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Rotordynamic Modeling 

and Analysis 
 

6 
 

 

 

6.1 Analytical Models and Essential Components 
 

The analytical prediction of the rotor dynamic behavior and bearing performance depends 

heavily on accurately modeling the physical system and understanding the assumptions 

and limitations applied in the modeling and analytical tools employed.  The modeling of 

complicated rotating machinery, however, relies on sound engineering judgment and 

practical experience. The modeling process transforms the complex physical system into 

a representative, hopefully simple, mathematical model.  The connections between the 

physical system and the mathematical model must be understood well enough, so that the 

results obtained from the mathematical analysis can be verified and fully utilized in the 

design process.  Figure 6.1-1 shows several industrial rotating machines, from simple 

rotors to complex rotor assemblies with static structures, in simplified mathematical 

models that allow for various rotordynamic analyses. The complete system under 

consideration may contain both the rotating assembly and non-rotating structures.  For 

rotordynamic study, the primary interest is in the dynamics of the rotating component.  

Therefore, the majority of the degrees-of-freedom (DOFs) under study is in the rotating 

component; however, the importance of the flexible supports and soft foundation must be 

considered and included in the model if necessary.  The assumptions and simplifications 

made in the component equations, which are then used to form the system governing 

equations, must be fully understood to properly use these component equations and 

interpret the analysis results.      
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Figure 6.1-1 Mathematical models for various rotating machinery 

 

 A finite element “station” along the shaft, as shown in Figure 6.1-2, has six (6) 

DOFs, three translational displacements (x,y,z) along the (X,Y,Z) axes and three 

rotational displacements ( zyx θθθ ,, ) about the (X,Y,Z) axes, with the Z-axis being the 

spinning axis. The term station, rather than the conventional term node used in general 

finite element analysis, is commonly used in the model of rotordynamics because of the 

alternate meaning that node has in the vibration mode shapes of rotordynamics.  

 



CHAPTER 6: ROTORDYNAMIC MODELING AND ANALYSIS 

 

344 

 
Figure 6.1-2 Coordinate system and DOFs at a typical finite element station 

 

 For lateral vibration, the motion of each finite element station is described by four 

DOFs: two translational displacements (x,y) in the X and Y directions, respectively, and 

two rotational (angular) displacements (θx,θy) about the X and Y axes, respectively.  For 

torsional vibration, the motion of each finite element station is described by a rotational 

displacement ( zθ ) about the spinning axis (Z).  For axial vibration, the motion of each 

finite element station is described by a translational displacement (z) along the spinning 

axis (Z).  Therefore, the motions at a typical finite element station are described by the 

following displacement vectors: 

 

Complete motion: { }
T

(6x1) ,  ,  ,  ,  ,  
x y z

x y z θ θ θ=q                         

Lateral vibration: { },  ,  ,  
T

L x y
x y θ θ=q        

Torsional vibration: { }T z
θ=q         

Axial vibration: { }A
z=q         

 

 In the design of rotor systems, the lateral, torsional, and axial vibrations are generally 

de-coupled and considered separately.  In this text, mainly lateral vibration is addressed 

since it is more design involved and critical in the design phase of rotating machinery.  

Torsional and axial vibrations are commonly dealt with during the selection of drivers or 

driven units and couplings, after all the individual equipment has been designed.  For 

integrally-geared rotating machinery, the lateral, torsional, and axial vibrations are 

coupled together through the gear meshes and thrust collars.  That is, the torsional and 

axial excitations influence the lateral vibration and vice versa.  Also, once the motions are 

coupled, the system is no longer isotropic in lateral vibration. It can be highly asymmetric 

due to introduction of the coupled lateral-torsional-axial vibration effects.  Although this 

kind of coupled analysis is available in some commercial rotordynamic software, an 

understanding of the fundamentals is still the key to a successful design.  In designing the 

system, one should focus on each rotor assembly design based on the de-coupled 

vibrations.  Once all the rotor assemblies are designed, a detailed analysis with coupled 

motions can be considered and the components can be fine-tuned to achieve a better 

design if necessary.  In this chapter, only the lateral vibration is considered.  The coupled 

lateral-torsional-axial vibrations are discussed in Chapter 8. 
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 A cutaway diagram and rotating assembly for a six-stage centrifugal compressor are 

shown in Figure 6.1-3.  The rotordynamics mathematical simulation model for this six-

stage compressor is presented in Figure 6.1-4.  It contains four essential components in 

the modeling of a typical rotor-bearing system: the rotating shafts with distributed mass 

and elasticity, rotating disks, bearings, and the most common synchronous excitation – 

mass imbalance.  These four basic components are the most common ingredients in the 

rotordynamic model.   

 

 
 

Figure 6.1-3 Six-stage centrifugal compressor  

 

 
Figure 6.1-4 Computer simulation model for rotordynamic analysis 

 

6.1.1 Rotating Shaft Elements 
 

A rotating shaft with distributed mass and elasticity is the most essential component in 

the rotordynamics model.  The rotating shaft is made up of numerous shaft segments with 

various cross-sections called elements or sub-elements in the finite element formulation.  

The most common types of rotating shaft elements are the cylindrical element with 

constant diameters and the tapered (conical) element with linearly varied diameters along 

the shaft axis.  For other types of non-uniform cross-section elements, they can always be 

approximately modeled with these two basic element types.  For very complex elements, 

which are difficult to model, the elemental matrices can be obtained from experiments. 

Each element can possess several sub-elements and levels (layers), which allows for 
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reasonable flexibility in modeling shafts with geometric and material discontinuities, as 

illustrated in Figure 6.1-5. 

 

 
Figure 6.1-5 Rotating shaft elements 

 

 Figure 6.1-6 shows a finite element model for a high-speed compressor.  It contains a 

shaft with a bolted-on impeller and thrust collar.  In the finite element formulation, the 

DOFs at the finite element stations are the so-called active (or master) DOFs, which are 

kept in the assembled equations of motion and variables to be solved directly, while the 

DOFs at the internal sub-elements are considered the dependent (or slave) DOFs, which 

are condensed out before the assembly process.  The condensation technique commonly 

used in finite element formulation is based on Guyan reduction (Guyan, 1965).  Once the 

displacements of the finite element stations (master DOFs) have been solved from the 

assembled system equations of motion, the displacements of the sub-elements (slave 

DOFs) can be easily calculated by utilizing the condensation matrix previously used in 

the reduction procedure.  

 In the past, the use of sub-elements was strongly encouraged when modeling large 

complicated rotor systems with limited computational power and memory storage. This 

saved tremendous computational time with a minimal loss of accuracy in the results.  

However, due to the rapid advances in computational speed and computer memory, the 

advantage of using sub-elements is not as significant today as it was before, especially 

when performing linear analysis. In the rotor preliminary design stage, the use of sub-

elements provides convenience when design modifications are anticipated because it 

allows for only local modification without affecting the entire model or station numbers.  

When performing nonlinear time-transient analysis with large complex rotor systems, the 

use of sub-elements is still highly recommended due to the intense computational 

requirements and numerical error accumulation in the large model.  
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Figure 6.1-6 Finite element model for a high-speed compressor 

 

 Occasionally, there is a need to model the shaft element with different diameters for 

the kinetic energy and strain (potential) energy calculations, as shown for element 2 sub-

element 2, and element 3 sub-element 1, in Figure 6.1-6.  Due to the sudden change in 

diameters, the entire diameter of the pinion section contributes kinetic energy (mass) but 

not strain energy (stiffness). Therefore, the original geometric diameter is used for the 

kinetic energy calculation, but a reduced diameter is used for the strain energy 

calculation.  Another example with different mass and stiffness diameters is the electrical 

motor windings, which contribute kinetic energy but little strain energy. 

 The lateral motion of a rotating shaft element (or sub-element) can be described by 

the displacements of the two end-points, and each end-point possesses four DOFs, as 

shown in Figure 6.1-7.  As stated earlier, each element can possess several sub-elements 

and levels (layers), which allows for more flexibility in modeling systems with geometric 

and material discontinuities.  Each element can also be modeled with the different 

diameters used in the kinetic and strain energy calculation.  For the rotating shafts, only 

the DOFs at the “stations” are kept and the DOFs at the sub-elements are condensed out 

before the system assembly process.  

 

 

 
 

Figure 6.1-7 Coordinates for a typical finite shaft element 
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 In rotordynamics, the motions of the lateral vibration are very small in comparison to 

the shaft diameter (i.e., on the order of 10
-3

).  The small shaft deformation assumption is 

practical and leads to linearized equations of motion for the rotating shafts and disks.  

The equation of motion for a rotating shaft element (sub-element) with a constant 

rotational speed Ω is: 

 

 (8x1)

e e e e e e e+ Ω + =M q G q K q Qɺɺ ɺ       (6.1-1) 

 

where eq  contains the displacements at both the left and right ends of the element under 

consideration.  For purely lateral vibration, eq  is an (8×1) displacement vector: 

 

 ( ) ( )
TT

(8x1) | , , , | , , ,
e

L R L L xL yL R R xR yR
x y x yθ θ θ θ= =q q q     (6.1-2) 

 

If the torsional and axial vibrations are also considered in the analysis, the displacement 

vector eq  becomes a (12×1) vector: 

 

 ( ) ( )
TT

(12 1) | , , , , , | , , , , ,
e

x L R L L L xL yL zL R R R xR yR zR
x y z x y zθ θ θ θ θ θ= =q q q   (6.1-3) 

 

Again, only the lateral vibration is considered in this chapter and the coupled lateral-

torsional-axial vibrations are discussed in Chapter 8. 

 The matrices M
e
, ΩG

e
, and K

e
 are the typical elemental mass/inertia, gyroscopic, and 

stiffness matrices. The mass/inertia matrix M
e
,
 
derived from the kinetic energy, is a 

positive definite symmetric matrix; the conservative gyroscopic matrix ΩG
e
,
 
derived from 

the rotational kinetic energy, is a real skew-symmetric matrix; the stiffness matrix K
e
 can 

be a general real matrix, which contains a symmetric elastic matrix derived from the 

strain energy of the shaft element and the non-symmetric and non-conservative stiffness 

from the axial torque and gravity for vertical rotors along the spinning axis.  The force 

vector Q
e
 is the generalized force vector, which contains all the excitations acting at the 

shaft element.  The details of these matrices and generalized force vector are documented 

in Nelson (1976, 1980) and Chen and Gunter (2005) and not repeated here. 

 

6.1.2 Rotating Disks 
 

A rotating component, which is either attached to the shaft or an integral part of the shaft 

with relatively short axial length and large diameter (e.g., compressor impellers, 

turbine wheels, thrust collars, balancing rings, couplings, and oil slingers), contributes 

mainly kinetic energy with negligible strain energy; it can be modeled as a disk when 

studying its effects on rotor dynamics.  Due to the sudden change in the kinetic energy 

distribution from a disk, the disk is always located at a finite element station in the shaft.  

The motion of the disk is described by the motion of the shaft, to which the disk is 

attached.  Typically, the disk model falls into four types: rigid disk, flexible disk, offset 

rigid disk, and offset flexible disk, as illustrated in Figure 6.1-8.  
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Figure 6.1-8 Rotating disk models 

 

 For small vibrations, the lateral motion of a rigid disk, as shown in Figure 6.1-9, can 

be described by four DOFs − two translational motions (xd,yd) in the X and Y directions 

and two rotational (angular) motions (θxd,θyd) about the X and Y axes, respectively. The 

kinetic energy of a spinning disk due to small vibrations ( ), , ,
d d xd yd

x y θ θ , excluding the 

pure spinning energy 
21

2
pI

 
Ω 

 
, is given by: 

 

 ( ) ( ) ( )2 2 2 21 1 1

2 2 2
d d d d xd yd p xd yd xd yd

T m x y I Iθ θ θ θ θ θ= + + + + Ω −ɺ ɺ ɺ ɺɺ ɺ   (6.1-4) 

 

 
Figure 6.1-9 Displacements of a rigid disk 

 

 For a rigid disk, the disk is rigidly connected to the shaft and remains normal to the 

shaft at all time during vibration, if disk skew does not exist.  Therefore, rigid disk 

motion can be described by the generalized displacements at the rotor (shaft) station, to 

which the disk is attached, and no additional DOFs are introduced other than the existing 

DOFs at the rotor station. The disk generalized displacements q
d
 are the same as the 

generalized displacements at the rotor station q, to which the rigid disk is attached.  

 

 ( ) ( )
T T

, , , , , ,
d

d d xd yd x y
x y x yθ θ θ θ= = =q q      (6.1-5) 

 

 i.e.,      ,     ,     ,     
d d xd x yd y

x x y y θ θ θ θ= = = =    
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 Hence, no additional DOF is introduced for a rigid disk. The governing equation of 

motion for a rotating rigid disk (4DOF), with a constant rotational speed Ω in the fixed 

reference frame, can be derived from the Lagrange’s equation: 

 

 (4 1)

d d d

x
+ Ω =M q G q Qɺɺ ɺ         (6.1-6) 

 

The (4×1) rigid disk generalized displacements are replaced by the generalized 

displacements at the rotor station, to which the rigid disk is attached.  The mass/inertia 

matrix M
d
,
 
derived from the kinetic energy, is a positive definite symmetric matrix; the 

conservative gyroscopic matrix ΩG
d
,
 
derived from the rotational kinetic energy, is a real 

skew-symmetric matrix that cross-couples the two rotational DOFs (θx, θy).  Q
d
 is the 

generalized force vector, which contains all the excitations acting at the disk center of 

mass and the gravity loading due to disk mass.  Again, the derivations of the above 

matrices and vector are well documented in previous publications (Nelson, 1976, 1980; 

Chen & Gunter, 2005), and are not repeated here. 

 Figure 6.1-10 shows the disk motion for a rigid disk and a flexible disk.  For a rigid 

disk assumption, the disk is considered to be rigidly connected to the shaft and remains 

normal to the shaft at all time during the vibration.  However, for a flexible disk, the disk 

generalized rotational displacements can be different from the rotor station to which it is 

attached.    

 

 
Figure 6.1-10 Rigid and flexible disk motions 
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 Let us now consider a generalized flexible disk as shown in Figure 6.1-11.  The disk 

contains two sections, inner and outer disks with mass properties of (mi, Idi, Ipi) and (mo, 

Ido, Ipo), connected by the isotropic translational and rotational stiffness of KT and KR.  In 

addition to the kinetic energy, the flexible disk contains potential energy from the 

stiffness connecting the displacements of the inner and outer disks.  The kinetic energy 

and strain energy for a flexible disk are given by: 

 

 ( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

2 2 2 2

1 1 1

2 2 2

1 1 1
 
2 2 2

i o

i i i di xi yi pi xi yi xi yi

o o o do xo yo po xo yo xo yo

T T T

m x y I I

m x y I I

θ θ θ θ θ θ

θ θ θ θ θ θ

= +

= + + + + Ω − +

+ + + + Ω −

ɺ ɺ ɺ ɺɺ ɺ

ɺ ɺ ɺ ɺɺ ɺ

  (6.1-7) 

 

 ( ) ( )

( ) ( )

2 2

22

1 1

2 2

1 1
 
2 2

T R

T o i T o i

R xo xi R yo yi

V V V

K x x K y y

K Kθ θ θ θ

= +

= − + − +

− + −

     (6.1-8) 

 

 

 
Figure 6.1-11 Flexible disk model 

 

where ( ), , ,
i i xi yi

x y θ θ are the displacements of the inner disk and ( ), , ,
o o xo yo

x y θ θ  are the 

displacements of the outer disk.  Since the inner disk is rigidly attached to the shaft, the 

disk displacements ( ), , ,
i i xi yi

x y θ θ  are the same as the rotor displacements ( ), , ,
x y

x y θ θ ; it 

can be treated as a rigid disk, as described earlier.  Four additional DOFs are introduced 

for the outer disk.  Following the discussion above, the complete equation of motion for 

this eight-DOF flexible disk is given by: 

 



CHAPTER 6: ROTORDYNAMIC MODELING AND ANALYSIS 

 

352 

 (8 1)

d d d d

x
+ Ω + =M q G q K q Qɺɺ ɺ        (6.1-9) 

 

where ( )
T

, , , , , , ,
i i xi yi o o xo yo

x y x yθ θ θ θ=q is the generalized displacement vector, and the 

mass/inertia matrix and gyroscopic matrix from the kinetic energy are: 

 

 

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

i

i

di

did

o

o

do

do

m

m

I

I

m

m

I

I

 
 
 
 
 
 =
 
 
 
 
 
  

M               (6.1-10) 

 

 

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

pi

pid

po

po

I

I

I

I

 
 
 
 
 

− =
 
 
 
 
 

−  

G               (6.1-11) 

  

The motions of two disks are coupled by the stiffnesses, KT and KR.  The stiffness matrix 

due to strain energy is as follows: 

 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

T T

T T

R R

R Rd

T T

T T

R R

R R

K K

K K

K K

K K

K K

K K

K K

K K

− 
 − 
 −
 

− =
 −
 

− 
 −
 

−  

K            (6.1.12) 

 

The constant generalized force vector due to gravity is: 
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 ( ),  ,  0,  0,  ,  ,  0,  0
T

d d

g i x i y o x o y
m g m g m g m g= =Q M g             (6.1-13) 

 

 The generalized force vector due to mass unbalance and disk skew will be discussed 

later. The synchronous excitation due to the mass unbalance is the most important 

excitation for a rotor system.  Since the emphasis here is to study rotor dynamics, for an 

integrated disk, the translational displacements of both inner and outer disks are generally 

considered to be the same (xi=xo, yi=yo), that is, KT is infinitely large, and the outer disk 

motion can be described by two rotational displacements to approximate the first nodal 

diameter mode of the disk.  The outer disk is no longer remaining normal to the shaft 

during vibration, but has its own rotational motion, as illustrated in Figure 6.1-10.  

Therefore, for a flexible disk used in rotordynamic study, the disk motion can usually be 

described by the (6×1) generalized displacements, ( )
T

, , , , ,
x y xo yo

x y θ θ θ θ=q , which 

contain two extra rotational DOFs for the flexible disk in addition to the original four 

DOFs at the rotor station for the rigid disk.   

 When the translational displacements are the same for both disks, the translational 

kinetic energy can be combined and is equivalent to a single mass (md=mi+mo) that acts at 

the rotor station.  The equation of motion for a rotating flexible disk (6 DOFs) now 

becomes: 

 

 (6 1)

d d d d d d d

x
+ Ω + =M q G q K q Qɺɺ ɺ                (6.1-14) 

 

where  ( )
T

, , , , ,
x y xo yo

x y θ θ θ θ=q  and  ( ),
xo yo

θ θ  are the additional DOFs for the outer 

disk. The associated mass/inertia matrix, gyroscopic matrix, stiffness matrix, and 

generalized force vector due to gravity become: 

 

 

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

d

d

did

di

do

do

m

m

I

I

I

I

 
 
 
 

=  
 
 
 
  

M               (6.1-15) 

 

 

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

pid

pi

po

po

I

I

I

I

 
 
 
 

=  
− 

 
 

−  

G                (6.1.16) 
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0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

R Rd

R R

R R

R R

k k

k k

k k

k k

 
 
 
 −

=  
− 

 −
 

−  

K                (6.1-17) 

 

Also, the generalized force vector due to gravity is: 

 

 ( ),  ,  0,  0,  0,  0
T

d d

g d x d y
m g m g= =Q M g               (6.1-18) 

 

It is commonly assumed that the disk inertias are all lumped into the outer disk; if so, 

then we have Idi =Ipi = 0 and  Ido = Id,  Ipo= Ip.  

  In summary, if the attachment of the disk to the shaft is flexible, or the natural 

frequency of the first nodal diameter mode of a disk is close to or below the operating 

speed range of the rotor system, the disk is considered to be flexible.  Note that the 

emphasis here is rotor dynamics, not disk vibration.  Therefore, two additional rotational 

displacements are sufficient to approximate the first nodal diameter mode of the disk, 

which affects the lateral motion of the rotating assembly.  For a complete disk vibration 

analysis, a general finite element program, such as ANSYS or NASTRAN, is required.  

Generally, a Campbell diagram or a so-called SAFE diagram (Singh et al., 1988) can be 

used as the first screening to identify any potential resonance problems for the disk 

vibration.  The criteria are based on modal analysis, which requires not only that the 

excitation frequency must match the system’s natural frequency, but also that the shapes 

between the excitation force and the natural mode of that frequency must match.  

However, this topic is beyond the scope of this discussion; readers can refer to Rao 

(1991) and Singh and Lucas (2011) for more information. 

 The feature of a flexible disk in rotor dynamics can be important in overhung rotors 

with large inertia, because it can weaken the gyroscopic stiffening effect, such as in large 

gas turbines and fans where the disk flexibility must be taken into consideration. The 

effect of disk flexibility on the dynamic characteristics also depends heavily on the ratio 

of the diametral moment of inertia to the polar moment of inertia.  More discussion of the 

gyroscopic effect and disk flexibility will be presented in Chapter 7.  For simple disks, 

the rotational stiffness can be estimated from handbooks.  However, for more complex 

disks, the rotational stiffness must be estimated by using the calculated natural frequency 

of the first nodal diameter mode.  Consider a compressor impeller with a diametral mass 

moment of inertia of Ido = 94 Lb-in
2
 for the wheel without core shaft, as shown in Figure 

6.1-12.  The natural frequency of the first nodal diameter mode is 1,506 Hz calculated by 

using finite element analysis.  Then the rotational stiffness at zero spin speed is obtained 

from the following simplified frequency equation: 

 

 ( ) in/rad-Lbf   07E18.2
088.386

94
21506    

222 =⋅×==⇒= πωω DR

D

R IK
I

K
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Figure 6.1-12 Disk first nodal diameter mode 

 

 Depending on the installation method, the disk can be mounted to a rotor station by 

an axial offset (cantilever) h, as illustrated in Figure 6.1-8.  The displacements for an 

offset rigid disk ( ), , ,d d xd ydx y θ θ  can be related to the displacements of the rotor station 

( ), , ,x yx y θ θ , to which the disk is attached with a small axial offset of h, by the following 

relationship: 

 

 

yyd

xxd

xd

yd

hyy

hxx

θθ

θθ

θ

θ

=

=

−=

+=

                  (6.1-19) 

 

Substituting the disk displacements, Eq. (6.1-19), into the disk energy expression, Eq. 

(6.1-4), and applying the Lagrange’s equation with respect to the generalized 

displacements at the rotor station, the equation of motion for a rigid offset spinning disk 

has the same form as Eq. (6.1-6), except that the mass/inertia matrix has additional terms 

due to the coupled relationships of (xd and θy) and (yd and θx) in the translational kinetic 

energy.   The mass/inertia matrix is now: 

 

 
2

2

0 0

0 0

0 0

0 0

d d

d dd

d d d

d d d

m m h

m m h

m h m h I

m h m h I

 
 − =
 − +
 

+  

M              (6.1-20) 

 

The gyroscopic matrix is unchanged as: 
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0 0 0 0

0 0 0 0

0 0 0

0 0 0

d

p

p

I

I

 
 
 =
 
 

−  

G                  (6.1-21) 

 

The constant generalized force vector due to gravity is given by: 
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 For an offset flexible disk, where the flexibility occurs at the disk, the relationships of 

the disk displacements ( ), , , , , , ,
i i xi yi o o xo yo

x y x yθ θ θ θ  and rotor displacements ( ), , ,
x y

x y θ θ  

are: 
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The associated modified mass matrix for this offset flexible disk becomes: 
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The associated gyroscopic and stiffness matrices are the same as Eqs. (6.1-16) and (6.1-

17).  Note that this offset must be small enough for the linear assumption to be valid.  For 

a large offset, the linear relationships between the displacements of the shaft and disk no 

longer apply. The disk must be considered and modeled separately. 
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6.1.3 Bearings 
 

All the bearings, dampers, seals, supports, and fluid-induced forces acting on or 

interacting between the rotating assemblies and/or non-rotating structures can be 

categorized as bearings, which can be either real or pseudo.  The bearings can be of any 

type, such as fluid film bearings, rolling elements, magnetic bearings, seals, and 

aerodynamic forces.  In general, a bearing is defined as an interconnection component 

that connects two finite element stations (mass stations) and does not introduce any 

additional DOFs or finite element stations in the system.  As said, a bearing connects two 

finite element stations; however, one station can be the rigid ground. Typical bearing 

configurations are shown in Figure 6.1-13. 

 The dynamic behavior of a rotor system is strongly influenced by its supporting 

bearings.  In fact, all the bearing forces are nonlinear in nature. Fortunately, the nonlinear 

bearing forces in most cases can be linearized about the static equilibrium position for 

small vibrations to obtain the linearized bearing dynamic coefficients.  The linearized 

bearing dynamic coefficients usually contain the stiffness and damping coefficients.  

However, when the fluid inertia effect is significant, such as liquid seals or a rotor with a 

constrained mass of fluid, in addition to the stiffness and damping coefficients, the 

dynamic coefficients also contain the mass coefficients.  These dynamic coefficients 

generally depend on operating conditions, such as speeds, loads, and lubricant properties.  

Decoupling the rotor and bearing equations through this linearization allows for linear 

analysis to be performed rapidly in the design phase.  Nonlinear bearing models can only 

be used in the time-transient analysis, with the exception of squeeze film dampers and 

generalized non-linear isotropic bearings.  Squeeze film dampers and non-linear isotropic 

bearings can be analyzed in the steady-state synchronous response with a centered 

circular orbit assumption, and in time-transient analysis without any restrictions.   

 When the bearing housing is soft, it should be included in the model as flexible 

support.  When the machine foundation or base plate is soft, then the entire machine can 

vibrate on top of the foundation and the model should include the foundation effect.   

 Different types of bearings or even the same type of bearings can be located at the 

same finite element station, depending upon the component to be modeled and the 

modeling technique.  Bearing design is crucial to the complete machine operation, and 

very often bearings are the only components that can be modified or changed when 

problems occur.  In the design of fluid film bearings, both static performance and 

dynamic characteristics must be considered.  The bearing static performance and related 

design issues are discussed in previous chapters.  Rotordynamics and bearing dynamic 

coefficients are the focus of this chapter. 
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Figure 6.1-13 Typical bearing models 

   

 The fluid film bearings are often the major source of damping, which affects the peak 

synchronous response amplitude.  Their direct stiffness affects the positions of the critical 

speeds. However, their cross-coupled stiffness properties can potentially introduce a 

major destabilizing effect, which may cause a large sub-synchronous vibration (self-

excitation) when rotor speeds exceed the instability threshold, as described in previous 

chapters. 

 Many of these interconnecting bearing forces can be linearized around the static 

equilibrium position, and the linearized bearing forces are expressed in the following 

form: 
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           (6.1-25) 

 

where the linearized bearing coefficients are evaluated at the static equilibrium and the 

bearing static forces are balanced out with the external static loads.  If the fluid inertia is 

considered, then mass coefficients in the acceleration terms must be included.  In general, 

the mass coefficients are neglected in most applications. 
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6.1.4 Fluid Mass Dynamic Couplings 
 

In some applications of rotating machinery (e.g., pumps), the rotor is within another 

cylinder (pipe) and fluid fills the annular space between the two cylinders, as illustrated 

in Figure 6.1-14.  When one structure vibrates, the adjacent structure also vibrates, as if 

there is a connection between these two structures.  The coupling is based on the dynamic 

response of two points or finite element stations at the centerlines of the two cylinders 

connected by the constrained fluid.  This is commonly referred to as the fluid element in 

general finite element analysis.  In rotordynamics, this fluid element dynamic coupling 

can be treated as a pseudo bearing that connects two finite element stations.  Note that 

these fluid element inertia forces acting on the stations are different from the 

conventional bearing inertia force.  They are not action and reaction forces like those in 

the conventional bearing forces. 

 

 
 

Figure 6.1-14 Fluid element 

 

 The motion is assumed to be small, and the fluid is incompressible.  The two points 

(stations) are coupled by the added mass, often called fluid dynamic coupling.  This is 

ideally treated as a pseudo bearing that connects two structure points with an added mass 

matrix in the translational motion. Assuming the finite element station of the inner 

cylinder is station i with translational displacements of (xi, yi) and the finite element 

station of the outer cylinder is station j with translational displacements of (xj, yj), the 

added dynamic force (mass matrix) has the following form (Fritz, 1972; Blevins, 2001): 
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Assume that the inner cylinder has an outer radius of R1 and the outer cylinder has an 

inner radius of R2.  The length of the cylinder is L, and the density of the fluid is ρ.  The 

values for the mass coefficients are: 
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 = added mass of inner cylinder           (6.1-27) 
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= added mass of outer cylinder           (6.1-28)  

 

 
2 2

1 2
13 31 24 42 2 2

2 1

2R R
m m m m L

R R
ρπ

 
= = = = −  

− 
 = fluid coupling            (6.1-29) 

 

 An example, as shown in Figure 6.1-15, is used to illustrate the application of fluid 

elements to the rotordynamics study.  Water is constrained between the rotor and stator.  

The rotor outer diameter (OD) is 4 in (R1=2 in), the stator inner diameter (ID) is 10 in 

(R2=5 in), and the total length of the fluid-occupied area is 20 inches.  Water density is 62 

Lb/ft^3.  The added mass due to the fluid is modeled with five pseudo bearings, which 

connect the rotor and stator.  The bearings connect (4-12), (5-13), (6-14), (7-15), and (8-

16) stations.  The five pseudo bearings are equally spaced along the shaft line. 

 

 

 
 

Figure 6.1-15 Fluid element example 

 

 The added masses for the three internal bearings (using L=5 inches), stations 5-13, 

stations 6-14, and stations 7-15, are: 
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 The added masses for bearings at both ends of the fluid element (using L=2.5 inches, 

which is half the distance between two pseudo bearings), stations 4-12 and stations 8-16, 

are: 
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6.1.5 Flexible Foundation and Supports 

 

If a flexible foundation and/or flexible supports are present, the equation of motion for 

this non-rotating structure under the small vibration assumption is as follows: 

 

 )()( )( )( tttt fff QqKqCqM =++ ɺɺɺ                (6.1-30) 

 

Again, the mass/inertia matrix Mf is a positive definite real symmetric matrix. The 

restrained structural stiffness matrix Kf is also a positive definite real symmetric matrix.  

For practical purposes, the damping properties of the foundation structure are seldom 

known in the same way as the inertia and stiffness properties, so it is not feasible to 

construct the damping matrix analogous to the construction of the mass/inertia and 

stiffness matrices.  Also, the damping for the foundation structure is extremely small and 

usually neglected in the modeling for rotordynamic study.  If necessary, Rayleigh 

damping is commonly employed in the foundation structure to define the damping 

matrix.  The simplest procedure for defining a foundation structural damping matrix is 

so-called proportional damping, as follows: 

 

 fff KMC   βα +=                  (6.1-31) 
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where α and β are two constants chosen to produce desirable modal damping factors for 

two selected modes.  Once α and β are given, the damping matrix is determined and the 

damping factors in the remaining modes are then determined by the orthogonality 

relationship: 
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where iξ  is the modal damping factor and iω  is the ith undamped natural frequency 

obtained from the foundation structure eigenvalue problem: 

 

 ( ) 0φMK =− ifif   2ω   i=1, 2,….., N              (6.1-33) 

 

where
i
φ  is the associated ith eigenvector.  N is the number of DOFs for the foundation 

(support) structure.  The drawback of the above proportional damping method is that it is 

limited to two damping factors, and others are determined accordingly by Eq. (6.1-32), 

which may not be realistic for other modes of interest.  A more generalized approach is 

by specifying the damping factors for all the modes of interest and utilizing the 

orthogonality relationship; the physical damping matrix can then be constructed as 

follows: 
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where the modal mass for the ith mode Mi is defined as: 

 

 iif

T

i M=φMφ                  (6.1-35) 

 

and the number of retained (interested) modes N̂  is far less than the total number of 

modes N in practice.  The damping matrix defined by the above approaches is a real 

symmetric matrix, which is known as Rayleigh’s dissipative damping matrix.  Again, all 

the matrices in the foundation structure are real symmetric and generally independent of 

the rotor speed. 

 

6.1.6 Excitations 

 

Mass unbalance is the most common source of synchronous excitation in rotating 

machinery.  The rotors always have some amount of residual unbalance, no matter how 

well they are balanced and assembled. The unbalance excitation is a harmonic 

synchronous excitation, which has an excitation frequency equal to the rotor rotational 

frequency (1×Ω).  The mass unbalance excitation magnitude varies with the square of the 

rotor speed (meΩ2
), where m is the mass, e is the mass eccentricity, and Ω is the rotor 

rotational speed in rad/sec.  There are other sources of synchronous excitation, such as 
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excitations due to disk skew, shaft bow, coupling misalignment, and magnetic forces.  

The disk skew excitation moments ( )( )2  Ω− τdp II  due to the skew angle of τ are similar 

to the unbalance forces associated with mass eccentricity e.  Both excitation magnitudes 

are functions of the square of the rotor speed, and the excitation frequencies are 

synchronous with the rotor speed.  Disk skew produces an external moment, but mass 

eccentricity produces an external force.  The residual shaft bow can be present in the 

large rotor systems for many reasons, including assembly tolerances and uneven thermal 

distribution.  When a residual shaft bow exists in a rotor system, a constant magnitude 

rotating force ( bsqK ), which is synchronized with the shaft spin speed, is acting on the 

rotor system.  The shaft bow rotates with the rotating reference frame; therefore, it is 

commonly specified in the rotating reference coordinate system.  Coupling misalignment 

and magnetic forces are similar to the shaft bow excitation with a constant magnitude 

rotating force.   

 Other types of excitations and loadings exist in rotor-bearing systems.  Some are 

constant, such as static and gravity loads, some are frequency and/or speed related, and 

some are time-dependent transient excitations.  Time-transient analysis may be required 

when these excitations are considered.  Commonly, constant static loads are used in the 

bearing linearization process and are canceled out in the linear equation of motion. 

 

6.1.7 System Equations of Motion and Analyses 
 

The system governing equations of motion for a complete rotor-bearing-support 

(foundation) system are obtained by assembling the equations of motion of all the 

components. The assembled system equations of motions with a constant rotational speed 

Ω are: 

 

 ( ) ( ) ),,()( )( )( ttttt nb qqQQqKqGCqM ɺɺɺɺ +=+Ω++              (6.1-36) 

 

where all the matrices are real and assembled from the associated components. The 

generalized coordinate vector q is the system displacement vector to be solved. The 

mass/inertia matrix M is a positive definite real symmetric matrix.  In rotordynamics, the 

mass/inertia matrix is derived from the kinetic energy; it is said to be nonsingular and its 

determinant is not zero. The gyroscopic matrix ΩG is a real skew-symmetric matrix 

derived from the conservative gyroscopic forces of the rotating components.  Although 

the gyroscopic matrix is linear in generalized velocity coordinates, it is conservative in 

nature.  The damping matrix C contains the linearized bearing/support damping matrix 

bC , which can be a real arbitrary matrix, and the dissipative matrix from foundation fC , 

if included, which is a real symmetric matrix. For systems with linearized fluid film 

bearings without fluid inertia effects, bC  is a real symmetric matrix.  The dissipative 

damping force is non-conservative and removes energy from the system, which stabilizes 

the system.  The stiffness matrix K contains the conservative elastic real symmetric 

matrices from the rotating components and flexible foundation, if the foundation is 

included, and also the non-conservative linearized bearing/support stiffness matrix bK , 

which is a real arbitrary matrix in general.  The unequal cross-coupled stiffness from the 
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fluid film bearings forms the circulatory matrix, which can add energy to the system and 

have a destabilizing effect, as discussed in Chapter 2. The stiffness matrix can also 

contain the contribution from the gravity moments for vertical rotor systems, which is a 

real non-symmetric matrix and can affect both the critical speeds and rotor stability.  The 

topic of vertical rotors will be discussed in Chapter 7. The forcing vector ( )tQ  contains 

all the time-dependent excitations, which are independent of the generalized coordinates.  

The force vector ),,( tnb qqQ ɺ  contains all other forces including constant, linear, and 

nonlinear forces.  For linear bearings, 
lb

= − −b bQ C q K qɺ , where bC  and bK  can be 

placed in the left-hand side of the equation. 

 As described earlier, any real matrix can be written as a sum of a symmetric matrix 

and a skew-symmetric matrix, so Eq. (6.1-36) can be re-organized as a more known 

general dynamic system equation of motion (Meirovitch, 1980): 

 

 ( ) ( ) ( )*
 ( )  ( )  ( ) ( , , )s nbt t t t t+ + + + = +M q D G q K H q Q Q q qɺɺ ɺ ɺ            (6.1-37) 

 

where all the matrices are real, M (mass/inertia matrix), D (damping matrix), and Ks 

(stiffness matrix) being symmetric, and G* (gyroscopic matrix with spin speed) and H 

(circulatory matrix) being skew-symmetric. Two unique matrices are present in the 

rotordynamics study: the conservative gyroscopic matrix G* caused by the rotor spinning 

effect and the non-conservative circulatory matrix H caused by the cross-coupled 

stiffness coefficients from bearings, seals, fluid interactions, and gravity moments for 

vertical rotors.  The gyroscopic effect couples two planes of motion (X-Z and Y-Z planes 

with the Z-axis being the spinning axis) and splits the planar mode into two precessional 

modes: one with forward precession and the other with backward precession.  As the 

speed increases, the forward whirl frequencies increase and the backward whirl 

frequencies decrease if only the purely gyroscopic effect is considered in the system.  

This is known as the gyroscopic stiffening effect on forward precessional modes and the 

softening effect on backward precessional modes. The kinetic energy due to the 

gyroscopic moments is linearly proportional to the rotor spin speed, whirl frequency, 

polar moment of inertia, and area of rotational displacement (slope) orbit.  Therefore, the 

gyroscopic effect has greater influence for higher rotor speeds, vibratory modes with 

higher frequencies and large rotational displacements (slopes).  However, the gyroscopic 

moment is a conservative force which has no influence on the system stability study.  On 

the other hand, the non-conservative cross-coupled stiffness coefficients (kxy and kyx) 

caused by fluid film bearings, seals, and other fluid interactions, such as aerodynamic 

cross-coupling, may produce a major destabilizing effect on the rotor system. This 

destabilizing effect may cause the rotor system to be in a very destructive, self-excited 

state. In general, the cross-coupled stiffness has little influence on the system natural 

frequencies, unless its value becomes very large.  

 In some applications, it is necessary to study the rotor transient motion during startup, 

shutdown, movement through critical speeds, and rotor drop for magnetic bearing 

systems.  In these situations, the angular velocity (spin speed) is no longer a constant, but 

is a function of time.  The governing equations of motion for a variable rotational speed 

system are (Chen & Gunter, 2005): 
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and subject to the initial conditions: 

 

 ( ) ( )  0      ,0 oo qqqq ɺɺ ==                 (6.1-39) 

 

where ϕϕϕ ɺɺɺ  and , ,  are the angular displacement, angular velocity ( Ω=ϕɺ ), and angular 

acceleration (deceleration) of the rotor system.  Two additional terms introduced in the 

governing equations due to the speed variation are circulatory matrix ϕGɺɺ  and forcing 

vector 2Qϕɺɺ .  The equations of motion for a variable rotational speed system, Eq. (6.1-38), 

are nonlinear and can only be analyzed using time-transient analysis. 

 All rotating systems are nonlinear.  In rotordynamics, the rotor vibration is very small 

compared to the shaft dimensions, the small shaft deformation assumption is justifiable, 

and the equations of motion for the rotating structural components are linear.  However, 

the bearing forces can be highly nonlinear.  In general, for small vibrations and rotor 

speeds below the instability threshold, the rotor dynamic behaviors predicted by using 

linear analyses with linearized bearing dynamic coefficients provide reasonable results.  

For large vibrations or rotor speeds beyond the instability threshold, linear theory is no 

longer valid, and nonlinear analysis is needed. For systems with highly nonlinear 

bearings/dampers in which linearization is not feasible, nonlinear analyses are required. 

 Most rotordynamic solution techniques are for linear systems based on linear theory, 

such as critical speed analysis, whirl speed/stability analysis, and steady-state harmonic 

response analysis. They provide sound engineering information for system design 

purposes. For systems in which linearization is not feasible, such as squeeze film 

dampers, and systems in which the rotor speeds exceed the instability threshold 

established by the linear whirl speed and stability analysis, nonlinear analyses are 

required. Two nonlinear analyses in rotordynamics are time-transient analysis using 

numerical integration and steady-state response analysis using harmonic balancing or 

trigonometric collocation methods.  Since time-transient analysis provides transient and 

steady-state response and is a more straight forward technique than the harmonic 

balancing and trigonometric collocation methods; therefore, almost all nonlinear systems 

are analyzed using time-transient analysis nowadays due to high-speed computational 

power.  Time-transient analysis can also be used for linear systems.             

 The most common analyses performed during the design of rotor-bearing systems 

are: 

• Static deflection and bearing loads due to gravity, static loads, misalignments, 

and any other constant forces and constraints. This also includes the so-called 

catenary curve analysis for larger turbo-generator systems. The system analyzed 

is a linear system. 

• Steady maneuver response and bearing loads due to constant base translational 

acceleration or turn rate, which is commonly analyzed in aerospace applications.  

The system analyzed is a linear system.   

• Critical speed analysis, mode shapes and energy distribution. The system 

analyzed is a linear, isotropic, and undamped system with constant and speed-
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independent bearing/support stiffness. The analysis provides estimated critical 

speeds for design purposes. 

• Critical speed map. This is used to facilitate shaft design and preliminary 

bearing design. This map is an outgrowth of the critical speed analysis by 

assuming the bearing stiffness in a range from soft to rigid.  In this analysis, the 

actual bearing properties are not known and the design range for the bearing 

stiffness is to be determined from this map.  The bearing dynamic stiffness is 

often overlapped in the map to estimate the critical speeds. 

• Steady-state synchronous response and transmitted loads due to mass 

unbalance, disk skew, and shaft bow.  The system analyzed can be either linear or 

nonlinear.  For a nonlinear system, isotropic properties and centered circular 

orbits are assumed. 

• Steady-state response due to non-synchronous harmonic excitations.  This is 

for linear systems only. 

• Whirl speed and stability analysis, damped natural frequencies of whirl, 

logarithmic decrements or damping factors, and associated mode shapes.  The 

system analyzed is a linear system. The system’s stability and instability threshold 

can be established. For systems with negative logarithmic decrements, linear 

theory is no longer valid and nonlinear time-transient analysis is required. 

• Time-transient analysis.  The system analyzed can be linear or nonlinear at a 

constant rotor speed or during startup and shutdown.   

 

 

6.2 Modeling Considerations  
 

When building the rotor model, one must know the purposes of analyzing it.  Is it a 

general finite element analysis, such as stress/strain analysis due to centrifugal force and 

pressure distribution, thermal analysis, or impeller blade vibration? Or is it a 

rotordynamics analysis, such as critical speed analysis, rotor stability analysis, or rotor 

response analysis?  The purpose of modeling is to convert the actual continuous system 

into a discrete mathematical model and develop physical insights into the actual system 

to facilitate the design process. For rotordynamics analysis, there are some basic 

principles and concepts to follow: 

 

1. Rotor modeling is not an exact science.  Assumptions and simplifications are 

needed for design purposes and parametric study. 

2. Use the simplest model possible as long as it contains all the necessary 

information and is a good representation of the system. Do not over-model the 

system, which may complicate comprehension of the analysis results and does not 

necessarily provide more accurate results due to potential modeling errors. 

3. Practical experience and engineering judgment must be applied during the 

modeling process. 

4. The manufacturing and assembly tolerance must be considered. 

5. The variations in the operating conditions must be considered. 
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6. Use known information and test data to refine and verify the model if they are 

available, such as the total weight, center of gravity (CG) location, bearing 

locations, free-free modal frequency, and any other test data. 

 

 The most common questions raised in modeling the rotor shaft are: (1) How many 

elements (or finite element stations) are required to accurately predict the dynamic 

behavior of the system? and (2) How should we select the station’s locations? To answer 

these questions, let us first examine a simple rotor system, as shown in Figure 6.2-1.   

 

 
Figure 6.2-1 Modeling example 

 

 The rotor system contains a shaft with various diameters, a disk mounted on the shaft, 

and two support bearings.  The first step in the finite element method is discretization, 

which converts a continuous physical model into a discrete mathematical model.  As a 

result of this discretization, which introduces artificial constraints, the calculated natural 

frequencies of the discrete system are higher than the actual natural frequencies of the 

continuous system.  The amount of difference depends on how many elements are used 

and how the stations are chosen.  As the number of elements (stations) increases, the 

calculated natural frequencies approach the actual natural frequencies of the continuous 

system.   

 Without utilizing sub-elements and when the elements are divided by different shaft 

diameters, the simplest model for this rotor is an 18-element (19-station) model, as shown 

in Case (1a) of Figure 6.2-2, with a relatively long element number 12 in the middle due 

to the same shaft diameter.  The bearings and disk must be placed at the finite element 

stations.  The first three forward undamped critical speeds are calculated to be 4,862, 

11,629, and 24,590 rpm.  Case (1b) divides the longest element number 12 into two 

elements and becomes a 19-element (20-station) model, and the first three calculated 

critical speeds become 4,823, 11,355, and 23,326 rpm, which are lower than those 

obtained from Case (1a).  Cases (1c), (1d), (1e), and (1f) are models with further 

refinements in this long element.  The results for models without utilizing sub-elements 

are summarized in Table 6.2-1. As expected, while the number of elements increases, the 

natural frequencies (critical speeds in this case) decrease and approach a constant.  In this 

illustration, the first critical speed reaches a constant with 21 elements and the second 

critical speed becomes a constant with 23 elements.  A further increase in the number of 

elements does not improve accuracy for the first two critical speeds because they have 
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reached a constant already, but it improves the accuracy of higher critical speeds.  

However, the increase in the number of elements requires more modeling effort and 

computational time.    

 

             Case 1 – without sub-elements                          Case 2 – with sub-elements 

 
 

Figure 6.2-2 Discretization of the rotor – without and with sub-elements 

 

Table 1.8-1 First three forward undamped critical speeds for the rotor models 

without sub-elements 

 

Without sub-elements ω1 ω2 ω3 

Case (1a): 18 elements 4,862 11,629 24,590 

Case (1b): 19 elements 4,823 11,355 23,326 

Case (1c): 20 elements 4,821 11,332 23,225 

Case (1d): 21 elements 4,820 11,326 23,190 

Case (1e): 22 elements 4,820 11,324 23,177 

Case (1f): 23 elements 4,820 11,323 23,170 
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 Without employing sub-elements in the model, each element length can be quite 

different. Some elements are relatively short or long compared to others, and the 

minimum number of required stations is 19 due to the geometric requirements. By 

utilizing the sub-elements, the simplest model is a 4-element (5-station) model, as shown 

in Case (2a) of Figure 6.2-2, where only the necessary stations (bearings, disk, and both 

end-points) are kept, and others are modeled as sub-elements.  Further division in the 

long element is performed similar to Case (1).  The results for models with sub-elements 

are summarized in Table 6.2-2.  Again, while the number of elements increases, the 

natural frequencies decrease and approach a constant. The results also show that by 

properly selecting the locations of the finite element stations and utilizing the sub-

elements, a 6-element (7-station) model with sub-elements can be as accurate as the 20-

element (21-station) model without sub-elements in terms of the first two critical speeds.  

This indicates that the quality of the elements/stations is more important than the 
quantity of the elements/stations.  As a general rule, it is recommended that the finite 

element stations be equally spaced along the rotor.  Also, more stations are needed at 

locations where large displacements are expected.  The more elements are used, the better 

the results will be.  The appropriate number of finite element stations (elements) depends 

on the number of vibration modes of interest and the configuration of the rotor systems, 

such as the number of disks, and bearings. Practical examples will be used to illustrate 

the selection of finite element stations. In the finite element method, the element length-

diameter ratio and the element length are not as critical as those in the transfer matrix 

method. 

 

Table 6.2-2 First three forward undamped critical speeds for the rotor models 

 with sub-elements 

 

With sub-elements ω1 ω2 ω3 

Case (2a): 4 elements 4,909 12,466 24,753 

Case (2b): 5 elements 4,825 11,436 23,716 

Case (2c): 6 elements 4,821 11,358 23,459 

Case (2d): 7 elements 4,820 11,336 23,326 

Case (2e): 8 elements 4,820 11,328 23,221 

Case (2f): 9 elements 4,820 11,326 23,206 

 

 In summary, the steps to build a rotor model are as follows: 

 

1. Identify the disks, bearings, seals, probes, and other critical locations where either 

the dynamic properties are known or the responses are critical to the machine.  

These locations must be assigned as stations.  Some seals, such as the seals in 

standard industrial air compressors and blowers, are not crucial to the rotor 

dynamics and their effects can be neglected. Other seals, such as the seals in 

pumps and high pressure seals, can significantly affect the rotor dynamics and 

their effects must be included in the model. 

2. The finite element stations are recommended to be approximately equally spaced 

along the rotor line for better representation of the vibration mode shapes. 
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3. There is no need to use a large number of stations in the model.  The use of sub-

elements is strongly recommended to increase modeling flexibility for design 

changes without affecting the entire model and station numbers, and to improve 

the computational efficiency.  

 

 Figure 6.2-3 shows an 11-station model of a double-overhung rotor for a centrifugal 

compressor. Typically, the impeller mass properties are known and lumped at the CG 

location (stations 2 and 10).  The aerodynamic induced cross-coupled stiffness is also 

applied at the impeller CG location.  Stations 4 and 8 are the stations between bearing 

and vibration probe, and they are used to produce approximately equally spaced elements 

and to avoid a long element.  In general, this type of rotor is operated below or a little 

above the free-free bending mode; hence, only the first three critical speeds are of 

interest.  For an 11-station model, the total DOF for lateral vibration is 44.  Therefore, the 

model can produce very reasonable results for the modes of interest. 

 

 
Figure 6.2-3 A typical double overhung rotor model 

 

 Figure 6.2-4 is a 14-station rotor model for an electrical motor.  Between stations 6 

and 8, the diameters used for the mass model and stiffness model are different due to the 

extra weight from the rotor wiring.  Stations 4, 5, 9, 10, and 13 are introduced due to the 

added weights at those locations.  Again, all the stations are approximately equally 

spaced along the rotor line.  In general, a total station number between 10 and 20 is 

suitable for a rotor model with reasonable accuracy. 

 

 
Figure 6.2-4 A typical electrical motor rotor model 
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 6.2.1 Common Modeling Mistakes 
 

The most common mistake made in the rotor model which causes the analysis to fail or 

produces incorrect results is singularity in the mass/inertia matrix.  The mass/inertia 

matrix is derived from the kinetic energy expression. Hence, it must be a positive definite 

real matrix. This implies that for every finite element station, there should be some 

mass/inertia present to produce a positive definite real matrix (i.e., positive kinetic 

energy). Therefore, one should examine every finite element station to be certain that 

mass is contributed either by shaft elements with positive mass density or a disk with 

positive mass for the translational motions and diametral moment of inertia for the 

rotational motions, if the dynamic analysis could not be performed and numerical errors 

occurred.   

 Consider the rotor system shown in Figure 6.2-5; it is a double-overhung rotor 

supported by two bearings and very similar to the system shown in Figure 6.2-3.  The 

original model was built without utilizing the sub-elements for illustrative purposes.  The 

suggested stations with sub-elements were also marked below the model for reference.  

Impellers are located at both sides of the bearing span. The mass properties (mass and 

inertias) of the impellers are commonly calculated from the solid model and lumped at 

their CG locations. Therefore, only bending stiffness (EI) is present in the impeller 

elements, and no mass density (ρ=0) exists for these elements. The shaft elements are 

typical elements with distributed stiffness and mass.  However, this system cannot be 

analyzed under the current model due to the singularity in the assembled mass/inertia 

matrix, except for the static deflection analysis which does not require inversion of the 

mass/inertia matrix.  Let us examine the first impeller in detail, as illustrated in Figure 

6.2-6, which consists of five elements with station 1 and station 6 at either end.  The 

impeller mass properties are lumped into station 3. For station 6, the mass properties 

come from element 6 of the shaft.  There is no mass/inertia present at stations 1, 2, 4, or 

5. Therefore, the assembled system mass/inertia matrix is singular.  The same discussion 

applies to the second impeller.  There are many ways to fix this problem.  Three simple 

approaches are presented here.  One approach is to apply very small mass density in the 

impeller elements to avoid singularity, although some computer software automatically 

does this to prevent numerical errors.  However, it is better for the user to control this 

small density value.  This added mass must be small enough to avoid computational 

singularity, but not affect the system dynamics.  The second approach is to add a disk 

with very small mass and inertias in station 1 and utilize the sub-elements to eliminate the 

stations where mass/inertia is not present, as illustrated in Figure 6.2-7. The positive 

definite mass/inertia matrix is not required for the sub-elements in Guyan reduction since 

it is a static condensation technique. Therefore, a zero mass density is allowed in the 

internal sub-elements.  Station 1 (end station) cannot be eliminated; therefore, a disk with 

insignificant mass and inertia is needed.  Again, the small added mass and inertia at 

station 1 are used to avoid singularity in the mass/inertia matrix, but must be small 

enough not to affect the system dynamics.   The third approach is to keep the center core 

of the impeller as part of the shaft elements with distributed mass and elasticity, as 

illustrated in Figure 6.2-8, and the elastic massless impeller elements as the outside level 

(layer) of the element. The center core of the impeller (now modeled as the shaft 
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elements) must be excluded from the impeller mass properties calculation to prevent 

overestimating the impeller mass properties. 

 

 
Figure 6.2-5 Example for elements with singularity 

 

 
 

Figure 6.2-6 Elements with zero mass 

 

 
 

Figure 6.2-7 Utilization of sub-elements to avoid singularity 
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Figure 6.2-8 Utilization of layers to avoid singularity 

 

 A very similar mistake commonly made in the modeling flexible supports is neglect 

of the support mass.  As explained earlier, every finite element station requires mass to 

produce positive kinetic energy. Therefore, if a flexible support is present, mass is 

required at the support station, as illustrated in Figure 6.2-9.  Again, there is no need for 

as many stations as used here.  Although it is not a problem to use so many stations, it is 

suggested to use smaller station numbers and employ the sub-elements.  By using the 

sub-elements, the model will be cleaner and it will be easier to implement local 

modifications without affecting the entire system.  

 

 
 

Figure 6.2-9 Flexible supports 

 

 Another common modeling error involves the singularity of the system stiffness.  In 

practice, all rotor systems are constrained by bearings or bearing-like mechanisms to 

prevent free and unrestrained movement.  Without proper constraints, pure rigid body 

modes with zero natural frequencies occur and the rotor motion is unbounded.  A single-

rotor system is commonly supported by two bearings with translational stiffness to 

prevent unrestrained translational and rotational motions.  In some applications, one 
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bearing with translational and rotational stiffness can also serve the same purpose.  For 

multiple-shaft systems, inter-shaft bearings or connections must be present. This 

modeling error can easily be identified when performing critical speed calculations and 

zero natural frequencies are present in the unrestrained system.  One exception is when 

the free-free mode is needed for comparison with the experimental results.  The bearings 

are removed and the rotor system is intentionally not supported in the model.  Then, two 

zero natural frequencies will be present in the system and the associated modes are 

theoretical rigid body modes.  One is translational mode and the other is rotational mode 

about the mass/inertia center. 

 Unlike the singularity in the mass/inertia and stiffness matrices, which produces 

apparent error messages in the eigenvalue solver, another common mistake is made in the 

modeling that does not produce an error message but generates erroneous results.  That is 

the inconsistency or incorrectness in the use of units.  The units used in the model are 

extremely important. They must either be consistent or follow strict instructions 

according to the analytical software requirements.  Mistakes in the units can be extremely 

detrimental since they produce erroneous results and not an “analysis failed” warning.  

For example, if one uses inches for the length and lbf in the force units, then the gravity 

constant will be 386.088 in/s
2
, not 32.174 ft/s

2
.  The mistake made in the units is difficult 

to detect and the correct use of the units relies heavily on the experience and carefulness 

of the software users. 

 If the bearings are not linearized about the static equilibrium positions and nonlinear 

forces are supplied, then the linear analyses, including the critical speed analysis, whirl 

speed and stability analysis, and steady-state response analysis, do not apply since these 

analyses are for linear systems only, and nonlinear analyses are required. Nonlinear 

analyses include time-transient analysis and steady-state synchronous response with a 

centered-circular orbit assumption. Time-transient analysis can be used for both linear 

and nonlinear systems.  When performing transient analysis for linear systems, some 

static loads, such as the external gear loads and gravitational loads, may not be needed if 

these loads were used to obtain the linearized bearing coefficients.  For linear analysis, 

the rotor oscillates around the static equilibrium position. The Z-axis in the linear analysis 

lies along the axis of the shaft such that the origin of the X-Y axes locally coincides with 

the static equilibrium position of the rotor center. In general, this equilibrium position 

changes with rotor speeds.  For nonlinear systems, all the loads must be included in the 

transient analysis and the rotor vibrates around the bearing geometric centers.  

 In summary, the most common mistakes in modeling and analysis are: 

 

1. Mass/inertia singularity: Check the mass density in the material properties to see 

if there are elements without mass or the support mass is missing, particularly in 

the elements with the disks, where the mass properties are lumped at a single 

station for each disk. 

2. Stiffness singularity: Check the Young’s modulus in the material properties to see 

if there are elements without bending stiffness or the rotor is not properly 

constrained by bearings. 

3. Check the units carefully since incorrect units produce erroneous results. 
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4. The critical speed, whirl speed and stability, and steady-state harmonic response 

analyses are for linear systems only.  If nonlinear components exist in the system, 

then nonlinear analyses must be used to study the system dynamic behavior. 

5. Linear analyses are based on the assumptions that vibrations are small in the 

vicinity of the static equilibrium positions and the system is stable in linear 

theory.  For systems with large vibrations and negative logarithmic decrements, 

nonlinear theory must be applied.  

 

 

6.3 Static Deflection and Bearing Loads 
 

Static analysis is commonly used to determine the shaft static deflection, bearing 

reaction/constrained forces, internal element shear forces and bending moments, and 

associated stresses under static external loads, gravitational loads, and geometric 

misalignment.  It can also be used to verify the accuracy of the model before performing 

dynamic analysis.  For static deflection and bearing loads, the system generalized force is 

a constant and the associated response (deflections) can be obtained from the following 

static equation: 

 

 o o   =K q Q          (6.3-1) 

 

 Figure 6.3-1 shows the shaft deflection and bearing loads due to gravity loading for a 

six-stage compressor.  Figure 6.3-2 shows the shear force, bending moment, and their 

associated stresses.  For systems supported by fluid film bearings, the bearing load, 

obtained from the static analysis with all applied constant loads, including gravity and 

gear loads, is then utilized in the Reynolds equation to calculate the bearing static and 

dynamic performance.  Once the static equilibrium is found for a hydrodynamic journal 

bearing, the bearing static performance and linearized dynamic coefficients can be 

determined.  For the linear dynamic analysis, the rotor vibrates around the equilibrium 

position, not the bearing geometric centers. 

 

 
 

Figure 6.3-1 Static deflection and bearing loads due to gravity loading 
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Figure 6.3-2 Shear force, bending moment, and their associated stresses 

 due to gravity loading 

 

6.3.1 Steady Maneuver Load 
 

Steady response and bearing loads due to steady maneuver loading are commonly 

required in aerospace applications.  The rotating assembly is mounted on a rigid base 

through bearings.  The motion of the rigid base, defined by the displacement vector at a 

specified axial location (zf), is given by: 

 

 { } T

fyxf yx θθ ,,,=q         (6.3-2) 

 

The motion of all other connecting points on the rigid base can then be related to this pre-

defined motion by the rigid body constraint.  The motion at a typical support point 

located at a distance of ( )fs z z= −  from the specified point, as illustrated in Figure 6.3-

3, is as follows: 
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Figure 6.3-3 Displacement relationship for a rigid base 

 

 The base motion is generally described by a constant translational acceleration 

{ } T

ff yx 0,0,, ɺɺɺɺɺɺ =q , where the magnitude is a multiple of gravity constant g, or is specified 

by a constant turn rate (rotational velocity) { } T

fyxf θθ ɺɺɺ ,,0,0=q .  The generalized force 

for the case of specified base motion becomes: 

 

 ( ) ( )[ ] frfbbf qΤCΨCGqTΨMQ ɺɺɺ       ,++Ω−−=     (6.3-4) 

 

where both ΨΨΨΨ and T are the constraint matrices and Cb,rf  is the bearing damping matrix 

coupled from the rotor assembly to the rigid base.  Details on the derivation of the above 

equations are documented in Nelson et al. (1981) and not repeated here.  Figure 6.3-4 

shows the steady response and bearing loadings due to 1g acceleration in the Y direction 

for an aircraft engine. 

 

 
Figure 6.3-4 Steady response and bearing loads due to a constant base acceleration 
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6.3.2 Catenary Curve 

 

Static analysis can also be employed to achieve the desirable rotor catenary curve by 

adjusting the bearing elevations (misalignments) for a multi-rotor system.  The goal is to 

keep the bending moments/stresses at the coupling rigid flange faces to a minimum.  This 

practice is frequently implemented in large turbine-generator units.  For a large turbine-

generator system, the coupling station or nearby the coupling location can experience 

large moment (stress) during startup. Therefore, at the construction of a turbine-generator 

system, the level of each bearing center is adjusted (elevated) to minimize the bending 

moment and shear force at each coupling or location where the potential failure may 

occur. 

 Figure 6.3-5 shows the static deflection for a turbine-generator application with and 

without designed bearing elevations.  The entire turbine-generator set is about 22 meters 

long and weighs 67 tons.  Without bearing elevations, the second coupling between 

turbine and generator experiences high stresses.  To obtain a smooth catenary curve, four 

bearings are elevated.  The amounts of elevations for the first two bearings are 1.5 and 

0.2 mm in the turbine end and for the last two bearings are 2.7 and 4.4 mm in the 

generator end.  With these designed bearing elevations, the coupling stress is reduced to 

an acceptable level.   

 

 
 

Figure 6.3-5 Static deflection curve due to bearing misalignment 

(Courtesy of Malcolm Leader) 

 

 Catenary curve analysis involves multiple rotors with couplings.  Ideally, the weight 

of each rotor should be supported entirely by its own bearings. The ideal bearing 

reactions are therefore equal to the bearing reactions present when the rotors are 
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uncoupled.  When the weight of each rotor is supported by its own bearings, the resulting 

shape of the full-shaft-line caused by the elevations of the bearings is often called the 

catenary curve in the rotordynamics community of the power industry.  Note that the 

term catenary as used here differs from the catenary defined in mathematics and civil 

engineering due to the complexity of the rotor configurations.  Caution must be taken 

when performing this task.  Misalignment of the bearings will eliminate the high stress at 

or near couplings during the initial startup.  However, this elevation may overload the 

bearing, and the rotor bow also creates a synchronous excitation in addition to the mass 

unbalance excitation.  

 There are two systematic approaches to determine the bearing elevations for the 

catenary curve. For each shaft supported by two bearings, the catenary curve can be 

obtained by the following procedure, which will result in the rotor static weight of each 

rotor being supported entirely by its own bearings.  A simple two-shaft example, as 

shown in Figure 6.3-6, is used here for illustrative purposes. 

 

 
 

Figure 6.3-6 A simple two-shaft model 

 

 First, the bearing reactions of the uncoupled rotor due to rotor weight are calculated 

for each rotor.  For rotor 1, as shown in Figure 6.3-7, the bearing reaction forces are 

72.92 and 81.53 lbf at bearing stations 2 and 6, respectively.  For rotor 2, as shown in 

Figure 6.3-8, the bearing reaction forces are 69.03 and 135.4 lbf at bearing stations 2 and 

6 (or stations 8 and 12 for the coupled system), respectively.  Note that the sum of 

bearing reaction forces is the rotor static weight for each rotor. 

 Second, apply these bearing reaction forces as externally applied loads at each 

bearing station on the combined rotor model to obtain the static deflection curve.  Note 

that in this step, since the entire rotor is unconstrained, the solution is possible only after 

rigid body motion is eliminated.  Since the rotor has translational and rotational motions 

for each plane, we will need at least two constraints.  There are two possibilities for the 

application of constraints. Most common is constraining the translational displacements 

at two bearings near the coupling, in this case, stations 6 and 8.  Figure 6.3-9 shows the 

applied loads and constraints for the catenary curve analysis.  Figure 6.3-10 shows the 

results for the deflection, shear forces, bending moments, and associated stresses. With 

elevations of 4.0E-04 and 3.8E-04 inches at stations 2 and 12 and no elevations at 

stations 6 and 8, it yields the minimal moment and shear stress across the coupling. 
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Figure 6.3-7 Rotor 1 bearing reactions due to static loads 

 

 

 
 

Figure 6.3-8 Rotor 2 bearing reactions due to static loads 
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Figure 6.3-9 Case 1: applied loads and constraints for the entire rotor system 

 

 
Figure 6.3-10 Case 1: deflections, moment, shear force, and associated stress 

 

 Alternatively, the constraints can be applied to the translational and rotational 

displacements at coupling station 7, and apply the bearing reaction forces as external 

loads at each bearing station for the catenary curve analysis.  Figure 6.3-11 shows the 

applied loads and constraints, and Figure 6.3-12 shows the results for the deflection, 

shear forces, bending moments, and associated stresses.  With elevations of 4.0E-04, -6E-

06, -6E-06, and 3.7E-04 inches at stations 2, 6, 8, and 12, it yields the minimal moment 

and shear stress across the coupling.  Both methods yield nearly identical results in the 
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deflection curve, moment, force, and stress.  Case 1 needs to raise two bearings at 

stations 2 and 12; however, Case 2 needs to change the bearing elevations for all four 

bearings, which may not be desirable in practice, although changes in stations 6 and 8 are 

extremely small. 

 

 
Figure 6.3-11 Case 2: applied loads and constraints for the entire rotor system 

 

 
 

Figure 6.3-12 Case 2: deflections, moment, shear force, and associated stress 

 

 Systems with more than two bearings or less than two bearings for each rotor are 

statically indeterminate; thus, the above approach will not apply.  Another systematic 

approach is to utilize the optimization technique to find the optimal bearing elevations, 

such that the bending moment and/or shear force due to rotor weight (gravity sag) at the 

coupling station are minimized. The general catenary analysis can be described as using 

the optimization procedure to find the optimal elevations for the selected bearings with 
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specified upper and lower bounds, such that the moments and/or forces, and/or slopes, at 

selected stations (may be couplings, bearings, or the weakest link location) are 

minimized.  One can also use the weighting factors to enhance their objective in moment, 

force, or slope.  The problem can be expressed mathematically as follows: To search a 

design vector b (the set of design variables – bearing elevations) which minimizes the 

objective function f(b) and subject to the upper and lower bounds on the design variables 

L U
≤ ≤b b b . 

 The major benefit of this optimization procedure is not for systems with two bearings 

at each rotor, as illustrated in the previous example, but for more complicated systems 

with more or fewer bearings for each rotor, as shown in Figure 6.3-5 and Figure 6.3-13. 

 

 
Figure 6.3-13 Catenary curve using optimization technique 

 

 

6.4 Critical Speeds and Modes 
 

In most applications, the primary consideration in the design of rotor systems is the 

placement of critical speeds with respect to the operating speed of the machine.  When 

the excitation frequency of a periodic force applied to a rotor system coincides with a 

natural frequency of that system, the rotor system may be in a state of resonance (or 

critical condition).  In rotating machinery, the excitation frequencies are commonly 

related to the rotor rotational speed with a constant multiple or fraction.  Traditionally, 

when the rotor rotational speed coincides with one of the natural frequencies of the 

forward precession modes, the rotational speed is referred to as critical speed in 

analytical study because the mass unbalance excitation is the most common excitation in 

the rotor systems, regardless of how well they are balanced.  The forward synchronous 

critical speeds with a spin-whirl ratio of one ( 1=Ω
ω ), where Ω is the rotor rotational 

speed and ω is the system natural frequency of whirl, are the most commonly calculated 

and studied due to the mass residual unbalance present in the rotor system.  Note that the 

backward precession modes can also be excited by the mass unbalance for non-isotropic 

systems ( )
xx yy

k k≠ , as discussed in Chapter 2. The more severe in the bearing 
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asymmetric properties, the easier the backward precession modes will be excited (Chen 

& Gunter, 2005).  To calculate the backward synchronous critical speeds, a spin-whirl 

ratio of minus one ( 1ω
Ω = − ) is used.  Other common synchronous excitations include 

excitations due to shaft bow, disk skew, and coupling misalignment. Non-synchronous 

excitations include aerodynamic excitations for compressors, gear mesh excitations for 

geared systems, vane passing excitation, and electrical wiring excitation, among others. 

 In industrial practice, the critical speeds are the rotor speeds where the measured peak 

responses are observed.  Based on this definition, the critical speeds will depend on the 

system damping, axial and angular position of the measurements (vibration probes), and 

other operating conditions.  When the critical speeds are within the operating speed 

range, the rotor may experience large synchronous vibration if system damping is small.  

For highly damped systems, the calculated critical speeds may not even be observed in 

the real machine, and there are no apparent peaks in the response curve.  It is desirable to 

have separation margins between the operating speed range and the calculated critical 

speeds for safe and smooth operation.  The bearing stiffness is likely the most common 

design parameter to ensure a safe separation margin between the critical speeds and the 

rotor design operating speed.   

 The assumptions for the typical critical speed analysis are that the system is isotropic 

and undamped (conservative) and that bearing stiffness is constant (speed-independent 

bearing properties).  A detailed definition of undamped isotropic bearings was described 

in Chapter 2.  However, it is known that the linearized fluid film bearing forces contain 

the non-isotropic and speed-dependent damping and stiffness coefficients.  Due to the 

simplified assumptions applied in the critical speed calculation, extreme care must be 

taken in preparing and interpreting these results.  Caution must also be taken when 

utilizing this simplified technique to estimate the critical speeds where the peak responses 

occur, especially for highly damped and non-isotropic systems.  Very often, the peak 

response does not occur at the calculated critical speeds due to these simplified 

assumptions.  This analysis only provides a reference for design purposes. 

 For undamped rotor systems with isotropic and speed-independent support properties, 

the analytical critical speeds may be determined directly from a reduced eigenvalue 

problem associated with the system equations expressed in a rotating reference frame.  

These undamped modes are circular relative to the fixed reference frame but constant 

relative to the rotating reference frame.  Therefore, it is convenient to analyze only one of 

the two planes of motion (X-Z or Y-Z).  The undamped natural circular whirl speeds and 

mode shapes can be obtained from the homogeneous form of system equations expressed 

in the rotating reference frame. Assuming a constant eigensolution, the reduced 

eigenvalue problem in the (X-Z) plane can be written as follows: 

 

 ( ) 0 2 =− iXZiXZ yMK ω        (6.4-1) 

 

where 2  ( 1, 2,.... )
i

i Nω = are called eigenvalues, and iω  are recognized as the natural whirl 

frequencies of the system, or critical speeds in this case.  The vectors iy  are the 

associated (right) eigenvectors or mode shapes.  N is the dimension (order) of the reduced 

system matrices (N=NDOF/2).  For a conservative system, the matrices Kxz and Mxz are 

all symmetric, and the generalized mass/inertia matrix Mxz is a function of the spin-whirl 
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ratio 
ω

γ
Ω

= .  The subscript (XZ) denotes that only one plane of motion is considered, 

which can be either the (XZ) or the (YZ) plane of motion.  The spin-whirl ratio in the 

reduced mass matrix is derived from the gyroscopic effect.  The spin/whirl ratio must be 

specified in advance to determine various types of critical speeds.  The typical values and 

types of critical speeds are: 

 

 1=γ  Forward synchronous critical speeds 

 1−=γ  Backward synchronous critical speeds 

 0=γ  Planar critical speeds for non-rotating systems (Ω=0) 

 2=γ  Half-frequency whirl (sub-synchronous critical speeds, 
1

2
ωΩ = ) 

 1
n

γ =  Forward super-synchronous critical speeds (  n ωΩ = ) 

 

 Unless specified otherwise, forward synchronous critical speeds ( 1=γ ) are used in 

this text and also in industrial practice. Since the critical speed analysis is based on 

undamped and isotropic systems, the bearing dynamic stiffness (the combination of 

bearing stiffness and damping) should be used in the critical speed calculation and is 

defined as: 

 

 ( )22 CKK d ω+=         (6.4-2) 

 

For rotor systems with speed-dependent bearing coefficients, an iterative process is 

required to determine the critical speeds. The critical speeds can also be determined 

graphically by examining the critical speed map with the bearing dynamic stiffness 

superimposed on the map.   

 Let us assume that the six-stage compressor presented previously is supported by two 

identical ball bearings with a stiffness value of 5.0E05 Lbf/in.  The first three undamped 

forward synchronous critical speeds are calculated, and their associated mode shapes and 

potential energy distribution are shown in Figure 6.4-1.  In this example, the first critical 

mode with a whirling frequency of 4,654 rpm is not a classical rigid rotor mode or a 

purely flexible rotor mode.  It does not have nodal points across the shaft centerline and 

there is about 30% of the potential energy in the flexible shaft.  It has characteristics of 

both rigid and flexible rotor modes, although its behavior is closer to a rigid rotor because 

of 70% of the potential energy occurring in the bearings. The second mode with a 

whirling frequency of 10,420 rpm can be classified as a rigid rotor mode with only about 

10% of the potential energy in the shaft, which is less than in the first mode.  Although 

this mode has a nodal point across the shaft centerline, it is essentially a rigid rotor mode 

(rotatory or conical mode), which is rocking about the center of mass (nodal point in this 

case).  Note that the second mode has a smaller potential energy percentage and less 

bending in the shaft, but a higher whirling frequency than the first mode in this example.  

Therefore, it is not always the mode with the smaller potential energy in the shaft that has 

the lower natural frequency.  The third mode has two nodal points and is a flexible rotor 

(bending) mode with 87% of the potential energy in the flexible shaft. 
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Figure 6.4-1 Critical speed mode shapes and associated potential energy distributions 

 

 The critical speed map analysis is an outgrowth of the critical speed analysis.  This 

analysis calculates the undamped critical speeds for a range of bearing/support stiffness.  

The critical speed map provides a wealth of design information on the shaft diameters, 

length, and bearing locations, without prior detailed knowledge of the bearings.  The 

critical speed map is commonly used for systems supported by two bearings with the 

same order of magnitude for stiffness, or by multiple bearings with varying stiffness in 

one bearing while others are fixed.  This critical speed map probably is the single most 

important design information in the preliminary design phase of a rotor-bearing system 

supported by two bearings, including motors, generators, compressors, expanders, 

pumps, and fans.  It shows the bearing design feasibility and the potential problems of 

critical speeds and instability of the system. 

 The critical speed map is conventionally drawn to a log-log scale, as illustrated in 

Figure 6.4-2.  The mode shapes for both low and high bearing stiffness are also shown in 

the map for easy reference.  For every critical speed mode, the curve can be divided into 

three zones according to the bearing stiffness value.   
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Figure 6.4-2 Critical speed map (log-log scale) 

 

1. Low Bearing Stiffness Range (Kb<<Ks) 

 

For a very low bearing stiffness range, the bearing stiffness Kb is much smaller than the 

shaft bending stiffness Ks.  The frequencies for the first two modes increase rapidly as the 

bearing stiffness increases in the form of bK∝ω (i.e., 2

b
Kω ∝ ), which is shown 

linearly in the log-log scale.  However, the frequency for the third mode increases very 

slowly in the low bearing stiffness range.  As the bearing stiffness approaches zero, the 

frequencies of the first two modes quickly approach zero, and the frequency of the third 

mode approaches a constant.  It becomes a free-free boundary condition when the bearing 

stiffness approaches zero.  In this very low bearing stiffness zone, as illustrated by the 

mode shapes, the first two modes can be characterized as rigid rotor modes, where the 

potential energy is mainly in the bearings. The shaft possesses much less potential energy 

with little deformation.  They are also known as translatory and rotatory (conical) modes 

with zero and one nodal point.  For the rotatory mode, the nodal point is at the center of 

mass of the system.  The third mode can be characterized as a flexible rotor mode (free-

free mode) with two nodal points across the shaft centerline. The shaft possesses most of 

the potential energy with significant deformation while the bearings have much less 

potential energy.   In this low bearing stiffness range, if the rotor rotational speed is less 

than the third mode of frequency, then the dynamic characteristics of this rotor system 

can be simulated with the assumption of a rigid rotor supported by flexible bearings.  

However, if the rotor rotational speed is higher than the free-free mode of frequency, 
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even with very low bearing stiffness, the rotor will still exhibit flexibility due to the third 

(free-free) mode of participation in the response.  Therefore, if the rotational speed is 

higher than the free-free mode of frequency, a flexible rotor should be assumed 

regardless of the bearing stiffness.  In this region, the rotor dynamic response is heavily 

influenced by the bearing properties. 

 

2. High Bearing Stiffness Range (Kb>>Ks) 
 

For a very high bearing stiffness range, the bearing stiffness Kb is much greater than the 

shaft bending stiffness Ks. All three frequencies remain constant and do not vary with 

bearing stiffness.  The bearings have little potential energy, and the shaft possesses the 

majority of the potential energy for all the modes.  The system becomes a pinned-pinned 

boundary condition and its natural frequencies depend on the shaft flexibility (stiffness) 

and not the bearing stiffness.  There are no rigid rotor (body) modes for systems with 

very high bearing stiffness regardless of the rotor rotational speeds.  The first two modes 

now are characterized as flexible rotor modes with two and three nodal points.  The third 

mode again is still a flexible rotor mode, but with four nodal points.  In the very high 

bearing stiffness range, a flexible rotor with rigid bearings can be employed to simulate 

the dynamics of the rotor system.  In this region, the rotor dynamic response is not 

sensitive to the bearing properties.  The critical speeds in this very high bearing stiffness 

range are often referred to as the rigid bearing critical speeds.  Rotors running through 

the rigid bearing critical speeds can be dangerous, since there is little to no modal 

damping contributed from the bearings.  In general, the rotor operating speed will be 

much lower than the rigid bearing critical speeds if the bearing stiffness is extremely high 

compared to the shaft bending stiffness. 

 

3. Transition Range (Kb≈≈≈≈ Ks) 
 

For the transition region, where the bearing stiffness and the shaft bending stiffness are 

on the same order of magnitude, the nodal point for each mode increases by two nodes 

from the very low bearing stiffness zone to the very high bearing stiffness zone.  The 

frequencies increase with bearing stiffness, but not as rapidly as in the low stiffness zone 

due to the influence of shaft flexibility.  The bearing stiffness boundary for the transition 

zone is different for each mode.  For instance, when bearing stiffness is at 5E05 Lbf/in, as 

in this example, the first mode is a mixed rigid and flexible rotor mode in the transition 

zone, as illustrated in Figures 6.4-1 and 6.4-2. However, the second mode is still 

dominated by the rigid rotor mode with this bearing stiffness value.  This indicates that it 

will take higher bearing stiffness to transform the second mode from a rigid rotor to a 

flexible rotor than required for the first mode.  This phenomenon can also be observed by 

plotting the critical speed map on a log-linear scale, as shown in Figure 6.4-3.  The 

advantage of using the log-log scale is that it is easy to identify these three different 

bearing stiffness zones and to construct the map if computer software is not readily 

available.  In this transition zone, a flexible rotor with flexible bearings must be utilized 

to simulate the dynamics of the rotor system.  Any rigid rotor or rigid bearing assumption 

will yield unreasonable results. 
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Figure 6.4-3 Critical speed map (log-linear scale) 

 

 Now, assume that the same six-stage compressor is supported by two identical 

cylindrical journal bearings with the parameters shown in Figure 6.4-4.  The bearing 

dynamic coefficients are obtained by the linearization of the fluid film forces around the 

static equilibrium positions. The bearing static equilibrium positions and dynamic 

coefficients for bearings 1 and 2 are slightly different due to the small difference in the 

static loads; one is 578 lbs and the other is 563 lbs in this example.  Only the properties of 

bearing 1 are shown in Figure 6.4-4, since both bearings have very similar properties.  

The rotor-bearing system is no longer isotropic due to the non-symmetric nature of the 

bearing coefficients.  The rotor response orbits are now elliptical instead of circular with 

isotropic ball bearings, as discussed earlier.  The responses in the X and Y directions are 

different due to asymmetric bearing properties.  Since the cross-coupled stiffness and 

damping coefficients have little influence on the natural frequency, only the direct 

dynamic stiffness in both directions is superimposed on the critical speed map, as shown 

in Figure 6.4-5. There are two critical speeds for each mode due to the non-symmetric 

stiffness properties. As discussed in Chapter 2, depending on the angular position of the 

vibration measurement probe, the critical speed location can be different.  Although the 

cross-coupled stiffness has little influence on the frequencies (imaginary parts of 

eigenvalues), it can introduce a major destabilizing effect (affecting the real parts of 

eigenvalues), which may create a large sub-synchronous vibration known as self-

excitation, when rotor speeds exceed the instability threshold.   
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Figure 6.4-4 Journal bearing properties 

 

 

 
 

Figure 6.4-5 Critical speed map with journal bearing stiffness superimposed 
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 Let us examine another rotor-bearing system which is supported by two different 

bearings with distinct stiffness.  Figure 6.4-6 shows the mode shapes and associated 

potential energy distributions for the first three undamped forward synchronous critical 

speeds.  The first two modes are classical rigid rotor modes with most of the potential 

energy in the rear bearing for mode 1, and in the front bearing for mode 2.  Note that the 

two rigid body modes do not necessarily have to be strictly translational and conical, as 

illustrated in the previous example.  The third mode is the first bending mode with strain 

energy predominated by the elastic deformation of the rotor.  The critical speeds are 

determined by the critical speed map shown in Figure 6.4-7 with the bearing dynamic 

stiffness overlapped.  In this example, the first critical speed is the intersection of the rear 

bearing stiffness with the first mode of frequency.  The second critical speed is the 

intersection of the front bearing stiffness with the second mode of frequency.  This 

determination is based on the mode shape and energy distribution.    

 

 
 

Figure 6.4-6 Critical speed mode shapes and associated energy distributions 
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Figure 6.4-7 Critical speed map 

 

 

6.5 Steady-State Harmonic Response 
 

The steady-state synchronous excitations are the most common excitations in rotating 

machinery. Therefore, the majority of the discussion in this section is focused on the 

synchronous response.  However, asynchronous harmonic excitations are also present in 

some applications and attention to them is also needed.  Figure 6.5-1 shows vibration data 

taken during machine shutdown for a centrifugal compressor. This plot of vibration 

amplitude versus machine rotating speed and frequency is commonly referred to as a 

waterfall plot or cascade plot.  Every trace of a curve is a Fast Fourier Transform (FFT) at 

a rotational speed.  The dominant vibration is the synchronous vibration and vibrations at 

other frequency components are very small.  The operating speed is 12,800 rpm and the 

critical speed is around 7,500 rpm, which can be observed from the synchronous 

vibration curve.  This observed critical speed is caused by the mass unbalance.   

 Figure 6.5-2 shows a waterfall plot for a rotary screw compressor during startup.  The 

dominant components are 2×, 4×, and 8× non-synchronous harmonics, and synchronous 

vibration is insignificant in this case.  The rotor operating speed is between 1,200 and 

3,300 rpm.  The forward synchronous critical speed due to mass unbalance is around 

5,600 rpm, which is far above the rotor operating speed, and not shown in the 

measurement data.  However, there are strong super-synchronous excitations, 4× and 8× 

components, due to the overhung motor excitations that cause high vibrations when rotor 

speeds are near 700 and 1,400 rpm.  These two speeds are also called critical speeds; 

however, they are not caused by mass unbalance, but by excitations from the motor 

electrical source. 
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Figure 6.5-1 Waterfall plot to show the dominant synchronous vibrations 

 

 
 

Figure 6.5-2 Waterfall plot to show the dominant non-synchronous vibrations 

 

 The solution techniques are the same for both the synchronous and non-synchronous 

harmonic steady-state response.  For linear analysis, the shaft oscillates around its static 

equilibrium position, which is different from the true bearing geometric center line.   For 

small vibrations, the shaft position can be approximated by the superposition of the static 

equilibrium position and the steady-state response.  
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6.5.1 Steady-State Synchronous Response 
 

The common steady-state synchronous excitations in rotating machinery include mass 

unbalance, disk skew, shaft bow, and coupling misalignment. For synchronous 

excitations, the excitation frequency is the same as the shaft rotational speed, ωexc = Ω.  

The steady-state synchronous excitation can be written in the following form: 

 

 ( )αQQQQ +Ω=Ω+Ω= ttt sc cossincos      (6.5-1) 

 

where Q  is the magnitude of the excitation and αααα is the angle specifying the angular 

position of the excitations measured in the direction of rotation.  For linear systems, the 

steady-state synchronous response, commonly referred to as the 1× vibration, has the 

same form: 

 

 ( )cos sin cos
c s

t t t φ= Ω + Ω = Ω −q q q q        (6.5-2) 

 

where q  is the amplitude of the response and φφφφ is the phase angle.  Note that the 

negative sign is employed in Eq. (6.5-2) for the response phase angle.  Since the response 

lags the excitation, a negative sign in the phase angle expression is commonly used to 

indicate the phase lag.  That is, a positive phase angle φφφφ indicates the opposite direction 

of rotation, and a negative phase angle (-φφφφ ) indicates the direction of rotation.  The 

steady-state response lags the excitation by a phase angle of (φφφφ+αααα), which is commonly 

referred to as the phase lag angle.  Figure 6.5-3 shows the relationship of two rotating 

vectors; their projections onto the real axis are the excitation and response expressed in 

Eqs. (6.5-1) and (6.5-2).  The phase lag angle between the excitation and response (φφφφ+αααα) 

has a range from 0
o
 to 180

o
.   For undamped systems, the phase lag angle is either in-

phase (0
o
) or out-of-phase (180

o
).  Phase angle is an important parameter used in 

balancing and machine malfunction diagnosis, as discussed in Chapter 2. 

 

 
Figure 6.5-3 Phase relationship between the excitation and response 
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 Substituting the assumed solution (displacement) from Eq. (6.5-2) and its derivatives 

(velocity and acceleration) into the equations of motion, the steady-state response can be 

calculated from the following set of linear algebraic equations: 

 

 

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2

     (6.5-3) 

 

In the above expression, the matrix C contains the linearized damping matrix and the 

gyroscopic matrix.  It is usually convenient, although not necessary, to analyze the 

steady-state synchronous response in a complex form.  The complex synchronous 

excitation and associated steady-state response are related by the following algebraic 

equations: 

 

 ( )2 ˆˆ j− Ω + Ω =K M C q Q        (6.5-4) 

 

where the complex quantities ( Qq ˆ  ,ˆ ) are given by the following expressions: 

 

 sc j QQQ  ˆ −=          (6.5-5) 
 

 sc j qqq  ˆ −=          (6.5-6) 

 

Some researchers refer to ( )  2 CMK Ω+Ω− j as the complex dynamic stiffness, 

( ) 2 MK Ω− as the direct dynamic stiffness, and ( ) CΩ as the quadrature dynamic 

stiffness (Bently & Hatch, 2003). The analytical procedure is straightforward; however, 

interpreting and understanding the analytical results and correlations with the 

measurement data is more important in machine design and malfunction diagnosis.  In the 

initial machine design stage, the excitations (magnitude and angle) are specified 

according to industrial standards, practical experience, and/or past design criteria, and the 

response is to be determined in the solution process.  However, in machine diagnosis, 

correction, and balancing, the response is known from the measurements and the 

excitations are to be identified.  

 The most common presentation for the synchronous response is the Bode plot, as 

shown in Figure 6.5-4, for an isotropic system and a non-isotropic system. This is a 

Cartesian plot of the 1× vibration amplitude and phase angle versus the shaft rotational 

speed.  The rotor speed where the peak response occurs can easily be identified, and the 

sharpness of the peak (amplification factor) can also be determined from this Bode plot.  

For isotropic systems, the amplitudes in all directions are the same (circular orbit) and the 

phase angle differs by the angular location of the measurement probes, which is |||| yx =  

and 
2

π
φφ +=

xy
 for vibration probes in the X and Y directions.  For general non-

isotropic systems, the vibration amplitudes and phase angles are different in all 

directions.  The response orbit is an elliptical orbit, and there is no simple relationship 

between the two measurements, as stated for isotropic systems.  Caution must be taken 
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when determining the critical speeds by examining the Bode plot for non-isotropic 

systems because the peak response occurs at different speeds for probes at different 

angular locations.    

 

 
 

Figure 6.5-4 Typical Bode plots for isotropic and non-isotropic systems 

 

 Another presentation for the steady-state synchronous response is the polar plot, 

which is used frequently to present measurement vibration data and less often to present 

analytical results. It is the response locus of the 1× vibration (amplitude and phase) 

versus speeds at a specific direction (or probe location) in the polar coordinate system.  

Note that the phase angle is labeled against the direction of shaft rotation, since the 

response always lags the excitation. The polar plot is commonly used for balancing 

purposes, and the graph is rotated to align the zero phase angle with the probe physical 

location, as shown in Figure 6.5-5.  By properly aligning the probe physical location with 

the zero phase angle, the response locus is identical for any probe location at a specific 

rotor plane in the polar plot for isotropic systems, as shown in Figure 6.5-5.  For non-

isotropic systems, the plots will differ for different probe angles, as illustrated in Figure 

6.5-5.   
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Figure 6.5-5 Typical polar plots for isotropic and non-isotropic systems 

 

 Consider the six-stage compressor system supported by two identical ball bearings 

with K=5.0E05 Lbf/in and C=10 Lbf-s/in, and assume an unbalance of 5 oz-in at stages 1 

and 6 with the same angular position.  From the mode shapes shown in Figure 6.4-1, the 

two unbalance forces with the same angle will excite the first mode; however, the 

resulting excitation force for the second mode is nearly canceled out due to the modal 

displacements at both excitation locations being out-of-phase.  The Bode plots of the 

steady-state unbalance response at both bearings are shown in Figure 6.5-6. The response 

amplitudes in the X and Y directions are identical, and the phases are 90
o
 different for 

this isotropic system.  The response orbits are circular. The first peak response occurs at 

4,654 rpm and the second critical speed is not observed due to the extremely small net 

modal excitation force. These results are consistent with the mode shapes shown in 

Figure 6.4-1.  The responses near the first critical speed are enlarged in Figure 6.5-7 to 

illustrate the definition of the amplification factor using half-power points.   

 

 
 

Figure 6.5-6 Steady-state unbalance response with roller bearings 
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Figure 6.5-7 Steady-state unbalance response for amplification factor 

 

 As indicated in the Bode plot, the peak response and amplification factor at critical 

speed can be very high for this lightly damped system.  Fortunately, the operating speed 

of this compressor is at 2,975 rpm for a 50 Hz motor driver and 3,575 rpm for a 60 Hz 

motor driver, which is far below the first critical speed with 56% and 30% separation 

margins, respectively.  The complete rotor steady-state response at 2,975 rpm is shown in 

Figure 6.5-8.  The rotor response is similar at 3,575 rpm and not shown again. 

 

 
 

Figure 6.5-8 Steady-state unbalance response with roller bearings at design speed 

 

 The Bode plots for the same rotor system supported by two fluid film bearings with 

linearized bearing coefficients, as presented in Figure 6.4-4, are shown in Figure 6.5-9.  

The fluid film bearings provide good direct damping, which attenuates the synchronous 

vibrations.  For this highly damped system with non-symmetric bearing properties, the 

peak responses occur at different rotor speeds for different rotor stations.  Even at the 

same station, the response differs at different angular positions due to the bearing 

asymmetric properties.  The rotor response orbits at a design speed of 2,975 rpm are 

elliptical for this non-isotropic system, as shown in Figure 6.5-10.  The amplification 

factor cannot be calculated since the N2 point is not available for speeds up to 10,000 rpm 

due to the high damping in this case. The system is called critically damped.   
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Figure 6.5-9 Steady-state unbalance response with fluid film bearings 
 

 
 

Figure 6.5-10 Steady-state unbalance response with fluid film bearings at design speed 

 

 Almost all the rotor systems are non-isotropic in nature due to the bearing non-

symmetric properties; therefore, even vibration measurements at the same plane with 

various angular positions will have different response curves.  Also, the same rotor may 

exhibit mixed precessions; as illustrated in Figure 6.5-11 for a 3-stage compressor, where 

the front ends have backward precessions and the rear ends have forward precessions, the 

transition is a straight-line motion. 
 

 
Figure 6.5-11 Steady-state unbalance response with mixed precessions 
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 The amount of allowable residual unbalance in the rotor shall not cause the rotor 

response to exceed the vibration limits defined by physical constraints, practical 

experience, or industrial standards (e.g., the API and ISO specifications).  The maximum 

allowable residual unbalance per plane (journal) suggested by the API is as follows: 

 

English units, 

 

 
N

WU  4
max =      for N  < 25,000 rpm 

           (6.5-7) 

 
000,25

 4
max

WU =      for N  > 25,000 rpm 

 

SI units, 

 

 
N

WU  6350
max =   for N  < 25,000 rpm 

           (6.5-8) 

 
000,25

 6350
max

WU =  for N  > 25,000 rpm 

 

where 

 

 Umax = residual unbalance, in ounces-inches (or gram-mm for SI unit) 

 W     = journal static weight load, in pounds (or kilograms in SI unit) 

 N     = maximum continuous speed, in rpm. 

 

Balance tolerance above 25,000 rpm is based on an eccentricity of 0.25 µm (10 µin.) for 

each journal static weight load.  Unbalance readings are measured at each journal-bearing 

position with no compensation to actual balance planes. 

 ISO has developed various balance quality grades (such as G-0.4, G-1, G-2.5, G-6.3, 

G-16, G-40, G-100, and G-250) based on machine applications.  The American National 

Standards Institute (ANSI) has then adopted these quality grades. The permissible 

balance tolerance, according to these balance quality grades, is determined by the 

maximum rotor service speed and rotor weight.  A smaller balance quality grade indicates 

tighter tolerance allowable.  For turbomachinery, the most common balance quality grade 

is G-2.5. Although many monograms are presented by ISO 1940 on the balance tolerance 

for different quality grades, they can be simulated by the following equation: 

 

 
( )max

1000 9549

2 / 60

G W W
U G

N Nπ

× × ×
= =

×
      (6.5-9) 

 

where the units are Umax  in gram-mm,  W in kilograms, and N in rpm.  G is the balance 

quality grade.  It indicates that the API balancing specification is between ISO G-0.4 and 

G-1. 

 Again, these standards can only be used as references.  For example, a 6-pound (2.72 

kg) rotor with a service speed of 3,600 rpm in ISO quality grade G-2.5, has 18 gram-mm 
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tolerance, or 9 gram-mm per plane for two correction planes.  However, based on API, 

the residual balance is 4.8 gram-mm, or 2.4 gram-mm per plane for two correction 

planes.  In this case, the allowable residual unbalance per API is about 3.75 times smaller 

than the amount allowed per ISO balance quality grade G-2.5.  By utilizing the different 

ISO quality grades, the unbalance tolerance will be 7.2 gram-mm for quality grade G-1, 

and 2.9 gram-mm for quality grade G-0.4. Regardless of the standard used, the calculated 

steady-state unbalance response based on the allowable residual unbalance must not 

exceed the pre-defined vibration limits based on the physical limitations, including 

bearing clearance, seal clearance, and any rotor-stator clearance, as well as practical 

experience. If the predicted response amplitude exceeds the acceptable vibration limits, 

then the maximum allowable residual unbalance shall be determined by the analysis 

results with safety factors considered.  Different units are used for the balance tolerance 

and commonly used unit conversions for the mass unbalance are listed for reference: 

 

1 gram-in =   0.03527    oz-in 

1 gram-mm =   0.001389  oz-in 

1 oz-in  =   28.35        gram-in 

1 oz-in   =   720.08      gram-mm 

 

6.5.2 Steady-State Non-Synchronous Harmonic Response 

 

In some rotating machinery applications, the steady-state harmonic excitations have the 

form as follows: 

 

 ( )cos sin cos
c exc s exc exc exc

t t tω ω ω= + = +Q Q Q Q α              (6.5-10) 

 

where 
exc

ω  is the excitation frequency.  If the excitation frequency equals the rotor speed 

(
exc

ω = Ω ), then the excitation becomes synchronous. Two scenarios are considered, 

depending on the relationship between the excitation frequency and rotor speed.  One 

case is that the excitation frequency varies with the rotor speed; commonly, the excitation 

frequency is a multiple or fraction of the rotor speed, in this case (  
exc

nω = Ω  

or
1

exc
n

ω = Ω ).  The other case is that the harmonic excitation frequency varies at a 

constant rotor speed.  In either case, the steady-state response solution has the same form: 

 

 ( )cos sin cos
c exc s exc exc exc

t t tω ω ω= + = −q q q q φ              (6.5-11) 

 

where q  is the amplitude of the response, and the response frequency is the same as the 

excitation frequency 
exc

ω . The steady-state response for a given rotor speed is solved 

similarly to the steady-state synchronous response in the following equations: 

 

 
2

2

c cexc exc

s sexc exc

ω ω

ω ω

 −    
=    

− −     

q QK M C

q QC K M
              (6.5-12) 
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Again, the matrix C contains the linearized damping matrix and the speed-dependent 

gyroscopic matrix.  

 A rotary screw compressor with an overhung motor, as illustrated in Figure 6.5-12, is 

employed as an example for the non-synchronous excitation.  Due to the motor rotor-

stator assembly imperfection and certain coil-winding patterns, there are potential lateral 

harmonic forces on the orders of 1, 2, 4, and 8 from the motor.  A waterfall plot collected 

during the operation for one machine is shown in Figure 6.5-2.  There are 2×, 3×, 4×, and 

8× resonances below the rotor speed of 3,500 rpm with 4× and 8× responses being 

predominant.   

 

 
Figure 6.5-12 Motor driven compressor 

 

 For the steady-state harmonic response, we analyze each harmonic independently.  

The steady-state responses for the 4× and 8× are shown in Figure 6.5-13.  The total 

response is the vector summation of these two responses.  The resonance (critical) speeds 

can also be found using critical speed analysis by specifying the different spin/whirl ratio 

for different harmonics.  The first critical speed due to 4× excitation can be calculated by 

specifying the spin/whirl ratio of 0.25=1/4 ( 4
exc

ω ω= = Ω ) in the critical speed analysis.  

When the system natural frequency equals the excitation frequency, which is four times 

the rotor speed, resonance occurs.  As calculated and noted in Figure 6.5-14, a rotor 

speed of 1,385 rpm excites the first natural frequency of 5,541 rpm (92 Hz).  Therefore, 

the rotor speed of 1,385 rpm is the critical speed for the 4× harmonic excitation.  Note 

that due to the damping effect, the peak response occurs slightly higher than the 

calculated critical speed.  By specifying different spin/whirl ratios, critical speeds for 

other harmonics can also be calculated, e.g., a spin/whirl ratio of 0.125 for the 8× 

harmonic excitation.  The resonance speeds for all the harmonics can also be determined 

by graphing the system natural frequencies versus the rotor speeds (whirl speed map) 

with the excitation lines overlapped, as shown in Figure 6.5-15. 
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Figure 6.5-13 Steady-state response for 4× and 8× harmonics in vertical direction 

 

 

 

 
 

Figure 6.5-14 Critical speed for 4× harmonic 
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Figure 6.5-15 Whirl speed map with 1×, 2×, 4×, and 8× excitations 

 

 

6.6 Whirl Speeds and Stability 
 

After discussions of the critical speeds and steady-state response, now let us examine 

another important design consideration: system stability. Rotor stability is a vital 

characteristic for smooth operations in many high-speed turbomachinery applications.  

Most turbomachinery is operated in the stable regime based on linear theory; however, 

for very high-speed and light-weight applications (e.g., the automobile turbochargers) 

and vertical rotor applications, it is possible to operate the units in the unstable regime 

defined and predicted by linear theory. In rotordynamics analysis, rotor stability is 

determined by using the real part of the system’s eigenvalue.  The eigenvalue for each 

vibration mode at a specified rotational speed takes the form:  

 
2

1 ξωξωωσλ −±−=±= nnd jj       (6.6-1) 
 

where 
 

 λ  = system eigenvalue   

 σ  = system damping exponent, 
n

σ ξω= −  

 dω = damped natural frequency (whirl frequency), 
2

1 ξωω −= nd  

 nω = undamped natural frequency,  
21 ξ

ω
ω

−
= d

n  

 ξ  = damping factor (ratio), 
nω

σ
ξ

−
=  

  

ξ is a non-dimensional parameter, called the damping ratio or damping factor.  

Depending on the value of the damping factor, the roots 21  and λλ  must both be real 
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numbers ( )1ξ ≥  or imaginary numbers ( )0ξ =  or a pair of complex conjugates 

( )0 1ξ< < .  The imaginary parts of the eigenvalues dω  are the system damped natural 

frequencies.  They are also referred to as the whirl speeds or whirl frequencies.  If the 

damped natural frequency is a positive value, this mode is referred to as a precessional 

mode with an oscillating frequency that equals the damped natural frequency.  If the 

damped natural frequency equals zero, this mode is referred to as a real mode or non-

oscillating mode.  The real parts of the eigenvalues σ are the system damping exponents, 

which are used to determine system stability in the linear sense.  A positive damping 

exponent (σ ), which is a negative damping factor (ξ), indicates system instability.  The 

associated eigenvectors define the mode shapes for the precessional modes, for which the 

rotor system will vibrate at resonance when damping is not present.   

 The magnitude of the damping factor can also be used to determine whether the 

transient motion is stable or unstable, oscillatory or non-oscillatory.  When the damping 

factor is less than zero ( )0<ξ , the transient motion is exponentially increasing with time, 

and the system is said to be unstable in linear theory.  Eventually, the motion will be 

constrained in a limit cycle motion through use of non-linear theory, and linear theory 

does not apply in this regime of operation.  In practice, the motion will be restrained in an 

acceptable limit cycle, or contact will occur and machine parts will be damaged.  For the 

stable and underdamped case ( 01 >> ξ ), the transient motion is oscillatory with a 

decaying amplitude and an oscillating frequency of dω . For the overdamped case 

( 1>ξ ), the transient motion is non-oscillatory with an exponentially decaying function 

of time.  For the critically damped case ( 1=ξ ), which separates the underdamped 

(oscillatory) and overdamped (non-oscillatory, aperiodic) cases, the transient motion is 

non-oscillatory and the amplitude decays faster than in any other cases.     

 Another quantity commonly used in the study of system stability is the logarithmic 

decrement.  The logarithmic decrement is a measure of the rate of decay or growth of free 

(transient) oscillations, and is defined as the natural logarithm of the ratio of any two 

successive amplitudes, as illustrated in Figure 6.6-1. 

 









=

+1

ln
i

i

x

x
δ          (6.6-2) 

 

where 1 , +ii xx  are two successive transient vibration amplitudes.  A negative logarithmic 

decrement indicates that the transient motion is exponentially growing and the system is 

unstable in the linear sense.   

 The logarithmic decrement for a precessional mode can be expressed by using the 

eigenvalue as: 

 

  
21

22

ξ

πξ

ω

πσ
δ

−
=

−
=

d

        (6.6-3) 

 

The logarithmic decrement can be obtained by measurement and, once it is known, the 

damping ratio can be obtained from the following equation: 
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22

4 δπ

δ
ξ

+
=         (6.6-4) 

 

 
 

Figure 6.6-1 Definition of logarithmic decrement 

 

 For very lightly damped system (damping factor 1<<ξ ), the amplification factor 

defined from the steady-state response curve and the damping factor derived from the 

whirl speed analysis are related by the following approximation (Thomson, 1981): 
 

  
ξ2

1

12

≈
−

=
NN

N
AF cr         (6.6-5) 

 

This shows that the amplification factor AF is inversely proportional to the damping 

factor ξ in very lightly damped systems.  It indicates that higher damping results in a 

lower amplification factor.  Figures 6.6-2 and 6.6-3 show both the amplification factor 

and logarithmic decrement vs. the damping factor for the steady-state unbalance response 

of a single DOF system. Table 6.6-1 summarizes the corresponding logarithmic 

decrements and damping factors at three amplification factors. Note that the amplification 

factor is a measure of the sharpness of the peak response.  Therefore, the damping factor 

and logarithmic decrement are calculated at the resonance speed for comparison 

purposes. As discussed in Chapter 1 and defined by the API specifications, if the 

amplification factor at a particular critical speed, as measured at the vibration probe, is 

less than 2.5, the response is considered critically damped and no separation margin is 

required.  From the relationships between amplification factor, damping factor, and 

logarithmic decrement, we know that if the logarithmic decrement is greater than 1.11 or 

the damping factor is greater than 0.17, the system is said to be a “critically damped” 

system. 
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Figure 6.6-2 Amplification factor vs. damping factor 

 

 
Figure 6.6-3 Logarithmic decrement vs. damping factor 

 

Table 6.6-1 Logarithmic decrements and damping factors at three amplification factors 
 

Amplification Factor Damping Factor Logarithmic Decrement 

2.5 0.17450 1.11350 

5.0 0.09625 0.60758 

8.0 0.06155 0.38746 
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 The whirl speed map for the six-stage compressor system presented earlier with roller 

bearings is shown in Figure 6.6-4. The damped natural frequencies and associated normal 

precessional modes are numbered 1B, 1F, 2B, 2F, etc.  The numeric values (1, 2, 3, etc.) 

represent the mode numbers, which are ordered according to the values of the damped 

natural frequencies.  The letters B and F indicate the directions of the rotor’s precession.  

“B” denotes the backward whirl and “F” denotes the forward whirl. A forward 

precessional mode is defined as a whirling motion in the same direction as the spin speed, 

while a backward precessional mode is whirling in the opposite direction. In this 

example, the bearing coefficients are linear constant and isotropic without cross-coupled 

stiffness.  At zero speed, the forward and backward natural frequencies are the same 

(repeated eigenvalues), and the associated planar modes vibrate in the X and Y 

directions, respectively. These two modes split into two curves as the rotor speed 

increases, and the two planes of motion are coupled due to the gyroscopic effect.  As the 

speed increases, the forward whirl frequencies increase and the backward whirl 

frequencies decrease.  This is known as the gyroscopic stiffening effect on forward 

modes and the softening effect on backward modes.  The damped forward synchronous 

critical speeds determined by using the whirl speed map are consistent with the 

undamped critical speeds determined by using critical speed analysis in this lightly 

damped system. The whirl speed map can also be used to determine the damped 

backward synchronous critical speeds.   Caution must be taken when using this whirl 

speed map to determine the locations of the critical speeds, however, because the peak 

response very often does not occur at the analytical resonance frequency due to the 

system complexity. 

 

 
Figure 6.6-4 Whirl speed map 

 

 Without any destabilizing forces included in the model, all the modal damping factors 

are positive, as shown in the stability map in Figure 6.6-5, which indicates that all the 

precessional modes are stable.  Again, the mode numbers are ordered according to the 

values of the damped natural frequencies.  At rotor speeds less than 6,000 rpm, the first 
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backward mode has the lowest damping factor; as the speed increases and exceeds 6,000 

rpm, the damping factor of the third forward mode (first bending mode) decreases 

quickly with the speed and has the lowest value. Note that in this example no any 

destabilizing forces are applied in the model; the damping factor of the first forward 

mode actually increases slightly as the speed increases, which is not typical for systems 

with fluid film bearings.  Systems with destabilizing forces will be discussed later.  The 

mode shapes for the first six modes (three backward and three forward) at a rotor speed 

of 3,575 rpm are plotted in Figure 6.6-6.  In this case, the forward and backward modes 

essentially have very similar mode shapes for the same mode number.  
 

 
Figure 6.6-5 Stability map 

 

 
Figure 6.6-6 Mode shapes for the first six modes at 3,575 rpm 
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 The fluid film bearings are often the major source of damping, which attenuates the 

synchronous vibrations as demonstrated in the unbalance response of the six-stage 

compressor example.  However, their cross-coupled stiffness properties introduce a major 

destabilizing effect, which may produce a large sub-synchronous vibration when rotor 

speed exceeds the instability threshold, where the damping factor is zero.  In general, due 

to the non-symmetric bearing properties and the gyroscopic effect of a complex rotor-

bearing system, the whirl speed map and stability map can be complicated. The 

associated precessional mode shapes must be examined to identify the modes and 

properly construct these maps.  The whirl speed map and stability map for the same six-

stage compressor supported by fluid film bearings with linearized bearing coefficients are 

plotted in Figures 6.6-7 and 6.6-8.   

 The whirl speed map, as shown in Figure 6.6-7, shows that the first two forward 

precessional modes are not excited by the synchronous excitation; the associated first two 

backward modes are overdamped non-vibratory real modes with zero natural frequencies 

and not shown in the maps.  The modes can switch orders.  The 1F and 2F switch order 

around 6,700 rpm, and the 3F and 3B switch order around 6,400 rpm.  The synchronous 

excitation (1×) line is commonly superimposed on the whirl speed map, as shown in 

Figure 6.6-7, and the intersections between the damped natural frequency curves and the 

excitation line are referred to as the damped critical speeds.  The first and second modes 

do not intersect with the synchronous excitation line within the speed range of study 

(500-10,000 rpm) and the third backward and forward bending modes do intersect with 

the synchronous excitation line at around 7,500 and 9,600 rpm, respectively. The 

synchronous mass unbalance excitation can only do work on the forward circular 

component of the elliptical motion, and there is no work done on the backward circular 

component of the elliptical motion.  For general non-isotropic systems, the response is an 

elliptical orbit and always contains a pure forward circular motion, regardless of whether 

the total elliptical motion is forward or backward precession.  Therefore, the rotating 

force can always supply energy to the vibration modes (forward and backward) for non-

isotropic systems with elliptical motion.  For systems with fluid film bearings, very often 

a sub-synchronous excitation line (1/2×) is also overlapped in the whirl speed map, as 

shown in Figure 6.6-7.  The intersection point between the sub-synchronous excitation 

line and the forward natural frequency curve may indicate the instability threshold speed.  

 The damping factors for the first four frequencies are plotted in the stability map, as 

shown in Figure 6.6-8. A negative damping factor indicates system instability in the 

linear sense.  The damping factor of the first forward mode (translatory mode-1F) is 

higher than the damping factors of the third modes (3F and 3B) in the low speed range; 

however, it decreases rapidly as the speed increases and becomes negative when the 

speed is above 8,375 rpm.  This speed (8,375 rpm) is known as the instability threshold 

in the linear stability analysis.  The unstable whirl frequency is 4,250 rpm at a rotor speed 

of 8,375 rpm, which has a typical whirl-spin ratio of 0.5.  The whirling frequency for the 

self-excited motion is very close to one-half the rotor speed.  This is known as the Oil 

Whirl or Half-Frequency Whirl for systems supported by fluid film bearings, and the 

rotor whirls with a predominated rigid body forward precessional motion. Note that the 

unstable whirling frequency is the system’s first natural frequency, not the first critical 

speed.  The rotor behavior beyond the instability threshold cannot be predicted by linear 
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analysis, and nonlinear simulation should be used when the rotor speed is near or above 

the instability threshold.    

 

 
 

Figure 6.6-7 Whirl speed map 

 

 

 
 

Figure 6.6-8 Stability map 
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 The root locus plot, as shown in Figure 6.6-9, is sometimes used to investigate system 

stability.  It plots the imaginary part of the eigenvalues (frequency) vs. the real part of the 

eigenvalues (damping exponent) for a range of rotor speeds. Again, the first forward 

precessional mode becomes unstable when rotor speed exceeds 8,375 rpm.  The root 

locus plot is not commonly used in rotordynamics study, since the instability threshold 

speed is not as apparent as in the stability map, where the speed is labeled in the X-axis.  

It is more widely used in control theory. 

 

 
 

Figure 6.6-9 Root locus plot 

 

 The mode shapes of the first four modes, at speeds of 3,575 and 8,500 rpm for the 

system with fluid film bearings, are shown in Figures 6.6-10 and 6.6-11.  Viewing the 

mode shapes at a speed of 3,575 rpm, the first mode is a forward rigid rotor mode 

(conical mode) and the second is another forward rigid rotor mode (translatory mode) 

with negligible shaft deflection. The third mode is a forward bending mode and the fourth 

is a backward bending mode.  The bending modes have noticeable shaft deflection.  All 

the modes have positive damping factors.  However, at a speed of 8,500 rpm, the first 

mode becomes the translatory mode, the second is the conical mode, and the third and 

fourth modes are backward and forward bending modes.  This mode order switch can 

also be verified from the whirl speed map, as shown in Figure 6.6-7, where the damped 

natural frequency curves intersect and switch orders.  For example, the first mode at 

6,700 rpm becomes the second mode at 6,800 rpm, and the third mode at 6,400 rpm 

becomes the fourth mode at 6,500 rpm.  Therefore, caution must be taken when 

constructing the whirl speed map.  Also, a rotor speed of 8,500 rpm is beyond the 

instability threshold of 8,375 rpm; the first forward precessional mode is an unstable 

mode with a negative damping factor and a whirl frequency of 4,269 rpm.  As expected, 

the unstable whirl-spin ratio is about 0.5.   
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Figure 6.6-10 Mode shapes for the first four modes at 3,575 rpm 

 

 

 
 

Figure 6.6-11 Mode shapes for the first four modes at 8,500 rpm 
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 In addition to the destabilizing forces from the cross-coupled stiffness coefficients of 

fixed-profile fluid film journal bearings, other destabilizing mechanisms are present in 

rotating machinery, such as aerodynamic forces caused by the impeller clearance 

variation, high pressure, and liquid seals. They all have the same expression in 

rotordynamics study, and aerodynamic cross-coupling will be used to illustrate their 

effect.  The aerodynamic cross-coupling force induced by the working fluid destabilizes 

the rotor system. For simplicity, let us add the same magnitude of destabilizing 

aerodynamic cross-coupled stiffness (Q = Kxy = −Kyx) in all six impellers to study the 

rotor stability at its normal operating speed of 3,575 rpm.  The system studied here is a 

system with identical roller bearings (K=5.0E05 Lbf/in and C=10 Lbf-s/in), which have 

limited damping.  In this configuration, the only destabilizing forces are the aerodynamic 

cross-coupling forces, and the system is isotropic with circular orbits.  The damping 

factors for the first six modes (three forward and three backward) vs. the aerodynamic 

cross-coupling Q at the design speed of 3,575 rpm are tabulated in Table 1.6-1.  Note that 

when positive aerodynamic cross-coupled stiffness Q is applied for the stability analysis, 

it indicates that the rotor rotation speed is assumed to be a counterclockwise (CCW) 

rotation.  

 

Table 6.6-1 Damping factors vs. aerodynamic cross-coupling Q at 3,750 rpm 

 

Q 

First 

Backward 

dω =4641 

First 

Forward 

dω =4652 

Second 

Backward 

dω =9796 

Second 

Forward 

dω =10111 

Third 

Backward 

dω =20676 

Third 

Forward 

dω =21048 

0 0.0033 0.0034 0.0094 0.0094 0.0037 0.0035 

500 0.0056 0.0011 0.0097 0.0091 0.0038 0.0034 

700 0.0065 0.0002 0.0099 0.0090 0.0038 0.0034 

750 0.0068 -0.0001 0.0099 0.0090 0.0038 0.0034 

1000 0.0079 -0.0012 0.0100 0.0088 0.0038 0.0034 

  

 The results show that the cross-coupled stiffness has little effect on the natural 

frequencies of this isotropic system.  However, it affects the damping factors (system 

stability). The cross-coupled stiffness destabilizes the forward circular modes and 

stabilizes the backward circular modes. In this example, the aerodynamic cross-couplings 

have little influence on the third mode due to little modal displacement at the impeller 

locations, as shown in the mode shape plot in Figure 6.6-6.  The damping factors vs. 

aerodynamic cross-coupled stiffness are also graphed in Figure 6.6-12.  The damping 

factor of the first forward mode decreases rapidly as the aerodynamic cross-coupled 

stiffness Q increases, and this mode becomes unstable when Q exceeds 750 Lb/in.  It is 

important to note that the unstable whirling frequency caused by the aerodynamic cross-

coupled stiffness in this example is 4,652 rpm, which is higher than the rotor speed of 

3,575 rpm.  This differs from the oil whirl frequency caused by the fluid film bearings, 

which is around half the rotor speed.     

 For this six-stage compressor with fluid film bearings (damping in the range of 1,700-

3,900 Lbf-s/in), it will take as much as 115,000 Lbf/in aerodynamic cross-coupling Q at 

all impeller stations to destabilize the rotor system, which is more than 150 times that for 

roller bearings.   
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Figure 6.6-12 Damping factors vs. Q 

 

 Since the whirl speed map and stability map can be very complex when the system is 

supported by fluid film bearings, caution must be taken when constructing the maps.  It is 

quite common for the orders of the modes to switch as the speed changes and mixed 

precessions occur occasionally.  Some modes become overdamped and disappear from 

the map in some speed ranges and show up in other speed ranges when they become 

underdamped.  Mode shapes should always be present when preparing and interpreting 

the whirl speed map and stability map. 

 

 

6.7 Time-Transient Analysis 
 

For some nonlinear systems, in which linearization is not feasible, time-transient analysis 

becomes necessary to study the rotor response.  Time-transient analysis is commonly 

used to analyze nonlinear systems at a constant rotor speed or a range of rotor speeds.   

The time-transient analysis can be used to determine the steady-state response for the 

nonlinear systems or the transient motion for linear/nonlinear systems subject to sudden 

excitations. For some applications, there are needs to study the rotor motion during 

startup, shutdown, movement through critical speeds, blade loss and sudden excitations, 

or rotor drop for magnetic bearing systems with varying rotor speeds.  However, in most 

applications, time-transient analysis is not required in the design phase.     

 For large complicated systems, time-transient analysis can be very time consuming 

and the solution may not converge properly for nonlinear systems if the time step used in 

the integration is too large. Using the sub-elements in the rotor model to reduce the 

number of finite element stations (active DOFs) when performing time-transient analysis 

is strongly recommended.  The number of retained finite element stations in the reduced 

system depends on the rotor speed and critical speeds.  As a general rule, the calculated 
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critical speeds below the rotor speed and the one above the rotor speed are the same for 

both reduced and original rotor models; thus, the reduced system will have the same 

dynamic characteristics in the time-transient simulation with the original system. 

 The results of linear analysis for the six-stage compressor with fluid film bearings 

presented previously are based on the linearized bearing coefficients.  The static load on 

each bearing is obtained from the static deflection and bearing load analysis.  Once the 

bearing static load is known, the bearing static performance and dynamic characteristics 

can be obtained by solving the Reynolds equation for each bearing.  The advantage of 

linearization and use of linearized bearing coefficients is in decoupling the rotor 

equations and the lubrication equations, which allows for rapid linear analysis, as 

demonstrated in the previous sections.  For some rotor systems, that bearing linearization 

is not feasible and/or the rotor speed is near or beyond the instability threshold, so time-

transient analysis becomes necessary to study the rotor response. 

 Now, let us examine the rotor behaviors of the previous six-stage compressor by 

combining the nonlinear bearing lubrication equations and rotor elastic equations.  The 

governing equations are now nonlinear and time-transient analysis is required.  

Considering the gravity load only and at the design speed of 3,575 rpm, the time-transient 

solution converges to the static equilibrium position, as shown in Figure 6.7-1.  Note that 

the Z-axis is the line along the bearing geometric centers and the rotor deflection curve is 

the rotor static equilibrium line.  Also, although the gravity loading is in the negative Y 

direction, the rotor deflection curve is in the fourth quadrant for a counterclockwise shaft 

rotation, and not in the same direction as the load vector.  This is a unique feature caused 

by the fluid film bearing tangential force, as discussed previously.  Figure 6.7-2 shows 

the static equilibrium positions at both bearing locations and these results are consistent 

with the analysis results obtained by solving the Reynolds equation alone for each 

individual bearing, as presented in Figure 6.7-3. 

 

 
 

Figure 6.7-1 Static deflection curve from transient analysis 
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Figure 6.7-2 Bearing equilibrium position – nonlinear analysis 

 

 

 

 
 

Figure 6.7-3 Bearing equilibrium position – Reynolds equation 

 

 Figure 6.7-4 shows the bearing reaction forces obtained from the nonlinear simulation 

under gravity load only, and they are in agreement with the static load calculation as 

presented in Figure 6.3-1, after reaching the steady-state condition. 
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Figure 6.7-4 Bearing reaction force 

 

 Figure 6.7-5 shows the rotor steady-state response with gravity load and unbalance 

forces (me = 5 oz-in) at impellers 1 and 6 with the same unbalance angle.  Again, the Z-

axis in the nonlinear simulation is the centerline along the bearing geometric centers, 

unlike the Z-axis in the linear analysis, as shown in Figure 6.5-10, which is the static 

equilibrium line.  

 

 
 

Figure 6.7-5 Rotor steady-state response with gravity and unbalance force  

at a speed below the instability threshold 
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 Figure 6.7-6 shows the rotor responses at bearings for various unbalance forces.  It 

shows that for small amounts of unbalance, the response orbit is around the static 

equilibrium position (me=0) and nearly elliptical. As the unbalance increases, the 

response orbit increases.  However, the orbit size does not increase linearly with 

unbalance force as linear theory predicts.  In the non-linear systems, the relationship 

between the unbalance force and response is no longer linear, as illustrated in Figure 6.7-

6.  The FFT analysis shows that the response under unbalance excitation is mainly 

whirling at 3,575 rpm, which is synchronous with the rotor speed.  This synchronous 

vibration is commonly referred to as “1×” vibration.  As the response orbit increases with 

unbalance, 2× and higher harmonic vibration components show up and the elliptical orbit 

distorts, as illustrated in Figures 6.7-6 and 6.7-7.   

 

 
 

Figure 6.7-6 Bearing steady-state response – nonlinear simulation 

 

 
 

Figure 6.7-7 Rotor response spectra at bearings 

 

 In linear theory, the input (force) and output (response) are related linearly; that is, 

when the unbalance force is doubled, the response is doubled in linear analysis, as 

demonstrated in Figure 6.7-8.  However, the rotor response orbit must be retained within 
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the physical limits (i.e., bearing clearance in this case).  For instance, with me=20, the 

linear response orbit is greater than the bearing clearance, as shown in Figure 6.7-8, 

which is not feasible in practice without damaging the bearing and resulting in 

catastrophic failure. All the systems are nonlinear in nature and the force-response 

relation can be approximated by linear theory only when the vibration amplitudes are 

small. With large vibration, nonlinear theory must be applied and the motion is 

constrained.   

 

 
 

Figure 6.7-8 Bearing steady-state response – linear analysis 

 

 Figure 6.7-9 shows the rotor response with only gravity load at 8,500 rpm, which is 

right above the instability threshold of 8,375 rpm determined from the linear analysis.  

Note that the static equilibrium positions now become equilibrium orbits, and the rotor 

whirls at a frequency which is nearly half the rotor speed, as shown in Figure 6.7-10.   

 

 
 

Figure 6.7-9 Rotor steady-state response with gravity load only  

at a speed above the instability threshold 
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Figure 6.7-10 Equilibrium orbits and FFT spectra  

at a speed above the instability threshold 

 

 Figure 6.7-11 shows the change from equilibrium position to equilibrium orbits as the 

rotor speed increases from 8,000 rpm to 10,000 rpm with gravity load only.  At 8,000 

rpm, which is below the instability threshold of 8,375 rpm, the journal has a static 

equilibrium position.  When the rotor speed is above the instability threshold, the static 

position becomes a whirling equilibrium orbit, referred to as the limit cycle motion.  This 

is known as self-excitation due to the characteristics of the fixed-profile fluid film 

bearings.  The whirling frequency for self-excited motion is very close to half (1/2×) the 

rotor speed.  It is commonly referred to as the oil whirl, since the rotor whirls with a 

predominated rigid rotor forward precessional motion.   

 

 
 

Figure 6.7-11 Equilibrium motion at rotor speeds below, near, and above the instability 

threshold 



CHAPTER 6: ROTORDYNAMIC MODELING AND ANALYSIS 

 

422 

 Figure 6.7-12 shows the rotor response at 8,500 rpm with gravity load and unbalance 

forces (me=5 oz-in) at impellers 1 and 6.  The response is the vector summations of the 

1/2× and 1× vibration components, as illustrated in Figure 6.7-13.   

 

 
 

Figure 6.7-12 Rotor steady-state response with gravity and unbalance (me=5)  

at a speed above the instability threshold 

 
 

 
 

Figure 6.7-13 Rotor response and FFT spectra (me=5) at a speed above  

the instability threshold 
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 Figures 6.7-14 through 6.7-17 show the rotor responses and FFT spectra with larger 

unbalance forces (me=10 and me=20) at a speed of 8,500 rpm, which is above the 

instability threshold.  As the unbalance force increases, the synchronous vibration (1×) 

increases and the sub-synchronous vibration (1/2×) is suppressed.  Note that as the 

unbalance force increases, the rotor deflection curve changes from a predominated rigid 

rotor mode, as shown in Figure 6.7-9, to a bending mode, as shown in Figures 6.7-14 and 

6.7-16.  Although the sub-synchronous vibration can be suppressed with high unbalance 

forces (synchronous vibration), this is not recommended in practice. Because high 

vibration is always undesirable, regardless of the vibration frequency, high vibration 

should always be avoided.  

 

 
 

Figure 6.7-14 Rotor steady-state response with gravity and unbalance (me=10)  

at a speed above the instability threshold 

 

 
Figure 6.7-15 Rotor response and FFT spectra (me=10) at a speed above  

the instability threshold 
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Figure 6.7-16 Rotor steady-state response with gravity and unbalance (me=20)  

at a speed above the instability threshold 

 

 

 
 

Figure 6.7-17 Rotor response and FFT spectra (me=20) at a speed above  

the instability threshold 

 

 Figure 6.7-18 shows a three-lobe bearing used in a high-speed integrally-geared 

compressor.  When the compressor is loaded, the rotor response is dominated by the 

synchronous (1×) response, as shown in Figure 6.7-19.  However, when the compressor 

is unloaded (inlet valve closed), the bearing load drops significantly and the rotor 

response is dominated by the sub-synchronous (0.46×) and synchronous (1×) 

components, as shown in Figure 6.7-20.   
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Figure 6.7-18 A preloaded three-lobe bearing 

 
 

 
 

Figure 6.7-19 Rotor response when compressor is loaded 

 
 

 
 

Figure 6.7-20 Rotor response when compressor is unloaded 
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 The acceleration effect can also be studied using time-transient analysis.  For this six-

stage compressor with roller bearings, the responses at a bearing station for various 

startup times, 1 second, 5 seconds, and 10 seconds, from 0 rpm to 8,500 rpm, are shown 

in Figure 6.7-21 along with the steady-state response. The peak response occurs at higher 

speeds with lower amplitudes as the acceleration rate increases (shortened startup time).  

However, the amplitude oscillation occurs after resonance due to the coexistence of the 

natural transient motion and steady-state forced response. This beating phenomenon 

occurs only in lightly damped systems.  Although shortening the startup time can lower 

the peak amplitude when moving through the critical speeds, it is not a good practice for 

lightly damped systems, because the rotor will also coast down (decelerate) through the 

critical speeds.  For gear-driven machines, shortening the startup time indicates that a 

large startup torque is required.  This could cause damage in the coupling and shaft due to 

high torque (stress) during startup. 

 
Figure 6.7-21 Acceleration effect 

 

 When performing time-transient analysis, the most common question concerns how 

to determine the time step ∆t, which is also known as the size of the time increment in the 

numerical integration.  Note that this time step is used in the numerical integration, not 

the sampling period in the vibration instruments, as discussed in Chapter 1. The result 

accuracy of a numerical integration contains two components: amplitude and frequency 

(period).  Determination of the time step obviously depends on the numerical algorithms 

selected. For engineering applications, the Newmark-β and Wilson-θ are the most 

commonly employed numerical integration methods, which directly solve second order 

differential equations.  For proper selection of the integration parameters, the Newmark-β 

and Wilson-θ methods are unconditionally stable in linear problems.  However, a stable 

solution does not necessarily mean an accurate result, especially if the time step is too 

large. A large time step can decrease the accuracy of the solution and may introduce 

unwanted numerical oscillations in the solution, even if the solution is bounded.  In 

general, a smaller time step produces more accurate results at the expense of more 
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computational time.  Caution must be exercised if the time step is extremely small 

because numerical errors can accumulate fast and produce inaccurate results.  The 

maximum time step suggested in linear problems is about Tcr/20 or smaller for numerical 

stability, where Tcr is the natural period of the critical frequency.  In rotordynamics, one 

frequency is always of interest: the synchronous frequency. Thus, for a rotor speed of 

35,000 rpm, as demonstrated in Figure 6.7-19, the suggested “maximum” time step is: 

 

 rpm = 35,000 

 frequency = 35,000/60 = 583.33 Hz 

 Tcr = 1/frequency = 0.00171 second 

 ∆t max = Tcr/20 = 8.6E-05 second    

 

For more accurate results, normally about one-tenth of the maximum suggested time step 

is recommended in the numerical simulation. Thus, ∆t = 1E-05 is used for linear 

problems in the above example.  For nonlinear problems, a smaller time step is necessary 

for the solution to converge. Typically, ∆t = 1E-06 is suggested for nonlinear problems.  

For highly nonlinear systems, such as automotive turbochargers, a further smaller time 

step is required for solution convergence.   

 As discussed, the accuracy of the amplitude and frequency in the time-transient 

response depends heavily on the time step ∆t and the total integration time Tf.  To 

properly determine the time step ∆t and the integration time Tf , let us review the FFT 

discussed in Chapter 1.  For the modern FFT, the required number of data points N must 

be a power of 2.  For a given time step ∆t and the number of data points N, the frequency 

for a given harmonic index is: 

 

 
1

i

i
f i f

N t

   
= ⋅ = × ∆   

∆   
   i = 0, 1, 2, …, N/2   (6.7-1) 

     

The frequency interval (delta frequency) between frequency harmonics is: 

 

 
1

f
N t

∆ =
⋅ ∆

         (6.7-2) 

 

This indicates that the f∆ is linearly proportional to the inverse of N and t∆ .  Thus, in 

general, we want larger N and t∆  to produce smaller f∆ .  However, t∆ must be small 

enough for the numerical integration to be accurate.  Several examples are used to 

illustrate the selection of the ∆t and integration time Tf.   

 

Example1: The rotor speed is 35,000 rpm (583.33 Hz), as illustrated in Figure 6.7-20. 

The synchronous (583.33 Hz) and sub-synchronous (268.33 Hz) frequencies are of 

concern. To obtain accurate frequencies in the FFT, f∆ is a fraction of the concerned 

frequency.  If f∆ = 5.8333 Hz (350 rpm), then the synchronous frequency (583.33) Hz is 

the 100th harmonic and the sub-synchronous frequency (268.33 Hz) is the 46th harmonic 

in the FFT analysis.  Since N must be a power of 2, use N =2
14

= 16,384.  Then the time 

step can be found from Eq. (6.7-2): 
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1

t
N f

 
∆ =  

⋅∆ 
          (6.7-3) 

 

With the selected f∆ = 5.8333 Hz and the sampling point of N =2
14

= 16,384, we have 

t∆ =1.04632E-05 seconds.  Then, the minimum integration time Tf = N * t∆  = 0.17143 

seconds.  Thus, if we want to use FFT to get accurate frequency and amplitude data at the 

frequencies of interest, we will use t∆ =1.04632E-05 seconds and Tf = 0.2 seconds, which 

is slightly larger than the minimum requirement to reduce the effect from the transient 

response due to initial conditions.   

 If the solution does not converge for the nonlinear problems and a smaller time step is 

required, then we can increase N=2
17

=131,072 and keep f∆ =5.8333 Hz, so 

t∆ =1.30790E-06 seconds and Tf = 0.2 seconds.  Alternatively, we can increase both the 

N=2
16

=65,536 and f∆ =11.6666 Hz, so that t∆ =1.3079E-06 seconds and Tf = 0.1 

seconds. With f∆ =11.6666 Hz, the synchronous frequency (583.33 Hz) is the 50th 

harmonic and the sub-synchronous frequency (268.33 Hz) is the 23rd harmonic in the 

FFT analysis.  If a further small time step is needed, we can use N= 2
19

=524,288 and 

f∆ = 11.6666 Hz, so that t∆ =1.63488E-07 seconds and Tf = 0.1 seconds.   

 Table 6.7-1 can be utilized to determine the proper time step selection for the 

numerical integration with good FFT frequency and amplitude. 

 

Table 6.7-1 Relationship used to determine f∆ , N, t∆ , and Tf   

 

f∆ (Hz) N − FFT Point t∆  Tf 

Select f∆  such that the 

frequency of interest is 

a multiple of f∆ . 

Must be a 

power of 2. 

Determine by 

Eq. (6.7-3). 

A little larger than 

N t∆  to minimize the 

initial transient effect. 

if i f= × ∆  2mN =  
1

t
N f

 
∆ =  

⋅∆ 
 f

T N t≥ ∆  

 

 However, if we just want to see accurate response orbit results, not the “exact” FFT 

amplitudes and frequencies, then as long as the t∆  is small enough for numerical 

convergence, it does not have to follow Eq. (6.7-3); for example, we may use t∆ =1.0E-

06 or 1.0E-07.   

 

Example 2: For the six-stage compressor with fluid film bearings, if we want to display 

the waterfall (or cascade) plot, or the spectral intensity plot, we need to run the time-

transient analysis in the frequency (speed) domain repeatedly.  Say we want to analyze 

the system from 1,000 to 10,000 rpm with an increment of 500 rpm (8.333 Hz).  We can 

use f∆ = 8.333 Hz and N = 32,768, so that t∆ =3.662E-06 seconds and Tf =0.12 seconds.  

If the solution does not converge, a smaller time step t∆ =1.831E-06 seconds and Tf=0.12 

seconds can be used, which results in f∆ = 8.333 Hz and N = 65,536.  The waterfall plot 

for this six-stage compressor is shown in Figure 6.7-22.  The rotor instability threshold 
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occurs around 8,000 rpm; after that, the sub-synchronous vibration becomes dominant.  

Again, if the exact frequency in the FFT is not required, then the time step can be 

t∆ =1.0E-06 seconds. 

 

 
 

Figure 6.7-22 Waterfall plot 

 

 Since color graphics are readily available these days, the 3-D waterfall plot can be 

projected onto a 2-D plot with color intensity to identify the vibration amplitude, as 

shown in Figure 6.7-23. The maximum amplitude for the synchronous vibration occurs 

around 6,500 rpm where the critical speed is located.  The sub-synchronous vibration 

occurs around 8,000 rpm and intensifies after 8,500 rpm.   

 

 
Figure 6.7-23 Spectral intensity plot 
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Example 3: To study the startup of an automotive turbocharger with floating ring 

bearings, a frequency domain time-transient analysis is performed.  The speed of interest 

is from 15,000 to 200,000 rpm with an increment of 3,000 rpm (50 Hz).  Since this is a 

highly nonlinear system, the time step is very small, on the order of 1.0E-08 seconds, for 

the numerical integration to converge.  Let us use f∆ = 50 Hz to track the synchronous 

vibration frequency.  For the time step t∆  to be in the range of 1.0E-08, and the sampling 

point N to be a power of 2, the number of FFT points is N=2
20

=1,048,576. Then, 

1 1.90735 08
(1048576 50)

t E∆ = = −
×

 seconds.  The minimum integration time will be 

1.90735 08 1048576 0.02
f

T t N E= ∆ × = − × =  seconds. With the same time step t∆ , 

increasing the integration time 
f

T  will decrease the f∆ .  Say, for example, doubling the 

0.04
f

T =  will cut the 25f∆ =  Hz in half. 

 

 

 

 

 

 

 

 


