V. CASTELLI

Columbia University,

New York, N. Y., and

Franklin Institute Research Laboratories,
Philadelphia, Pa.

J. T. McCABE

Franklin Institute Research Laboratories,
Philadelphio, Po.
Assoc. Mem. ASME

Transient Dynamics of a Tilting
Pad Gas Bearing System

A method for obtaining the performance characteristics of a rotor-tilting pad gas lubri-
cated journal bearing system by solving the appropriate dynamics equations together
with the time-transient Reynolds’ equation is outlined. Results for a 4 degree of freedom
and an 18 degree of freedom system are given.

Comparison with steady-state and

experimental resulls are also discussed.

Introduction

THE WORK presented in this paper was motivated by
the necessity of evaluating performance characteristics of a space
power rotor system. Many design considerations, among which
are self-alignment and excellent probability of stable operation,
dictated the selection of tilting pad bearings. After the basic
design was established from steady-state analysis of the load
capacity, power loss, minimum clearance, and thermal transient,
a need was felt for an investigation of the complete system
dynamics.

The configuration under study contained a rigid rotor sup-
ported by two bearings with three pivoted shoes each. One of the
shoes on each bearing was riding a spring-loaded pivot. (Some
results are also given for the dynamical characteristics of a shaft
and a single-pivoted pad bearing.)

Neglecting the yaw of each pad, eighteen degrees of freedom
were necessary to describe the motion: Two translations and two
tilts for the shaft, roll and pitch of each shoe, and translation of
two pivots along pivot axis.

The bearing forces in each pad were evaluated by integration
of the lubrication equation with full account of geometrical and
pressure transient terms. The forces were used in the dynamic
equations for all degrees of freedom involved. The entire time
history of the motion of each part of the system subsequent
to arbitrary initial conditions was obtained and examined for
stability, frequency response, steady-state characteristics, and
sensitivity to unbalance.

The detailed treatment of both the lubrication equation and
the system dynamics is presented in the following since it can be
of interest, for related studies.
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Dynamies
Shaft Dynamics

The shaft is assumed to be a rigid body and its motion identified
with the motion of the geometrical axis, The kinematic para-
meters involved are shown in Fig. 1. A reference stationary co-
ordinate system is selected so that the z-y plane contains the shaft
mass center. The thrust bearings restraining the axial motion of
the shaft are assumed to exist but are not considered in the sys-
tem. Inthe present system the unbalance is considered as an ex-
ternal load caused by a point mass (m;) attached to the surface of
the shaft in the cross-sectional plane containing the center of mass,
and two equal masses (m,) attached to the surface of the shaft
each at a distance p, from the aforementioned plane and located
symmetrically with respect to the mass center. Upon rotation a
force F, and a moment M, at the mass center are generated

(Fig. 2) which revolve synchronously with the shaft. The
magnitudes of the unbalance force and moment are
IFu' = Rmzﬂz (1)

CENTER OF MASS

SHAFT AXls]\

LubS-3. Fig. 1 Journal coordinate system
Nomenclature
A = aL/c G = 21,/I; L = axial width of shoe
A = oL/c I, I, = shaft polar and transverse k = preload spring constant
p.RL moments of inertia M, = unbalance moment = 2m,R-
B = me (2/2)? Iy', I»' = shoe pitch and roll moments pull?
: . m = shaft mass
. . of inertia
¢ = radius of shoe—radius of . m' = mass of shoe
shaft I = PlIL® . my, mz = shaft unbalance masses
¢’ = radius of pivot circle—radius 1,e(2/2) 6 = angular coordinates meas-
of shaft _ paleiL ured from —y axis in the
D = d/R fa = (Iu' — m'pg )>< (B/e) 2/ direction of shaft rotation
. 0, = 6atapivot
d = distance from face of shoe to _ DL’ . y - .
pivot point Ir = 71 U X (L/eX2/2) P = p/:l:re{}pa = ambient pres-
F, = unbalance force = Rm)? K = ke/psRL (Continued on next page)
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M| = 2m.Rp 2 (2)

The angle between F, and M, is called ¢,,.
The translational motion of the center of mass is governed by
the equation
dr .

—r, =F 3
me (3)

where ., = 2,4 + y.j the two-dimensional vector position of the
shaft mass center and f is defined as

F=fi+fij

z 2, (sin 6] z
f{y} = kZ=:1 ff (p — pa) 10050}Rd0dz +‘w {y}
sk

cos Q¢
- Q2 4)
maft {sin Ql}
where 2, = number of bearing pads.
Equation (3) can be made dimensionless by dividing by
me(§2/2)2

a )X, L2 sin 8
in -2 [2 Jf e =o iz ame
. 8k
E sin 27
— 5
+W{y} Uf{cos2T}] ®)

The angular motion of the shaft is governed by

dH .
E— = M = total external moment (including unbalance) (6)
where
H = I,wi; = angular momentum about center of mass
I;; = inertia tensor about the i, axis
© = total angular velocity of shaft

If the i; axis coincides with the shaft axis
jij =0 (7)
Iy = 8l

Igy=Ien=1;1sn=1,

(no sum)

(8)
where (1), etc., refers to ¢ = j = 1, ete.
Selecting the angular velocity of the Z; system to be
X = © — wsiy 9)
equation (6) becomes
M, = I + 1w
My = Ipan — Lows (10)
M; = Iy

Assuming that the axial driving torque is always balanced by
friction, windage, and output torque,

Fig. 2 Unbalance mass system

M; =0 and w; = const = —Q (11)

Due to the smallness of the angles involved, the following ex-

pressions can be used for the angular velocity
W= —Q2 W2 = o (12)

the moments are

M, - K cos 0
{Mz} = {+} kz=:1 ffz(p-—p,,){sin 0} Rdfdz
s k

1 . cos (U + ¢,)
+ M0{2} + (2mRp,£2?) {—sin Q2 + ¢“)} (13)

where the subscripts 1 and 2 refer to the z and 7 directions.
Equation (10) can be made dimensionless by dividing by I ¢($2/2)2:

dz (A, d §—4, k) cos 8

— =G — I dbd

i GdT{+Az}+ [fo e { oo} i
8k

—Mm SiIl (2T + ¢u) (14
+ {+M02} +Un {—cos (27 + ¢u)}] )

Nomenclature
R = radius of shaft A = dR/c pe = distance from shoe pivot
r, = position vector of shaft mass ¢ = shoe-shaft coordinate (ec- point to shoe mass center
center centricity ratio) p. = distance from z-y plane to my
t = time variable ou, a2z = angular coordinates of shaft -6 p
: ¢ =10,-
T = t2/2 axis Q = shaft 4
X, Y,Z = z/c, y/e, 2/ L ¥ = shoe roll angular coordinate = shalt spee
w,, w, = external loads 8 = shoe pitch angular coordi- @i, Wz, Ws = 1, 7, % components of shaft
21’ Ty Xg’ . nate angular velocity
XXy, X3 = —, —, — shoe coordinates .
Hasas c'¢ ¢ £ = shoe-shaft coordinate (lead i, '] _ Xy, Xy, X5 components of
I' = viL/e angle) w;’ shoe angular velocity
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Pad Dynamics

Referring to Fig. 3 the dynamic equations for the motion of
each pad are written, relative to the pivotal point 0’

’ ’ d2
FF=m E (R + o) (15)
_ d?R dH,’
? = I 16
To <QG xXm a2 ) al (16)

The first terms of equations (15) and (16) are equal to zero if the
pivot is fixed. Since the pivot points can only move in the Xs/-
direction, the use of equation (15) is restricted only to a single
component. Expressing the angular velocity of the pad by «’
the third component of equation (15) becomes

- f (p — p.) cos pRdpdz + ws' — K(Rs — Ry)

+ m/(an’ 4+ w2'wy’)pge — m'(wn’? + we'2)pg; (17)
where the pad mass center was taken to be on the X2—Xj3- plane.

In the treatment of equation (16) the axes Xy/, Xy’, X5 are in-
itially assigned to move with the pad. Their X, axis is a prin-
cipal axis and the components of dH,'/dt are

1’ comp = (:)1'111' -+ wzl[wz’laz + ws,133] — wy'[wa'las + ws'I2s]
2’ comp = a'ln’ + i’y + wy'In'en’ — w'Us'we’ + Isy'wss’]
3’ comp = wy'Ip’ + Ws'lss’ + wi'[Ie'wy’ + Tng'ss’] — o’ [Ion’]

The first term on the right-hand side of equation (16) con-
tributes only to the X,/ component.

Due to the smallness of the shoe motion it i3 possible to
identify the components along the moving axes with those along
the fixed set X/, Xa/, X3. Excluding the yaw motion (w’ =
0) equation (16) becomes:

d2R .
TV —m' <dt23) Pex = w'Tn’ + w3’ (18)
Ty = @'’ — wi'weIs’ (19)

Tal = (:)2'132’ + wl’wzl(lml - 111’)

The first two equations are used to compute the shaft motion
while the third produces the value of the torqué necessary to
eliminate yaw motion. The torques are given by

7 d .
T, = pRL = ff P -1) <E + 1) sin @dpdZ  (20)
L3

T 7
T, = p,,R2L2 = ff P(Z — Zg) cos odpdZ (21)
8

Neglecting products of angular velocities with respect to their
first powers, renaming w,’ = 8; w.’ = y; By = x3; eliminating
¥ in equation (17) by using equation (18) and nondimensionalizing

diA ,
E=1A T,+ JW/ + KC,
+ ff (P — 1) cos <pd<de§ ‘%”:l (22)
8
(EE = IrT (23
o 7, )
aC , ‘ I,/
d-T: = IA[(W& — KC, + ff (P — 1) cos <pd<de> v

-, ”;ﬁ”} (24)
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Integration Method

The integration of equations (5), (14), (22), (23), and (24) is
accomplished in the following manner:

The acceleration a!™ of each degree of freedom is evaluated as
the right-hand side of the aforementioned equations at the nth
time interval.

The velocity V and position coordinate x are then extrapolated
by the formulas

Yot = Yo 4 g wrAT

Xm+t) = X 4 PotD*AT

The details of such a procedure are discussed in reference [2].

Bearing Film Clearance

To evaluate the film clearance the shaft axis is initially coinci-
dent with the z-axis and all shoe bearing surfaces lie on a cylinder
of radius (£ -+ ¢) having z as its axis. The film clearance is now
¢ everywhere. Motions of the shoes and shaft alter the film
thickness by the following amounts:

(a) translation of shaft; ., sin 8 + y,, cos 0

(b) tilting of shaft; on zsin § + oz cos §

(¢) radial translation of shoe; 3’ cos ¢

(d) pitch of shoe; (d + R cos ¢)d

(e) roll of shoe; y(z — zp) cos ¢

Therefore, the dimensionless film thickness is

H=14 (X,+ A41Z)sin 0 + (Y,, + A:Z) cos 0

+ D+ DAsing + [(Z — Zg)T + Xl cos @ (25)
In equation (25) X,,, A1, Yo, 43, A, T', and X are functions of
time.

In each bearing film the pressure is regulated by the isothermal
Reynolds’ equation

OPH 0PH
(H3P — jtalin) =
V( VP) A{ >0 + OT} (26)
where
R o
V=2%t®T oz
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defining ¢ = PH, equation (26) becomes

w _ A, _ A (VY): VYVH
v ¢H¢T_¢H— ¥ H
| AR
+—HVH_F(¢,H) (27

To enhance the numerical stability of the integration the follow-
ing time discretized model is used:

A¢(n +1) _A
YWHWAT ~ H®AT

vyt — + F(ym, Hm) (28)

where n, n 4 1 superscripts denote values of the variable at the
nth and (n 4 1)th time interval, respectively.

Equation (28) is of the form A%W/(z, y) — f(z, ¥)¥(z, y) = 9(z, ¥)
and must be integrated at each time step using, for instance, a
columnwise implicit method such as the one outlined in reference

[11.

Integration Sequence

The system of dynamic equations (5), (14), (22), (23), (24),
and the pressure diffusion equation (28) are integrated numeri-
cally in small time steps according to the following procedure:

Step 1: Set initial conditions of all degrees of freedom and
Y-distributions for all shoes.

Step 2: Do Steps 3 through 6 for each shoe.

Step 3: Compute clearance distribution and all necessary
spatial derivatives. Also check for failure (negative clearance).

Step 4: Integrate pressures to obtain force and torque terms on
right-hand side of shoe pitch, roll, and translation equations
(22), (23), (24), and contributions to right-hand sides of shaft
dynamics equations (5) and (14).

Step 5: Integrate shoe dynamics equations through one time
interval.

Step 6: Integrate diffusion equation (28) through one time
interval.

Step 7: Sum shoe contributions to total shaft forces and
moments.

Step 8: Integrate shaft dynamics equations through one time
interval.

Step 9: Has integration proceeded to desired limit? If not,
go back to Step 2.

Step 10: Print and plot output; terminate.

Sample Results
Single-Shoe Dynamics

In order to make a simple parametric study of shoe charac-
teristics, the computer program executing the steps indicated in
the preceding paragraph can be run so that a single shoe is free to
pitch and roll while the shaft is given in prescribed motion, For
the cases listed in Table 1, the shaft motion is translatory with a
circular orbit. The orbit radius is measured in units of ¢ while
the frequency is unity if synchronous with the shaft rotation.
The time transient results are shown in Figs. 4 through 15.

A measure of the accuracy of the program is given by compar-
ing a steady-state condition achieved by the dynamic analysis
with the results of an equilibrium solution obtained by an en-
tirely different method such as the one presented in reference [1].
Taking the time average values (after the transient has dissi-
pated) for the nondimensional pitch angle A and the roll angle T,
equation (25) can be evaluated to obtain the clearance H. In
the single-shoe case

A1=A2=D=Xa’=0,

the pivot is set at 8, = 0 and, to compute clearances in the plane
of the pivot circle, Z = Zz. The leading edge clearance (Hy) can
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Table 1 Single-shoe dynamics runs for R/L = 0.5; a = 100 deg; pivot
location, 65 percent; pg; = D = 0; pivot friction = 0.

Shaft-Motion
Orbit Shoe Inertia Initial Cond.
Case. (Clear Radius Freq. A _IL I r A
100 1.0 0 0 3.5 26.25 51.95 .2 2
101 1.0 0 0 3.5 2625 51.95 2 -1
102 .5 0 0 3.5 26.25 51.95 .2 .2
103 1.0 0 0 10 26.25 51.95 2 2
04 1.0 0 0 3.5 5.25 10.39 .2 .2
105 1.0 o 0 10 5.25  10.39 .2 .2
106 .5 0 0 10 - 26.25 51.95 .2 .2
107 .5 0 0 3.5 5.25 10.39 .2 .2
108 .5 0 0 10 5.25 10.39 .2 .2
109 .5 02 5/9 10 5.25 10.39 .2 2
110 500 .10 5/9 10 5.25 10.39 .2 2
111 500 .10 110 5.25 10.39 .2 .2
Figs. 4 to 15 Single-shoe dynamics results
0.6
\PITCH
CASE 100
A=35,Y,:=0
DRIV. AMPL.= O
\ ROLL
fo) \\\ ,,—-—\\___L________
\\’//
[ | | |
~0-ig [ 2 3 a 5
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Fig. 4
?
i
—0.4
—0.3
—ROLL :
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CASE 10l
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Fig. 5
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Fig. 9
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CASE 106
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Fig. 10
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CASE 109
A=10, y,= —0.5, HiGH T
DRIV. FREQ.=5/9
DRIV. AMPL = 0.02

»
T
I -
= o \\ / Al T —
\_/ ROLL
0.1
- | | | | | |
°. 20 I 2 3 4 5 [} 7
SHAFT REVOLUTIONS
Fig. 13
o7 CASE 110
A=10, y,=-0.5, HIGH T
0.6(— DRIV. FREQ=5/9
DRIV, AMPL.= 0.1
0.5
| 0.4
~ (&)
Y o3
3
2
0.2
Tlo
‘°| 0.1
u
T
=)
[ast o]
a
=0.1
=0.2
-0.3 l I | l l !
[o] I 2 3 4 5 6 7
SHAFT REVOLUTIONS
Fig. 14
be obtained by setting
0=2r—¢
and
=9

where ¢ is the angle between the shoe leading edge and the pivot
point. The pivot film thickness is obtained by setting

0=y =0
Referring to Fig. 16, in terms of the shoe shaft coordinate (¢ =
e/c)

Hy=1+c¢€cosé (29)

and
H,=1+4¢€cos(£+ ¢)

Using the values of Hj, and H, obtained by evaluating equation
(25), equations (29) and (30) can be used to obtain € and £.

The steady-state pivot film thickness for the appropriate
parameters is shown in Fig. 17. For ¢/a = 0.65 and for a given
pivot film thickness, the values of the shoe-shaft coordinates € and
£ can be read from the field map and then compared with those
obtained from the dynamic results. Using case 102 (H, = 0.5)
for the purpose of comparison, the values of € and £ resulting from
the dynamic analysis are £ = 83.2 deg, ¢ = 0.588, which agree to
all accuracy that can be read in Fig. 17 for pivot location = 0.65
and pivot film thickness = 0.5.

(30)
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Fig. 16 Shoe-shaft coordinates

Fig. 4 (case 100) represents a ‘“base’ case in which the shoe
pitch and roll moments of inertia are taken from a typical design
application. Note that the shoe is initially pitched open and that
it quickly attains an equilibrium position. In case 101 the same
conditions as case 100 prevail except that the shoe is initially
pitched inward from the uniform clearance position. As can be
seen in Fig. 5, the shoe immediately noses into the shaft causing a
failure (generally referred to as “lock-up”). Cases 102 and 108
depict the shoe motions which result from changes in A, pivot
film thickness, and shoe pitch and roll inertia. For the previously
mentioned cases the radius of the shaft orbit is zero. The pivot
film thickness is given by

Hy=1+7,

and the “high I'’ designation indicates that the shoe inertia (in
both pitch and roll) is taken as five times larger than that of the
base case. In case 109 and 110 the shaft is given prescribed
motions consisting of circular orbits of radius 0.02 and 0.1, re-
spectively, with a frequency corresponding to the pitch motion
obtained from case 108. Note that for the larger shaft orbit (case
110) the amplitude seems to be sustained, thereby producing a
“flutter’’ condition.

Case 111 is the same as 110 except that the excitation frequency
is made synchronous. In this plot the response is at exactly half
frequency with a superimposed synchronous frequency ripple.
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Fig. 18 Rotor-journal bearing system

Multiple Shoe Dynamics

The second system selected for study is the SA-2 gas bearing
test rotor, which has been operated at FIRL over the past several
years for the purpose of providing experimental information on
gas lubricated tilting pad journal bearings (reference [3]). The
horizontal rotor is supported by two journal bearings with three
pivoted pads each. The top shoe of each bearing is backed by an
80 Ib/in. spring (Fig. 18).

Fig. 19 shows the transient path of the shaft mass center start-
ing from an arbitrary initial location. Fig. 20 shows two shaft
orbits after the transient has been dissipated; one at the shaft
mass center, the other outboard of bearing 1. It can be seen from
this figure that the shaft motion displays a significant amount of
conical mode. This is due to the relatively high unbalance
moment. If the unbalance moment were zero, the two orbits
would coincide. Fig. 21 shows the pitch and roll of one of the
fixed shoes of bearing 1 while Fig. 22 shows the same motion for
the spring-loaded shoe. Note that the pitch amplitude of the
fixed shoe is greater than the spring-loaded shoe; also, the roll

Journal of Lubrication Technology

-0.06 -0.04 -0.02 ¢} 0.02
) Xn/C

Fig. 19 Transient path of shaft mass center

mode of the fixed shoe displays a superimposed disturbance while
the roll of the spring-loaded shoe has a smooth wave form. It is
also evident from the shoe motion plots that all pitch and roll fre-
quencies are synchronous.

Not shown in this paper are plots of the z-y coordinates, shaft
z-y forces, and the translatory motion of the spring-loaded pivot
against time. These plots would show the y-coordinate ap-
proximately 180 deg out of phase with the y-force and the spring-
loaded pivot about 60 deg out of phase with the y-coordinate.

Validation of the Analysis
Comparison with Steady-State Predictions

A basic check of the dynamical solution procedure is that after
a sufficiently long time interval, the time average values of the
shoe-shaft coordinates should be those predicted by the steady-
state solution. To accomplish this purpose the system selected
for analysis was that shown in Fig. 18 with one exception—the
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Fig. 21 Pitch and roll motions—bearing 1, shoe 1 SA-2 rotor

unbalance force and moment vectors were taken as zero to cause
the shaft orbit to reduce to a point. The appropriate steady-state
field maps were used from reference (3] to compute the steady-
state coordinates. The percent difference between the dy-
namical values and the steady-state value is shown in Table 2
The agreement is seen to be excellent. Fig. 23 (reference [4])
shows the degree of agreement that can be expected between the
steady-state computed values and experimentally measured
values.

Comparison with Experimental Data

Fig. 18 essentially represents the conditions for a particular ex-
perimental run made with the SA-2 rig in April, 1964. During
this run two capacitance probes measured absolute z-y shaft
motion in the same plane; a third probe measured the abso-
lute motion of a fixed shoe; afourth probe measured the absolute
motion of a spring-loaded shoe. Both shoe probes looked at
corner-mounted buttons located at the shoe leading edge (Fig.
24),

In formulating the physical data for the dynamics program
the following items had to be approximated:

1 The unbalance force was estimated to be 340 milligrams
with an uncertainty of 450 milligrams. The effect of the un-
balance force is to change the orbit amplitude.

2 The unbalance moment was known to be small. The esti-
mate of 0.002 in-lb could be in error up to 15 percent. The effect
of the unbalance moment is to change the amount of conical
motion in the shaft orbit.

3 The machined-in clearance ¢ was taken as 1.5 mils. Due to
hand lapping, thermal expansion, and so on, this figure could be
in error by 3=0.2 mils. The effect of this error would be to change

506 / octoBER 1967

SECONDS OF ARC

| 2 3 4
SHAFT REVOLUTIONS

(5.
»

Fig. 22 Pitch and roll motions—bearing 1, shoe 3 5A-2 rotor

SA2 SHOE FILM THICKNESS MEASUREMENTS
vs. THEORETICAL —— s

254 ——- 4,444&71_

N OMPM BLE 1

THEORY (SNELL) ! -
20 L comressiaLe THeoRy |4 B & @
i a Expfmf.f/vrﬂ 9162 ————t— 1 o~

A= LEADING EDGE FiLM—3

a EXPE'?IMENTAL 8-6-62 | T YHICKNESS

* EXPERIMENTAL 7-i5-62

)

T_CONDITIONS:
33 PINOT LOCATION

&
‘ﬂrs

i
i
/: ASPECT RATIO I

;
i
|
- W H
= S—R—-i = "LOAD COEFFICIENT i
A}/g"l‘q/ggAe,A}/{%—o

:
=945 [SHOE ARC
& =
s ILRAILING EDGE_FILM THICKNE eSS —=
. '

FILM THICKNESS - h x 10"
5 ;

3
i
\

i
I
i
- 1
|
|
|
t

0 5 ).
Fig. 23 Comparison between measured and computed values of tilting
pad film thickness

Table 2 Validation of time-fransient dynamics program

Steady-State Comparison

Dynamics Steady- %

Program State Difference
Pivot Film Thickness - shoe 1, 2 0.378 . 0.38 1/2
Pivot Film Thickness - shoe 3 0.537 0.52 3
Shoe Lead Angle - shoe 1, 2 89.2° 90° 1
Shoe Eccentricity e - shoe 1, 2 0.69 0.7 1
Shoe Lead Angle - shoe 3 76.1° 77° 1
Shoe Eccentricity € - shoe 3 0.61 0.63 3
Pivot Circle Preload C'/C 0.431 0.435 1
Pivot Circle Eccentricity e’ 0.176 - 0.195 10

A and thereby alter the shaft pivot circle eccentricity. This
would result in a phase change in the shaft orbit due to an ap-
parent change in the ratio of the vertical to horizontal film stiff-
ness.

4 The oscilloscope sweep rate used in determining the shoe
motions had an error of 3 percent. The sweep rate for X-Y
probes had an error of 10 percent.

5 Other secondary quantities adding to the errors in deter-
mining the prevailing conditions during the experimental test
run were the shaft speed, the shaft radius, and the ambient
pressure.
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Table 3 Dynamic comparison

AA AB X Y
Comp. |Exp. Comp. [Exp. Comp. |Exp. Comp. | Exp.
Amplitude
yin. 245 200 147 280 120 110 60 180
Frequency \
RPM i 15000 115000 | 15000 | 15000 | 15000 ;13,700 | 15000 | 14000
i .
i

Comp.: computed values; Exp.: experimentally obtained values

Table 3 shows the comparison between the analysis and the
experimental data. A 4 is the amplitude of shoe number 1 (fixed);
A p is the amplitude of shoe number 3 (spring-loaded). X and ¥
are the amplitude of the shaft motions in the plane of the probe
station. Typical plots of the oscillations of some of the de-
grees of freedom are shown in Figs. 19 to 22. The experimental
oscilloscope photographs corresponding to the various motions
measured by the probes are shown in Fig. 25. )

To within the known accuracy of the actual experimental
operating conditions, the capability of the dynamics program to
mimic the experiment is considered good.

Conclusions

In essence, the analysis outlined-in the foregoing is similar to
making an experimental run. The high degree to which the analy-
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{b) Absolute shaft motion

Fig. 25 Oscilloscope picturas of experimental data used in validation of
time-transient dynamics program. Run 4074; shaft speed = 15,000
rpm; scope calibration = 100 uin./cm; swaep rate = 0.005 sec/cm.

sis is capable of mimicking the stability of an actual physical situa-
tion makes it an attractive substitute for experimental parametric
studies especially since coniputer time is cheap compared to test
rig failures.

The computer program used in this analysis is currently being
updated at the Franklin Institute to include more of the subtle
features of the real rotor-bearing physics. The next major step
in the development of this program will be the inclusion of the
effects of the thrust bearing on the rotor and journal bearing be-
havior.
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DISCUSSION
W. J. Love?

The tilting-pad, self-acting gas bearing has received increasing
recognition by its use as a means of avoiding rotor half frequency
whirl. The steady-state performance of tilting-pad bearing
arrays has received intensive study in the last decade by means of
computer solutions of Reynolds equations. Both authors have
provided significant contributions to this work to the point that
steady-state design optimization predictions for laminar flow
may now be made with confidence.

Tilting-pad, gas-lubricated bearings optimized on a steady-
state basis have not been consistently successful in providing
stable, noncontacting rotor performance. In some instances the
lack of success may be due to lack of detailed knowledge of all of
the loads to be exerted on the bearings by the various rotor power
conversion components or conditions of rotor unbalance. In
many instances, however, the unstable rotor performance has
been coupled with a nonsynchronous response of the bearing pads.
This nonsynchronous pad response is a phenomenon now evi-
denced in gas bearings because of the higher rotor speeds and low
squeeze film damping associated with gas bearing designs.

While providing a design solution to the rotor half frequency
whirl problem, the tilting-pad bearing introduces at least three
additional degrees of freedom for each pad, thereby greatly in-
creasing the complexity of an accurate transient analysis of a
bearing array. The possibilities for a computer program to
examine the dynamics of tilting-pad gas bearings have been
recognized for some time, but the amount of machine time indi-
cated has tended to discourage its development.

By circumventing this difficulty, the authors have introduced a
very significant analytical tool in the evaluation of the tilting-
pad, gas-lubricated bearing. Although the rotor design and
journal size for a machine are to a large extent determined by use
factors, the effects of the parameters under the control of the
bearing designer, i.e., wrap angle, length pivot position, inertia,
ground/pivot clearances, and pad damping may now be under-
stood and optimized for their dynamic performance with the
program reported in this paper.

The nonsynchronous pad excitation demonstrated in this paper
is in substantial agreement with experimental results and ob-
servations made in the General Electric Research and Develop-
ment Center. Last year, a high speed rotor for a regenerative,
helium compressor exhibited a double orbit motion of the rotor
as full speed (~ 70 percent of the first rotor bending critical) and
full radial load operation was approached. The journals were
supported by three identical, self-acting pads mounted symmetri-
cally on rolling contact pivots. It was observed that a condition
of 1/; order subharmonic pitching of the most lightly loaded pads
occurred as a precursor of the journal double orbit condition and,
if the load or speed were increased beyond this point, pad-journal
rubbing would occur. The subharmonic excitation would in
many instances appear suddenly as a ‘‘jump’’ change in ampli-
tude and not return to its earlier low amplitude harmonic state
without a considerable reduction in speed, load, or the addition
of external pad damping. When the rotor load passed between
the pivots of two pads, the unloaded pad would exhibit the !/s
order subharmonic at a lower speed than when the rotor load
passed through a pivot. However, when the load passed through
a pivot, the rotor double orbit appeared almost simultaneously
with the nonsynchronous response of the two lightly loaded pads.

These observations suggested that the rotor orbit instability
was caused by the nonsynchronous motion of the pads which in
turn had been excited by the rotor orbit and influenced by the
pivot film thickness. The 1/, order subharmonic appeared to be
caused by the nonlinear load-displacement characteristic of the
gas film.

The equation of motion for pitching of a single pad was de-
rived as a means of providing qualitative understanding of the

2 General Engineering Laboratory, General Electric Co., Schenec-
tady, N. Y. Mem. ASME.
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pad dynamics. The condition of excitation was taken as a
harmonie, circular shaft orbit acting at a mean pivot film thick-
ness. The moment characteristics exerted by the gas film upon a
pad displaced from its equilibrium condition were generated from
steady-state solutions of Reynolds equation similar to those
presented in reference [3]. The use of a steady-state moment-
angular displacement characteristic neglected the squeeze film
damping and force contributions; however, the experimental
observations of the film damping indicated that this might be
relatively small.

Plotting moment coefficient? C, (% — %’) against a relative

. ) A’ esin (£ 4+ ¢,)
pitch coordinate, = H,
nesses provided curves which could be approximated by parabolas.
At intermediate to large pivot film thicknesses the pad restoring
moment values were small and, if the nonequilibrium, relative
pad-rotor angle became too small, the pad restoring moment
would disappear or change sign in a manner to suggest leading
edge contact. Indeed, it was found that certain numerical com-
binations of large pivot film thickness and small pivot angle
could not provide an equilibrium operating condition but would
provide a moment acting always to cause leading edge pad-rotor
contact.

In the case of the aforementioned machine the pitching mo-
ment-displacement characteristic was approximated by a para-
bolic function of the form:?

T R I Py O
« a H~|H, Hp|lH, HM Hp

. s - . A7
with the equilibrium condition being at — = —

H, Hp

The resulting motion equation form could be compared with the
large body of nonlinear oscillation analysis available in the
literature. This nonlinear form of the pad moment indicated
that the gas film acts as a hard-soft spring—hard at large pitch
angles and soft at low pitch angles—the net effect being that of a
soft spring. Thus, the resonant frequency of the pad could be
expected to be amplitude sensitive, with the resonant frequency
becoming smaller than the natural frequency as the amplitude
increased ; depending upon the degree of damping, the conditions
of resonance could occur suddenly as a jump. The essentially
parabolic nature of the pad moment characteristic confirmed the
potential for a !/; order subharmonic pad response to a harmonic
rotor excitation. The pitching equation also showed that the
natural pitching frequency of the pad, and thus subharmonic
threshold frequency, could be increased by increasing the pivot
position angle and the ground clearance, and decreasing the pivot
film thickness (clearance), rotor orbit size and pad inertia. The
pad excitation function occurred as a periodic multiplier of the
pad displacement angle and was found to be directly proportional
to the rotor orbit and the reciprocal of the mean film thickness.
Solutions of the pitching equation for various functions of critical
damping showed large amplitude responses at both harmonic
and subharmonic resonance with onset of the !/» order subhar-
monic component first becoming perceptible at roughly 120
percent of harmonic resonance. At very high orbit frequencies
and large pivot film thicknesses, e.g., when the forcing frequency
was greater than three times the natural pad frequency, pad
amplitude became very small and of undefined order.

In closing, it is hoped that the authors will be encouraged to
examine the pad geometries for typical bearing designs and de-
termine the optimum values of those pad parameters which may

for various pivot film thick-

3 The notation is that of reference [3] and the subject paper. a
prime refers to the relative pitch coordinate and m,, n, u, v are con-
stants.

4+ N. W. McLachan, Ordinary Non-Linear Differential Equations tn
Engineering and Physical Sciences, Oxford Clarendon Press, London,
1956, chapter IV; or C. Hayashi, Non-Linear Oscillations in Physical
Systems, McGraw-Hill Book Co., Inc., New York, N. Y., 1964,
chapter 7.
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