For
the baseline design, the maximum transmitted load occurs
around 710 R/s and has a value of TR = 1204.7 N. Two design
cases are presented. For the second case, the radial clearance,
radius, and length of each damper are considered as design
variables.

Case I: The only design variable in this case is the radial
clearance at station 13 and the optimal design is found to be
C,=76.20pm and corresponds to the lower bound of the
design variable range. The maximum transmitted load shifts
from 710 R/s to 780 R/s and lowers to a value of 344.9 N.

Case 2: For this case, the radial clearance, radius, and
length of each damper are considered as design variables and
the optimal design is determined to yield the following set of
variables:

C,, =145.1pm C,, =81.10pm
L, =26.54mm L, =30.31mm
R, =51.56mm R, =57.03mm

The maximum transmitted load is found to be 286.3 N near
850 R/s. The optimum damper design reduces the maximum
transmitted load by 71 percent in case 1 and 76 percent in case
2 compared to that corresponding to the original design. The
transmitted load versus spin speed at stations 13 and 3 for the
baseline and two design cases are shown in Figs. 9 and 10,
respectively. The results clearly show the influence of the
damper parameters the transmitted force to the bearing
supports.

Conclusions

The optimal design of squeeze film dampers to reduce the
transmitted forces using optimization techniques has been
presented. From the results of these investigations the follow-
ing conclusions are drawn:

(I) The application of nonlinear programming techniques
to the optimal design of squeeze film dampers in rotor-bearing
systems can be achieved by setting up the problem as a min-
max optimization problem.
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(2) As the system is nonlinear it is capable of having multi-
ple solutions for a given set of design variables. The problem
of the optimal solution converging to an unstable solution is
avoided by investigating the stability of the solution at in-
termediate design points during the optimal search and by
limiting the design parameter set to high orbit eccentricities
which normally correspond to stable solutions. If the search
should tend to converge to an unstable solution the design
iteration would need to be repeated with a different set of in-
itial system parameters.
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