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Transient Response of Rotor-Bearing Systems

The equations of motion necessary to calculate the transient response of a multimass
flexible rotor supported by nonlinear, damped bearings are derived from energy princi-

tion, nonlinear forces due lo any number of bearing or seal stalions, and gyroscopic
couples developed from skewed disk effects. The method of solution for transient re-
sponse simulation is discussed in detasl and is based on extensive evaluation of numerical
methods available for transient analysis. Examples of the application of transient re-
sponse for the analysis of rolor bearing systems are presented and compared to actual
machine performance. Recommendations for the use and extension of the present sys-

Rotor excitation may be the result of tmbalance, internal friction, rolor accelera- .

tem simulation model are discussed.

Introduction

THE field of rotor dynamics is becoming of increasing
importance in the rotating equipment field. This is due in part
to the increased demand for reliable machine performance and
reduced maintenance over long periods of operation and under
variable operating conditions. The cost of experimental testing
makes it practical to consider computer simulation to verify rotor
bearing system designs without the necessity of building each de-
sign variation considered. Rotor dynamics consists of the study
of the following major areas of concern.

1 Undamped critical speed analysis.
2 Steady-state response to imbalance.
3 Methods of calculating the residual imbalance in a given

Contributed by the Vibration and Sound Committee of the Design
Engineering Division of THE AMERICAN SOCIETY OF MECHANICAL
ENGINEERS for presentation at the Design Engineering Technical
Conference, Cincinnati, Ohio, September 9-12, 1973. Manuscript
recei'ged at ASME Headquarters, June 6, 1973. Paper No. 73-Det-
102,

Copies will be available until June, 1974.

rotor.

4 Stability of rotor-bearing systems as a result of the calcula-
tion of damped critical speeds or by the application of stability
criteria (such as the Routh criteria).

5 Transient rotor response to imbalance and external forcing
functions in addition to detailed studies of self-excited transient
behavior.

The transient response analysis of rotor-bearing systems is the
most inclusive approach to system analysis since it can be used to
obtain information on critical speeds, forced response, stability,
impact, and shock loading for systems that have nonlinear force
deflection characteristics. The practical usage of a transient
response program, however, limits its purpose to the latter three
areas of concern. Stability in the usual sense refers to the solu-
tion of the dynamic system complex eigenvalues to determine the
exponential growth (unstable) or decay (stable) rate. Transient
solutions allow this concept of stability to be extended to systems
acted upon by varying levels of imbalance. Effects of impact
loading arising from blade loss is accurately studied only by a
complete time transient solution of an appropriate rotor-system
simulation model. Shock loading to the bearing support struc-
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tures may be similarly studied in detail by transient simulation.
Recently reports on the development of transient response tech-
niques [1, 2]! for flexible rotors appeared in the literature. Pre-
vious investigations had dealt with single plane analysis of rigid
rotors in fluid-film bearings [3-5]. The present analysis presents

" a discussion of the complete dynamical equations of motion of a

flexible rotor shaft using the entire set of flexibility influence co-
efficients. This is an extension of the analysis of Shen [1] who
formulated the problem using only the transverse deflection in-
fluence coefficient with approximate gyroscopic moment contribu-
tions. The following analysis makes use of the total flexibility
matrix to formulate the equations of motion in terms of four de-
grees of freedom for each rotor mass station. The option to re-
tain gyroscopics only at selected stations where the effect is
dominant is easily accounted for in the solution technique.

The present formulation allows many nonlinear effects to be
studied in regards to their influence on the dynamic response of
flexible rotors. The imbalance response of rotors supported in
multilobe or tilting pad bearings is readily obtained. 1n addition
the effects of fluid-film dampers on rotor performance may be
investigated. Two brief examples of transient simulation for
rotor-bearing analysis are given to demonstrate the usefulness of
the approach for analysis of high-speed rotor-bearing response.
Recommendations for the use of the simulation model are sum-
marized in the conclusions and are based upon extensive evalua-
tion of the numerical methods available for transient response
analysis.

Description of Simulation Model

The large class of rotating machinery operating near or above
their first bending critical must be analyzed under the general
field of study known as flexible rotor dynamics. A typical rotor
in general has multiple bearings and the rotor shaft may have
disks or impellers located inboard and outboard to the main
The continuous rotor shaft may be regarded as a
series of concentrated mass stations connected by massless elastic
shaft. For practical purposes the gyroscopic effects should be
included in the analysis of overhung rotor stations but may be
neglected in some cases for rotor stations inboard of the niain
bearings. Although the notation flexible rotor is appropriate, the
deflections considered are small in comparison to the dimensions
of the rotor and simplified equations for the rotor shaft mechanics
may be incorporated into the analysis.

Fig. 1(a) represents an idealized rotor system reduced to the
model used for the analytical description. This analysis will
consider the rotor to be supported on two main bearings which
may in turn be elastically mounted. Any number of additional
bearings or seals may be incorporated in a given analysis.

1 Numbers in brackets designate References at end of paper.
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Fig. 1 (a) Multimass rofor simvlation for analytic modeling; (b) de-

flection nomenclature for a multimass flexible rotor

The rotor station deflections will be denoted by the deflections
relative to the main bearing center line (ui, ;) and also by the
corresponding absolute deflections (z:, y:). These are shown in
Fig. 1(b) for the y-coordinate deflection in the y-z plane. The
relative and absolute angular displacements for the 7th rotor sta-
tion are also shown in Fig. 1(b). Angular displacements of each
disk will be denoted by the angles 8,, which is a rotation in the
y-z plane about the negative z-axis and 8, which is a rotation in
the z-z plane about the positive y-axis.

A cross section of the ith mass station is given in Fig. 2 which
indicates a possible whirl configuration for the eccentric disk at
some instant of time. The absolute and relative deflection
nomenclature for the station geometric center, o, is illustrated
and the displacements of the bearing support and journal are de-
noted as (X,;, V) and (X:, ¥:), respectively. These deflections,
which represent the rigid rotor center line and support center line
at this instant in time, are referred from the first bearing location

Nomenclature
l; = length to ith station (zs, ys)12 = bearing station displace- B;. = angle between mass sta-
along rotor shaft ment tion eccentricity.vec-
m; mass of ith rotor station (Xm, Py, column vector of station tor and maximum
=Wi/g accelerations skew line in disk
my, My, mass of first and second a;j flexibility influence co- - ¢ = angular relation of mass
bearing stations efficient (deflection/ eccentricity relative
N rotor speed, rpm load) to a reference point on
(P., Py); = external forces at ith ro- B:j flexibility influence co- shaft
tor station efficient (deflection/ .. 7 = skew of ith rotor station
Q: = aerodynamic excitation couple) (8, 8,); = relative angular motion
at ith station ¢i; = flexibility influence co- at 7th station
t = time variable efficient (rotation/ {0z, 8,): = absolute angular motion
(u, v) relative displacement at load) at 1th station
ith station v:; = flexibility influence co- (6., 6,m); = column vector of angu-
(z, )i absolute displacement at efficient (rotation/ lar rotations
1th station couple) w = rotor speed

Transactions of the ASME
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as follows:
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Similar expressions hold for the y-coordinate deflections referred
to the ith station.

The relative deflections of the mass stations are assumed to be
small so that linearized gyroscopic moments may be used in the
equations. The flexibility influence coefficients for the rotor
shaft are assumed to remain constant for the order of approxima-
tion being considered. Rotor motion in the axial direction is as-
sumed to be negligible and the system is assumed to be torsionally
rigid.

Equations of Motion

Rotor Equations. The equations of motion of a flexible rotor may
be written in terms of the well-known flexibility influence coef-
ficients which are easily derived from simple beam theory for
stepped axisymmettric rotor shafting [6]. The resulting equation
may be expressed in the following matrix notation (see Appendix):

X A{B) [ F.»
Liw) - [53]) (&%) @
48 AiB) 1 [Fym
[iz] - [65][6%) @

These equations express the absolute acceleration of the rotor
stations in terms of the matrix product of the inverse of the modi-
fied flexibility coefficients and a column vector of displacements
calculated by taking into account all forces acting on the shafting.

The external forces and moments acting on the shaft may be
the result of any combination of the following excitations:

1 Rotor imbalance at each station which i:sults from ec-
centric or warped shafting.

2 Aerodynamic excitation created by blade-tip clearance
variation around the circumference of the rotor span [7].

3 Internal friction damping caused by shrink-fits, bolted sec-
tions, and to a lesser degree, in various other rotor shafting (8, 9].

4 Gyroscopic moments created by whirling massive stations
that include contributions due to steady synchronous whirl as
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well as couples caused by rotor acceleration and skewed disks
[6, 10).

5 Shaft absolute damping created by windage and interaction
with the working fluid of compressors or turbine stations.

6 TForces created by hydrodynamic fluid-film bearings and
seals along the rotor shaft.

Bearing Equations. The previous equations are all that are
necessary when considering a flexible rotor on two rigid bearing
supports. If the bearings or supports are allowed to have flexi-
bility, then additional information must be obtained to solve the
resulting dynamic system. The necessary equations are ob-
tained by considering total shaft moments about the bearing sup-
ports and are expressed as follows:

1 n n
{(B.F.),, + b —a (Z Cy; + Z P, (l: - a))}

Zy, =
My i=1 i=1
(5)
juy = — (B.F.) +——1- nC "Pl-
yh—m,/, Hedv T T l;] I;‘+i§1 vi{li ~ a) }
(6)
= (BF)+—1-— nC+MPb I}
s, = man L)z b—a - 'gl Vi igl :.’( - i)
(7)
sy = —— (BF)+'—1— —nC nPb L
Yo = ma, L)y b—a El =i + 121 vilb — L)
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Bearing and/or seal forces at stations other than the foregoing
two bearing stations enter the solution by equations (3) and (4).

Support Equations. When the bearings are supported by flexibly
mounted structures, the equations of the supports are readily de-
duced by a force balance on the bearing support structure. Iso-
lated support structures are most easily handled but more com-
plex representation which would account for continuous case
structure may be formulated using rigid-body equations of mo-
tion. If the case structure is flexible then equations similar to
equations (3) and (4) would be formulated for the case structure
and solved concurrently with the rotating structure member
solution.

Method of Solution

The rotor equations of motion as presented in equations (3),
and (4) are expressed in terms of absolute acceleration rates and
are thus in the proper form for application of standard integration
procedures. The solution of the initial value problem may be
calculated for consecutive time steps if all displacements and
velocities are known at some reference time, 4. These initial
displacements and velocities allow the acceleration rates of all
coordinates at the reference time to be calculated which then
allows the velocities and displacements at time ¢, + At to be
calculated.

Standard procedure is to either

1 Consider all coordinates at zero condition and introduce
external forces to drive the system either to a steady-state solu-
tion or in a sustained transient whirl mode of vibration.

2 Calculate the system steady-state conditions (by Prohl-type
solution) and start the solution near these calculated conditions.

The latter would be desirable for studies of stability of forced
response and the former for studies of blade loss impact or for
arge perturbation stability studies.

The acceleration rate of the rotor shaft is accounted for in the
transient solution by calculating the speed at each time step from
specified angular acceleration rates. Thus

¢
W = wy_p + f
t—at

wdt 9)
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Fig. 3 Euler's integration procedure showing velocity and displacement
compared o exact solution for a damped spring-mass system

For a constant acceleration rate, this is simply expressed as

W = w_a + @At (10)

The external torques may also be specified to allow the angular
acceleration rate to be calculated.

The equations of interest are second-order differential equa-
tions of the general form

d’z.-
di?

= f(X™, Y™, Xtm Y, 6., 6,m, é:(m)’ 6, = F (11)

The solution of this type equation is then obtained as the solution

\_f two first-order equations; that is,

av; -
= F

— = 2
dt (12)
dz‘

— =V 1
dt v (13)

Numerous numerical schemes have been investigated for solu-
tion of rotor dynamics time transient simulation. The methods
are classed as either (@) self-starting procedures or (b) predictor-
corrector procedures (these require a starting procedure based on
type (a) to begin the solution).

The most basic self-starting method is simply a Taylor series
expansion truncated after two terms which is known as Euler’s
method. When this concept is applied to the foregoing equation,
the result is as follows:

Vilt) = Vit — At) + AtF
zi(t) = zi(t — At) + AtVi(2)

(14)
(15)

Fig. 3 compares the Euler solution of a simple negative damped
spring mass system. Both the Euler and the exact solutions are
on the plot and only a very slight deviation from the exact solu-
tion is evident after seven cycles of response. Both velocity and
displacement are plotted on the same graph for the Euler (dashed
line) and the exact solution (solid line).

More elaborate equations can be developed by using finite-
difference methods. Other self-starting equations are second-
order Runge-Kutta, fourth-order Runge-Kutta, and sixth-order
Runge-Kutta. The more elaborate the integration scheme, the
more time is required for each time step solution. The time of

. “~—"solution must be at a minimum while retaining accuracy and

ence the simpler schemes are very attractive if their accuracy
.an be assured.
The predictor-corrector equations are applied in an iterative

manner until they agree to within desired limits at the given time
t, then the approach is repeated for the next time increment.
The Milne predictor-corrector pair and the Hammings method
have each proven to exhibit high levels of numerical instability
when used for the solution of rotor bearing transient response.
Some success has been achieved using the Adam’s predictor-
corrector formulation:

Predictor:

Vilt) = Vit — At) + %t (55 F(t — At) — 59 F(t — 2At)

+ 37F(t — 3At) — 9F(t — 4Ar)) (16)

Corrector:
At "
Vit) = Vit — At) + 21 OFQ) + 19F@¢ — At)

- 5F({t — 2At) + F(t — 3At) (17)

The foregoing equations are typical of the predictor-corrector-
type formulations. The proper choice of the method of solution
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sponse

is very difficult and has proven to be dependent upon the par-
ticular problem being solved. As an example, while testing
several of the methods on a simple sine wave, the Milne equation
gave excellent results. However, upon applying the same
method to rotor-bearing equation, violent oscillations occurred
indicating numerical instability whereas the Euler equation with
comparable time step gave very smooth response prediction.
Fig. 4 gives an indication of the numerical instability which may
be encountered in a predictor-corrector-type solution and Fig. 5
gives the same response as calculated by a fourth-order Runge-
Kutta procedure. Oscillations appear first in the acceleration
(force) calculations and are smoothed out by integration so that
the displacements are the last quantity to show instability
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(numerical). Therefore, checks for numerical instability should
be made on the acceleration calculations and not the displacement
calculations. Other forms of instability may appear in multi-
degree-of-freedom systems. For these systems the transient
solution allows the response to contain vibratory motion that is
composed of contributions from each natural mode. Hence, if
shock excitation excites a very high-frequency response and the
time step is not sufficiently small to accurately track this motion,
then the solution may grow in an unbounded response. Improper
starting conditions of either amplitude or phase relationship can
excite this type of numerical instability. For example, an over-
hung turbine location having unnatural initial conditions excited
the motion as shown in Fig. 6. The overhung turbine had been

3



VERTICRL ROTOR

Fig. 8 Journal orbit of a balanced vertical rotor for 10 cycles showing
exponential growth of holf-frequency whirl

excited at its angular natural frequency which was 10 times
running speed and the solution process was given time steps small
enough to track only synchronous excitation. The correct
-solution is indicated in Fig. 7 where two complete cycles of
'numerically stable solution was calculated using a reduced time
step increment.

Extreme caution must be exercised when the system simulation
model is being developed. The model should include only the
degrees of freedom necessary to give the dynamic response in-
formation at the particular running speed range being investi-
gated. High-speed simulation is best suited to transient response
and allows many degrees of freedom to be included in the simula-
tion model. Low-speed simulation requires that either (a) the
degrees of freedom be reduced to avoid numerical difficulties or
(b) extremely small time steps be used to assure a valid solution.

The results of the many cases run to date indicate that the
simple Euler integration scheme is well suited to rotor dynamic
transient response calculations. The addition of a time step
change option to allow initial impact transient tracking with
small time steps and gradual time-step increases as the motion
“smooths out”” would make the scheme very attractive for sys-
tems having nonlinear fluid-film bearings. The fluid-film bearing
calculations can be very time-consuming and the more elaborate
integration schemes require multiple force calculations for each
time step.

The fourth-order Runge-Kutta integration method is also very
attractive for rotor simulation and has been used with success
for multiple-degree-of-freedom systems.

Regardless of the scheme used for solution generation there is a
need to check at all times for possible numerical instabilities
which appear in the acceleration calculations. Smooth accelera-
tiun rates are generally a good sign of accurate dynanic sitnula-
tion.

Test cases run to date indicate that a time step small enough
to give 100 increments per cycle of possible response frequency
.is necessary to assure an acceptable solution for shock load con-
ditions. Synchronous response requires only 100 steps per cycle
of running speed and would be sufficient for verification of small
perturbation stability boundaries.

VERTICAL UNBALANCED ROTOR

Fig. 9 Journal orbit of vertical rotor with required imbalance to force
system to synchronous response

Examples of Transient Response for Rotor Simulation

The useful purposes of transient simulation were outlined in the
Introduction. The following two example cases are given to
illustrate the usefulness of transient analysis in rotor bearing de-
sign and analysis of system performance.

Example 1. The full journal bearing is known to be stable while
operating in the horizontal (loaded) position up to a known sta-
bility threshold at which condition the well-known half-frequency
whirl is excited [5]. The unloaded (vertical) full journal is known
to be completely unstable except for the dead center position.
Any slight disturbance will initiate an unstable whirl motion.
This condition is shown in Fig. 8 where the journal orbit of an un-
loaded bearing is spiraling outward in the clearance circle with a
half-frequency whirl as indicated by the timing marks on the
orbit path which represent consecutive cycles of running speed.
The introduction of a given imbalance level gives a response as
shown in Fig. 9 where the motion is observed to be composed of
both a synchronous and half-synchronous component with the
motion tending toward a stable synchronous orbit. This fact
could not be predicted from standard stability criteria but is
readily studied by transient simulation.

Example 2. Fig. 10 illustrates the motion obtained on an over-
hung centrifugal compressor which exhibited instability due to
aerodynamic forces. The rotor was supported by ball bearings
mounted in flexible supports. The figure represents the experi-
mental rotor motion obtained by the use of inductance probes at
the compressor and coupling ends. Notice that the rotor passes
through two resonant speeds at 17,000 and 35,600 rpm. It is of
interest to note that at the lower critical speed, a superharmonic
oscillation with small excitation of the second critical speed was
oblained. The second critical speed was not cxoited when in-
creasing in rotor speed, but only when the rotor was decreasing
in speed. When the compressor discharge pressure ratio was
increased at 52,000 rpm, the rotor went into a self-sustained whirl
instability which increased with the loading on the compressor
wheel until destruction resulted. Fig. 11 represents the rotor
orbits for increasing values of pressure ratio as observed on a scope

as the test was in progress.

Transactions of the ASME
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Fig. 10 Amplitude of motion of an overhung centrifugal compressor
from O jo 52,000 rpm

To analyze this motion, critical speed calculations of the
flexible rotor were obtained for various values of bearing stiffness.
For the flexible support stiffness of 60,000 1b/in, the predicted
critical speeds were 17,500 and 35,200 rpm. The rotor syn-
chronous response was evaluated by assuming values of imbalance
at the compressor and coupling. The predicted rotor ampli-
tudes at the compressor and coupling due to imbalance was
similar to the experimented data below 52,000 rpm. However,
the steady-state response calculations could not explain the whirl
as observed experimentally. In order to evaluate the nonsyn-
chronous rotor whirl motion observed at 52,000 rpm, the complete
transient motion of the flexible rotor was evaluated by computer
simulation. Fig. 12 indicates the transient orbit which was ob-
tained when a fixed level of aerodynamic excitation was intro-
duced into the simulation model. The motion is very similar to
the experimentally observed orbit pattern and hence it was
verified that aerodynamic coupling was the likely cause of the
instability in the compressor. At this point in the analysis the
transient response computer code could be used to design a
damped support system to suppress the instability [6].

Recommendations and Conclusions

The results given in the very simple example rotor systems
demonstrate some of the capabilities of the transient flexible
rotor response theory. While it would be very desirable to treat
a large number of rotor stations (i.e., 50-100), many numerical
difficulties arise immediately which prohibit unlimited extension
of the number of stations monitored. The analysis incorporates
an inverse routine for the modified total flexibility matrix which
must be nonsingular and well conditioned. An ill-conditioned
flexibility matrix indicates that a lesser number of stations would
be valid for system simulation. Hence proper selection of the
rotor stations is essential to the solution process. The number
of stations allowable is dependent on the relative flexibility of the
shaft, the mass and gyroscopic properties, and the speed of opera-
tion relative to the system criticals.

The one other point of concern in the solution process is the
accuracy of the time integration scheme and the required time
step for numerical stability. The numerous cases run to date
indicate that a time step capable of accurately tracking the
highest natural frequency in the system is essential for impact
loading studies. The initial transient solution is composed of a
summation of all the modes of the system and hence the solution
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Fig. 11 Compressor motion at 52,000 rpm under increasing discharge
pressure ratio

process must be able to account for all such motion accurately.
The inclusion of undamped angular degrees of freedom have
caused numerical stability problems which can be avoided by the
addition of small amounts of damping for the shaft angular de-
grees of freedom.

The system solution for a single shaft is readily extended to a
multiple shaft rotor-bearing system. Each shaft would be char-
acterized by its own flexibility matrix and the resulting solution
would require N such flexibility matrices for an N shaft system.
The boundary conditions and shaft in/terconnecting specifications
would enter the solution on the right-hand side of equations
similar to equations (3) and (4).

The following major conclusions have been drawn from the
application of the theory as presented:

1 Multimass rotor transient simulation may be obtained from
the theory as developed in this presentation. Rotors consisting
of flexible spans and nonlinear bearing characteristics may be
analyzed for stability, steady-state response, and impact loading.

2 Studies of the effect of cross-coupled aerodynamic forces on

1



DAMPED TRAANSIENT MOTION OF 6N UNBALANCED ROVOR
UNSTRBLE
N = 52000 APM

INITIAL CONDITIONS
X= 0.00 Y =
0.00

0.00

DY/DT = 0.000

5,000

Y-DIR.
0,000

~2,000

~4,000

o
L5000

T T T T
~2.000 0.000 2.000 %.000

X-BIR.

T
000 6.000

Fig. 12 Transient response of compressor obtained from ter
simulation of aerodynamic instability (N = 52,000 rpm)

¢ OF REFERENCE
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rotor shafts may be simulated by calculating @ terms for selected
rotor stations by equations similar to those of Alford {7] or by
assuming certain levels of aerodynamic excitation.

3 Blade loss studies for multibearing rotor systems composed
of multimass flexible rotors can be studied for maximum force
transmission and rotor shaft bending.

4 Proper selection of solution time increment is essential to
the numerical stability of the solution and should be small enough
to properly track the highest frequency in the system when
studying impact loading (At = 2w /(100.0 @Wec/highest))-

5 Extension of the analysis to include additional fexible

rotor shafting or case structures can be formulated by the present .

theory. Since the initial conditions on displacement and velocity
must be specified to start the solution, no complex boundary
condition criteria need be formulated as is necessary for steady-
state solution of interconnecting shafting.

6 Extensive experimental testing on scale rotor dynamics rigs
must be carried out in conjunction with computer simulation to

develop criteria as to the degree of participation of higher and lower
modes in the response to impact loading such as that caused by
blade loss.
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APPENDIX

A flexible rotor shaft may be represented as a series of stations
such as the isolated disk shown in Fig. 13. The equation for ex-
ternal loading due to transverse loads and moments may be
derived for each station by application of energy methods. The
total kinetic, potential, and dissipative energy for the ith rotor
station are expressed as follows {6, 10]:

Kinetic Energy

T: = ‘-lgm<(x — ewsin (W + ¢)? + (§ + ew cos (Wt + ¢))?)
+ 3 p(0:6, — 8,8:) + 3622 + 6,
+ %2 (Ip(1 — 72) + Ipt?) + 77 — Ip)(f: cos (wt + ¢ + B;)
+ 0, sin (@t + ¢ + B»)}V (18)
Potential Energy
Vi = {$K@? + y?) + $2(0:2 + 0,2)}: - (19)
Dissipative Energy
D; = {}e(@ + 97) + CI(? + o + 2w(vu — up))
+ Qi — zy) + Cs(6:* + 6,2} (20)

The equation of motion of the isolated station are easily derived
from Lagrange’s equation

oT be] 1% oD
d <_) or — = generalized force|,

= - e 1)
dt \ o¢ [} og Y}

These equations applied to the foregoing energy terms would then
represent the total force balance on the system with the exception
of the flexible shaft influence. The total loading at the 7th sta-
tion in the g-coordinate direction may then be expressed as

. d faT oT
External loading|, = — 7 b—q + %

- ﬂ’ — 92 + (Generalized forces) (22)
9 9

For example in the z-direction:

d [oT; + oT; oVi oD; + Pa =
T dt\ oz oz; ox; Oty =

where ., = external nonlinear forces developed by shaft reaction
with surrounding structures (bearing, seals, etc.).
For the 6. ~coordinate

_d a_T_i)Jr
dit \ 24,

Similar equations hold for the y; and — 8, ~coordinates and are de-
noted as Py, and C.,, respectively.

P, @3

(24)
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The equations of motion including the flexible shaft are then
written in terms of the flexibility influence coeflicients by express-
ing the relative deflections and angular rotations as follows:

ui = aijPz; + BiiCy; (25)
vi = aijPy; — BiiC; (26)
b, = @iiPs; + vi;Cy; (27)
by; = @i;Py; — YisCa; (28)
where
P.; = (—m& — ¢t — Kz + mew? cos (wl + ¢)
+ meb sin @ + @) ~ Cli — wCly — Qy + Fa);
= — mi& + Fo; (29)

Py; = (—mj — ¢y — Ky + mew? sin (i + ¢)
— mew cos (Wt + ¢) — CIp + wClu + Qz — W + £
= —-m;g; + F,; (30)
C.; = (U0, — wlpl, — %Ipu':o,,,“— (Ip — IT)yrw® X
sin (@l + ¢ + Br) iﬂb(lp — Ir) cos (Wi + ¢ + B:)

+ Cob, + %0,); = Ir,6,; + Hz; (31)

Cy; = (—I18. — wIpb, — }Ipile) 5
+ (Ip — Iryrw? cos (@ + ¢ + B;)
— mb(Ip — I7) sin @t + ¢ + Br) — Cof: — X0bc);
I" = —ITézj + ij

By removing the inertia terms from the foregoing equations, the
acceleration terms may be expressed as a product of known
values for each time step. "The equations are expressed as

(32)

4 B 0 07|[X= Fm
fi_ (m) RO
0 0w B||de| e @
0 0 c D 6,m™ o,m
A = aum; (34)
Bi; = Bilr; (35)
where
Cij = @im; (36)
Di; = vir; (37)
with
rzl‘l [yl_l 6., by,
T2 2 .
Ro=l" 1. Pw=!"1 fm=1" 1 fo=
Lz,. ¥ G- L%,.
and (38)
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F—ul + aiF.; + Bl

Fm = . 39)
| —u. + ;anﬂ’z;' + BniHy;
"—én + 01,55 + v Hy;]

0.m = (40)
[ 0., + @n;Fei + VuiHy;
F—vl + %y — Bl

Py = ' 41)
L.~V + @n;y; — Bnin,-_J
F—0,, + @5, — Y158z

o,m = ' (42)
L~ 0y + @niFui — YnsHe,

This formulation then gives the complete equations of motion
necessary to express the total dynamic response of the torsionally
rigid, flexible, multimass rotor.
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