The L aval-Jeffcott
Rotor M odel

3.1 The Two-Degrees-of-Freedom Rotor System

The fundamental dynamic characteristics of a rotor system can be studied and analyzed
by using ssimple rotor models. Two types of rotor models are discussed in this chapter:
one is the flexible rotor with rigid bearings and the other is the rigid rotor with flexible
bearings. Two-degrees-of-freedom (2 DOF) systems are considered in these models and
many assumptions made here are not practical and do not correspond with redlity, but
they can simplify the solution and allow for parametric studies be performed. This
allows us to understand the effects of each parameter on rotor dynamics behaviors. They
also provide many valuable physical insights into more complicated systems.

3.1.1 The Flexible Rotor with Rigid Bearings

A single disk centrally mounted on a uniform, flexible, and massless shaft, which is
supported by two identical bearings, asillustrated in Figure 3.1-1, is most widely utilized
by researchers to study and understand basic rotordynamics phenomena. If the bearings
areinfinitely stiff (rigid bearings), this model is normally referred to as the Laval Rotor in
Europe, and Jeffcott Rotor in other parts of the world.

The Laval-Jeffcoit Rotor

Flexahle, Unbalanced
MMassless Shaft Dislc

Rigid
Bearings

Figure 3.1-1 A simple Laval-Jeffcott rotor

For the centrally mounted disk, the system is symmetric and the first two fundamental
tranglational and rotational motions are decoupled and can be considered separately, as
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56  CHAPTER 3: THE LAVAL-JEFFCOTT ROTOR MODEL

shown in Figure 3.1-2. For the pure translational motion, as shown in Figure 3.1-2 (a),
the disk has maximum tranglational displacement and zero rotation (slope). For the pure
rotational motion, as shown in Figure 3.1-2 (b), the disk has maximum rotation (slope)
and zero trangdlational displacement.

Uransiananal Mation Haoiaiional Maotion
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Figure 3.1-2 Two fundamental motions for a symmetric flexible rotor

Since the trandational and rotational motions are decoupled, the trandational and
rotational stiffness of the elastic shaft can be obtained from the basic beam deflection
equations. For the determination of trandational shaft bending stiffness, consider a
simply supported beam with a concentrated load at midspan (disk location). At midspan,
the slope is zero and the defection due to the point load (F) is:

_FL
48El

(3.1-1)

From the linear force-displacement relationship, the shaft bending stiffness for the
fundamental translational motionis:

_ 48E

ke =75

(3.1-2)

For the determination of rotational shaft bending stiffness, consider a simply supported
beam with a moment load at midspan (disk location). At midspan, the deflection is zero
and the slope due to the moment (M) load is:

=ML (3.1-3)
12E|

Again, the shaft rotation stiffness for the fundamental rotational motion is:

_12El

K 3

(3.1-4)

For the Lava-Jeffcott rotor system, with flexible rotor and rigid bearings, the
trandational and rotational motions correspond to the first and second bending modes.
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3.1.2 The Rigid Rotor with Flexible Bearings

Another simple rotor model, commonly used to study the fundamental rotordynamics, is
a symmetric rigid rotor on two identical flexible supports, as illustrated in Figure 3.1-3.
The rotor is considered rigid and symmetric. Again, the translational and rotational
motions at the center of mass are decoupled and can be studied separately, as shown in
Figure 3.1-4.

Symmetric Rigid Rotor
on
Flexitle Bearings

Ain Ay
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Figure 3.1-3 A symmetric rigid rotor with flexible bearings
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Figure 3.1-4 Two fundamental motions for a symmetric rigid rotor
Since the rotor is rigid and symmetric, and the two bearings are identical with a
stiffness of Ky, the trandational and rotational stiffnesses can be determined from the
force and moment equations as.

K, =2k, Trandational stiffness (3.1-5

Ke =%kb L> Rotational stiffness (3.1-6)
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For the symmetric rigid rotor with flexible bearings, the translational and rotational
motions are commonly referred as two fundamental rigid body modes, i.e. trandatory
and conical modes.

3.2 Trandational Motion

For a pure trandational motion, consider a more generalized Laval-Jeffcott rotor system
with flexible supports, as illustrated in Figure 3.2-1. When the bearings are flexible and
each bearing has a stiffness of Ky, the equivalent stiffness of the system K, combining
shaft stiffness K and bearing stiffness Ky is:

1 - 2KK, K 2K,

11,1 KKK 821)
K K, 2K, 2K, +K, 1, Ko 2K, o
2K, K,

It is evident from Eq. (3.2-1) that when the bearing stiffness is much larger than the shaft
bending stiffness (K, >>K.,), the equivalent stiffness reduces to be Ks. Thisis atypical

Laval-Jeffcott rotor system with elastic shaft and rigid supports. When the shaft bending
stiffness is much larger than the bearing stiffness (K, >>K, ), the equivalent stiffness

reduces to be 2Ky, and it becomes a symmetric rigid rotor supported by flexible bearings.

(eneralized Laval-Jeffcott Rotor

Flexihle, Unbalanced
MMassless Shaft Disk

Flexible

Bearings

Figure 3.2-1 A generaized Laval-Jeffcott rotor

When the stiffnesses and dampings in both X and Y directions are the same, the
system isreferred to as an isotropic system. In general, the equivalent stiffnesses (Ky, Ky)
and viscous dampings (C,, Cy) in both X and Y directions, are not the same due to the
asymmetric properties of the bearings, even though the shaft is axisymmetric (isotropic).
This system is thus referred to as anisotropic system.

Consider a generalized Laval-Jeffcott rotor system with equivalent support stiffnesses
of Ky and Ky and associated viscous damping C, and C, in the X and Y direction, as
illustrated in Figure 3.2-2. The disk has a mass of m and the center of gravity is offset
from the shaft geometric center by an eccentricity of e. The motion at the disk center is
described by two trandational displacements (x, y), asillustrated in Figure 3.2-2.
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Figure 3.2-2 A two-degrees-of-freedom model

For the case of constant angular speed of rotation, Q, the equations of motion for the
mass center, can be derived from Newton's Laws of motion:

2

m% (x+ecos(Qt +¢)) = —C,x - K x (3.2-2)

2

d . .
mw(y+esm(§2t +@))=-C,y-K,y (3.2-3)

It can be rewritten as

mx + C, x + K x = meQ? cos(Qt + ¢ ) (3.2-4)
my+C,y+K,y=meQ’sin(Qt +¢) (3.2-5)

where ¢, isthe phase angle for the mass unbal ance position. For single unbalance force,
asinthis case, ¢, can be set to zero without loss of generality. The equations of motion

show that the motions in the X and Y directions are both dynamically (inertially) and
statically (elastically) decoupled in this simple model. Therefore, they can be solved
separately. Since there are no cross-coupling stiffnesses in this model, it is sometimes
referred to as an orthotropic system. For the isotropic systems, the equations of motion
for the x and y displacements are identical, except for the 90 degrees phase difference in

unbalance excitations.
3.3 Natural Frequencies and Natural Modes

The undamped natural frequency, viscous damping factor (ratio), and damped natural
frequency for each direction are:
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K C ——
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™ m < 2me,, ¢
. - (3.3-1)
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For this simple rotor system with purely translational motion, the natural frequencies
are independent of the rotor spin-speed. In rotordynamics, the natural frequencies are
commonly referred to as the whirl speeds. For each natural frequency (eigenvalue), there
is an associated modal orbit (eigenvector). Since the motions in both directions are
decoupled, the modal orbit at each natura frequency degenerates into a straight line.
Hence, the modal orbits (eigenvectors) for the natural frequencies are:

w=w. x=x, y=0 (332)
w=w,: x=0, y=[x '

Following the discussion from Chapter 2, the straight line path on the other hand, can be
considered as being made up of two circular orbits of equal amplitude and whirling in
opposite directions, with the same frequency. Therefore, each natural frequency may be
treated as two natural modes with the same whirl frequency, where one is a purely
forward circular mode and the other is a purely backward circular mode.

When the excitation frequency of a periodic force applied to a rotor system coincides
with a natural frequency of that system, the rotor system may be in a state of resonance
(or critical condition). The most common excitation in rotating machinery is the
unbalance excitation that is synchronized with the rotor spin speed. There are other
synchronous excitations, such as excitations due to shaft bow and disk skew. Non-
synchronous excitations include aerodynamic excitations for compressors, gear mesh
excitation for geared systems, etc. In rotating machinery, the excitation frequencies are
commonly related to the rotor spin speed with a constant multiple or fraction.
Traditionally, when the rotor spin speed coincides with one of the natural frequencies, the
spin speed is referred to as critical speed, since the unbalance excitation is the most
common excitation. In amore general definition, when arotor spin speed coincides with
a constant multiple or fraction of one of the natural frequencies of the rotor system, then
the spin speed is defined as a critical speed. That is, at the critical speed, one of the
natural frequencies coincides with the excitation frequency.

To determine the damped critical speeds, a “Whirl Speed Map” is normally needed.
A whirl speed map, also caled “Campbell Diagram” or “Frequency Interference
Diagram”, is a plot of damped natural frequencies (whirl speeds) of the rotor system vs.
the rotor spin speed. The damped critical speeds and any excitation resonance speeds are
determined by noting the coincidence of the shaft speed with the system natura
frequencies for a given excitation frequency line (w,,. =aQ) in the whirl speed map. A
value of one (1) in the excitation slope is associated with the synchronous excitation that
is of main interest, because rotating unbalance is always present no matter how well the
rotor is balanced. For the trandational motion of this simple Laval-Jeffcott rotor system,
the natural frequencies are independent of the spin speed. The whirl speed map with
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synchronous excitation is presented in Figure 3.3-1. It shows that the first critical speed
isthefirst natural frequency and the second critical speed is the second natural frequency
in this case.
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Figure 3.3-1 Whirl speed map for a 2DOF system

The modal motions at X and Y directions are decoupled in this case. There is one
natural frequency for each direction of motion. Also, for each natural frequency, the
associated modal orbit is a straight line in each direction. However, a straight line path
can be considered as being made up of two circular orbits of equal amplitude and
whirling in opposite directions, with the same natural frequency. Therefore, each natural
frequency may be treated as two natural modes with the same whirl speed, where oneisa
purely forward (f) circular mode and the other is a purely backward (b) circular mode, as
noted in Figure 3.3-1 by (1f, 1b) and (2f, 2b). Since the natura frequencies are
independent of the spin speed for this simple rotor system, the natural frequencies are the
critical speeds for synchronous unbalance excitation.

3.4 Steady State Responseto Unbalance

Following the discussion in Chapter 1, the steady-state responses, due to mass unbalance
excitation are:

X(t) = X, cosQt + X, sinQt =[X|cos(Qt - ¢3,) (3.4-1)

y(t) = y, cosQt + y, sinQt =|y|cos(Qt - ¢,) (3.4-2)
where

(K, - 0m)(mec?)

- (ac)(mee)
(k,-@mJ +(ac,f '

A * (k, -o’mf +(ac,)

C

(3.4-3)
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= rrmz = arctan
|XI_[(+<X—sz)2+(§zcx)2]% - he [

QC
mj (49

and

(K, -Q’m)(me0?)

[ac, )

meQ? K. -Q%’m
- , @ =actan ——— (3.4-6)
v [k, o +(oc )] ( -Qc, J

Note that x and y displacements oscillate at the same frequency, Q (same as rotor spin
speed) with different amplitudes and phase angles. Following the discussion in Chapter
2, the steady-state unbalance response of Egs. (3.4-1) and (3.4-2) define an élliptica
motion. The ellipse properties, such as semi-major (a), semi-minor axes (b), and attitude
angle (¢@,), may be calculated from equations given in Chapter 2. The direction of
precession (whirling) of the steady state orbit, is determined by the sign of the rate of
precession (@):

signlg) = sign(x,y, = x..)
= sign|(k, -@2m|(k, -0’m)+(a’c.c, (34-7)
= sonl(e? - 07, ~02)+(024¢,¢, 0,9,

That is,
(@2 -*)e?, - Q%)+ (Q%4¢, ¢, ,) >0 Forward Precession  (3.4-89)
(w2 -Q%)w? -0%)+(@?4¢,¢ @, ,) <O Backward Precession  (3.4-80)
(@2 -Q?)a? -02)+(Q%4¢,¢,w,@,) =0 StraightLineMotion  (3.4-80)

From the above equations, steady-state unbalance orbit motion is a forward precession
when the rotor speed is below the first resonance frequency (critical speed) and above the
second resonance frequency (critical speed). The orbit motion is a backward precession
between the two resonance frequencies (critical speeds) if damping does not exist.
However, the backward whirl zone decreases as the damping increases, and when thereis
enough damping, the backward whirl does not occur at al, as illustrated in Eq. (3.4-8).
Since for the isotropic systems, there is only one resonance, backward whirl does not
exist. For anisotropic systems, backward whirl may exist, depending on the amount of
damping present in the systems.
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To gain some insights into orbit motion, an undamped orthotropic system (C,=C,=0)
with K, <K, is used to illustrate orbit behavior. There are two distinct resonance

frequencies (critical speeds):

ch,l = wx < ch,Z =w (34_9)

y

From previous equations for the steady state response, we have:

meQ? e’
X, = = , X, =0 3.4-10
¢ K, -Q°m o -Q° ® ( )
meQ? e’
= = , ¥.=0 3.4-11
Ys K,-0'm o - Y (3.4-11)
and
sign(x.y, - x.y.)= sign[(a)x2 - Qz)(a)§ - QZ)J (3.4-12)
Thus, the steady-state response becomes:
e£22
X(t) = x, cosQt = ——— cosQt (3.4-13)
w, —Q
e§22
y(t) =y, SnQt =———snQt (3.4-14)
w, —Q

y
The above expressions satisfy the following relationship:

(@]2 N (ﬂjz -1 (3.4-15)
X, A

As expected, the above equation defines an elliptical orbit. The steady-state unbalance
response for this undamped orthotropic 2DOF system is presented in Figure 3.4-1. The
pertinent parameters are listed in the plot for reference. The orbit motions for various
rotor speeds are analyzed and summarized below:

Casel: Q<w, below thefirst critical speed

X >0, y.>0, X, >y
a:Xc’ b:ys’ (oa:O’ §0>0

The motion is a forward eliptical orbit where the semi-mgjor axisis aligned with
the X axis.
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Figure 3.4-1 The steady state unbalance response and orbit analysis

Cae2: Q=w, on thefirst critical speed (at resonance)

X, =0, Y>>0, X >V
a=ow, b=y, ¢=0 =0

The motion is an unbounded straight line (resonance) aligned with the X axis.
In practice, the amplitude is limited by the damping and geometric constraints.

Case3 w,<Q< 1(a)f + a)i) between the critical speeds
2

X, <0, y.>0, [|x|>y,

a=[x|, b=-y, @=0 <0

The motion is a backward elliptical orbit where the semi-magjor axis is aigned
with the X axis.
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Cased: Q= 1(a)2 + a)z) between the critical speeds
2V

X, <0, y.>0, [|x|=V,
a=|x|, b=-a, x=-y,, @=0 @<0

The motion is a purely backward circular orbit.

Case5: 1(a)f + wj) <Q<w,  betweenthecritical speeds
2

% <0, ¥, >0, [x[<y,
a=y, b=x, @ =90, @<O0

The motion is a backward elliptical orbit where the semi-mgjor axisisaigned
withtheY axis.

Case6: Q=w, on the second critical speed (at resonance)
X <0, yg=oo, |x|<y,
a=o, b=x, @ =90, @=0

The motion is an unbounded straight line (resonance) aligned with the Y axis.
In practice, the amplitude is limited by the damping and geometric constraints.

Case7: Q>w, above the second critical speed

a=|y) b=x, =9, ¢>0

The motion is a forward eliptical orbit where the semi-mgjor axisis aligned with
theY axis.

Case8: Q= far above the second critical speed
a=b=|x|=|y/=e x=y.=-e =0 >0

The motion is a purely forward circular orbit where the radius is equal to the
mass eccentricity.

It isevident from Figure 3.4-1 that:
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1. There are two distinct natural frequencies (critical speeds), w,and w, for X and

Y directions, respectively. The motions become infinite straight lines when the
rotor spin speeds are at critical speeds(Q —w,, Q= a)y).

2. Phase angle in the X displacement, ¢, , is zero before the first critical speed, w, ,

and becomes 180 degrees after the first critical speed. The phase angle changes
from zero to 180 degrees at critical speed. Phase angleintheY displacement, ¢,,

behaves the same, except it has a 90 degrees phase lag due to the 90 degreeslag in
the unbalance excitation.

3. The direction of precession can be easily identified by using the phase angle
relationship when the phase angles are available:

When Q<w,, m>(@y,-¢)>0 Forward precession
When o, <Q<w,, m>(y -¢,)>0 Backward precession
When Q=w,, Q=w,, G, =% Straight line

For the isotropic systems (K, =K, and C, =C), the natura frequencies are the
same for both directions. From previous equations, we have:

b=a (circular orhbit)
Sgn(x.y, — x.y,) =sign(x’ +y>) >0 (forward whirl)

Therefore, for the isotropic systems the steady-state unbalance response orbit motion is a
purely forward circular whirl, with the whirl speed equal to the shaft spinning speed.
That is, the steady-state unbalance response is a forward synchronous circular motion for
the isotropic systems without any backward whirl.

Complex Notation

It is sometimes desirable and convenient to analyze the equations of motion and solutions
by using complex displacements. The harmonic excitation can be represented by
complex vector, and the response orbit motion can be represented by a combination of
the forward and backward circular precessions of the motion. The equations of motion
for asimple 2DOF Laval-Jeffcott rotor system in complex notation becomes
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mr +C,f +C, " +K F+K, " =meQ?e® (3.4-16)
where

F(t) = x(t) +j y(t)

A A 3.4-17
=f. e +fe ( )

jot

and the complex conjugate vector is

F(t) = x(t) = y(t)

o (3.4-18)
=f, e +1, ™
also,
C, =%(cx +c) c, =%(cx—cy) (3.4-19)
K, :%(KX+Ky), Km:%(KX—Ky) (3.4-20)

Differentiating Equations (3.4-17) and (3.4-18), and substituting into Equation (3.4-16),
yields:

f, :%(Kp—mQ2+ joC, )meq? (3.4-21)

F = _Kl(Km +jQC,,) meQ? (3.4-22)
where

a=(K,-mo?+joc, f - (K, +jac, (3.4-23)

For isotropic systems, K, =0,C, =0, we then have f, =f,” =0. The response orbit
isapurely forward circular motion.

For anisotropic undamped systems, we have:

(; (a)x2 + wj)— sz eQ?
f, =

ERICRY o

e -ap)e0?
"l - -a?)

(3.4-25)
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From the above equations, the response can be divided into several spinning speed zones:

Q<w, and Q>w, = [f|>[i Forward elliptical whirl

w,<Q<w, = || <R Backward elliptical whirl

Q= 1(a)f + wf) =|f[=0 Purely backward circular whirl
2

These conclusions are in agreement with the previous discussion.

Example 3.1: 2DOF System — Steady State Unbalance Response

Before we move on to more practical and general examples, a generalized 2DOF
orthotropic system, subject to unbalance excitation, is presented in this example. The
pertinent parameters are listed below:

m=1, K, =100, K, =400, C,=C,=C=4, e=1
The equations of motion are:

mx +C, x+ K x =meQ? cos(Qt)

my +C,y+K,y=meQ?sin(Qt) = mechos(Qt—g)

There are severa ways to model this simple 2DOF system in DyRoBeS. Since we are
going to perform some parametric studies, the simplest way to construct the rotor system
is demonstrated in this example. The rotor system contains a dummy shaft element with
a zero mass density and a zero elastic modulus, as shown in Figure 3.4-2. The rotational
degrees-of-freedom at station 1, and all four degrees-of-freedom (trandational and
rotational) at station 2 are constrained. A concentrated mass with an unbalance and a
bearing with trandational properties, are placed at station 1. They are the only active
componentsin this case.

I Sywiem

ik
L
RITYSE S

hant

S Figure 3.4-2 2DOF model
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Formulas for the basic parameters and results have been presented before and are
listed below for reference.

w, = \/% Undamped natura frequency
C .
&= Damping factor
2maw,
W, = W,J1-&° Damped natural frequency

The maximum steady-state response due to mass unbalance occurs at
Q , =—1— with amplitude = &
PR -2s7 281~ &2

The numerical results are summarized bel ow:

Numerical results X direction | Y direction
Undamped Natural Frequency (R/S) 10 20
Undamped Natural Frequency (RPM) 95 191
For C=4

Damping Factor (Zeta) 0.2 0.10
Damped Natural Frequency (RPM) 94 190
Max. Amplitude at Speed (RPM) 100 193
Max. Amplitude 2.552 5.025

The whirl speed map for this simple system was shown in Figure 3.3-1. The steady-state
unbalance response for speeds from 0 to 300 rpm with an increment of 1 rpm was
analyzed using DyRoBeS. The Bode Plot for the x and y displacements are presented in
Figure 3.4-3.

As expected, there is a peak response at each direction due to the bearing asymmetry.
The maximum amplitudes and speeds calculated using DyRoBeS, are in agreement with
the analytica solutions. The y displacement phase angle (¢, ) equals the x displacement

phase angle (¢@,) a the rotor speed of 98 rpm that is greater than the first undamped

natural frequency of 95 rpm, and at the rotor speed of 186 rpm that is|ess than the second
undamped natural frequency of 191 rpm. That is:

n>(¢,—¢,)>0 when Q<98rpm and Q >186rpm
7T>(¢X—¢y)>0 when 98rpm <Q <186 rpm
b =9, when Q=98rpm and Q =186 rpm
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2 DOF - m=1{, Kx=100, Ky=400, Cx=Cy=d, e=1
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Figure 3.4-3 Bode plot for 2DOF system with unbalance

It indicates that the rotor whirls in forward precession when the rotor speed is below
98 rpm and oscillates along a straight line at 98 rpm. Then it reverses the direction of
precession and becomes a backward precession until the rotor speed reaches 186 rpm,
where the rotor oscillates along a straight line again. When the rotor speed is above 186
rpm, the direction of precession is reversed from a backward to a forward precession.
This phenomenon can be easily observed from the phase angle data shown in the Bode
plot and aso from the mgor and minor axes of the eliptical orbit plot, as shown in
Figure 3.4-4. The negative semi-minor axis indicates the backward precession. The orbit
changesits direction of precession by going through the straight-line motion.
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Figure 3.4-4 Elliptical orbital axes
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Severa orbits at different rotor speeds are shown in Figure 3.4-5. For systems with
damping, the straight-line motions will not be aligned in the X or Y axes, due to the

damping effect.

Spin Speed
186 rpm
150 rpm
?ﬂ-—i
08 rpm
20 rpm
Forward Bacloward Forward

250}

750}

n.00f

i

Figure 3.4-5 Steady state rotor orbits at different rotor speeds

This phenomenon can also easily be observed by utilizing the Displacement Orbit

Animation feature provided by DyRoBeS.

Readers are encouraged to run the

Sartup/Shutdown Animation, to visualize the orbit changing sizes and directions as the
rotor speed increases or decreases, asillustrated in Figure 3.4-6.
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Figure 3.4-6 Animation for the orbits startup and shutdown

Typicaly, the vibration probes (displacement pick-up) are not in the X and Y
directions. The Bode plot at the probes locations can be quite different from the x and y
displacements as illustrated in Figure 3.4-7. Figure 3.4-8 is the Bode plot for probes
located at 45 and 135 degrees, measured from the X axis, respectively.

M, e
VERTICAL PROBE "o ooie iy
= 3
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Figure 3.4-7 Two vibration probes

Unlike the Bode plot for the x and y displacement in Figure 3.4-3, there are two peak
responses at each probe in Figure 3.4-8. Each peak corresponds to a resonance condition:
one for each natural frequency. One can still identify the forward/backward precessions
and straight-line motion by the difference in the phase angles.

Forward precession: 77> (@, —¢) >0, or 37> (@, —¢)>2m andsoon.
Backward precession: 277> (¢, —¢,) >, or 0> (@, —¢,) >, andsoon.
Straight-Line Motion: (@, —@,) =0, 77, 277, 377, and soon.
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Figure 3.4-8 Bode plot for two probes

It is common in many Industry Standards that utilize the peak amplitude
measurements at the vibration probes, to locate the critical speeds instead of using the
natural frequencies to define the critical speeds. The above figure shows that for
different probe angles, the result can be significantly different. Caution must be taken
when utilizing the response measurements to define critical speeds.

It is aso noted that for this damped system, the range between two transition speeds
where the straight-line motion occurred, is smaller than those in the undamped system. It
indicates that the speed range for the backward precession gets smaller as damping
increases. In this example, when C=Cx=Cy=10 (¢, =0.5and ¢, = 0.25), there is only

one speed (135 rpm), which has a straight-line motion. When C>10, there is no straight-
line motion and backward precession does not exist. The mgor and minor axes of the
elliptical orbits for various damping are plotted below:

Dramiping effect on the Backward Precession

Elligtcal Drbital Axes
Hegatiee (b) indicales backward precession
T

Sami-kMinor (o)
=]

Sami-Major (a)

L
o =1 100 150 200 ] 300
Fotabanal Speed (rpm)

Figure 3.4-9 Elliptical orbital axesfor various damping levels
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Since this is a simple 2DOF model, the speeds for the straight-line motion can be
obtained mathematically from the equations derived before. For the orbit to be a straight-
line motion, we have:

b=0, o @ =9, (3.4-26)

By substitution phase equations (3.4-4) and (3.4-6) into Equation (3.4-26), yields

C,Q
A TS PNSS D  L (3.4-27)
K, - MQ K,-MQ? | 2

By using the following relationships:

tantag =2 —tan? L (3.4-28)
2 a
and
tana = -tan(-a) (3.4-29)
We have
M2Q* +(C,c, -M(K, +K,)JQ* +K,K, =0 (3.4-30)

This draws the same conclusion as presented before, by using the semi-minor axis
magnitude equation or the rate of precession. For a given simple Laval-Jeffcott rotor
system as presented in this example, the above equation can be used to determine the
speeds where the straight-line motion occurs. The speeds where straight-line motions
occurred, by using the above equation, can be graphed versus damping (C=Cx=Cy) in
Figure 3.4-10.
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Figure 3.4-10 Speeds for straight-line motion vs. damping
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However, for the above equation to have real roots, the following equation must be
satisfied:

cc, -M(k, +K,)fF-am?K K, =0 (3.4-31)

The equal sign can also be used to determine if the change in the direction of precession
exists or not. The results are identical to those obtained from the steady-state response
analysis, by varying the damping for every analysis as shown in Figure 3.4-9. It is
evident from Eq. (3.4-31) that for the undamped system, the two straight-line motions
occur at the two undamped natural frequencies (95, 191 rpm). As the damping increases,
these two speeds approach each other with different approaching rates. When damping
reaches a certain value (C=10 in this case), the backward precession does not exist
anymore, thus there will be no straight-line motion.

The amount of damping required to eliminate the backward precession is also
dependent upon the bearing asymmetry. Figure 3.4-11 shows the damping required to
eliminate the backward precession for arange of bearing asymmetry.

20

15 1

10 1

Damping required to eliminate the
backward precession

1 10 100
Ky/Kx or Kx/Ky

Figure 3.4-11 Damping required to eliminate the backward precession

It shows that for an isotropic system (Ky/Kx=1), the displacement orbit is forward circular
and no straight-line motion exists. As the bearing asymmetry increases, more damping is
required to eliminate the backward precession.

3.5 Steady State Responseto Shaft Bow

The residual shaft bow may be present in the rotor-bearing systems due to many various
reasons, including assembly tolerances and uneven thermal distribution. When the
residual shaft bow exists in a rotor system, a constant magnitude rotating force
synchronized with the shaft spin speed acts on the rotor system. The excitation force
caused by the residual shaft bow is of the form:
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F=Kq, (3.5-1)

where K is the shaft bending stiffness and q, is the amount of shaft initial displacements
in fixed reference frame, due to residual shaft bow. The shaft bow rotates with the
rotating reference and is specified in the rotating reference frame. By utilizing the
coordinate transformation between fixed and rotating reference frames, presented in
Chapter 2, the synchronous excitation force due to the residual shaft bow in the fixed
reference frame becomes:

=l e
=K, l4{ ,pcosQt+4 7 +sinQt (3.5-2)
F, y X

The synchronous excitation force due to residual shaft bow is similar to the
synchronous excitation due to mass unbalance. However, the excitation amplitude of a
shaft bow is a constant, while the excitation amplitude of an unbalance is a function of
sguare of spin speed.

Example 3.2: Laval-Jeffcott Rotor— Residual Shaft Bow and Unbalance Response

A Laval-Jeffcott rotor system supported by rigid bearings is presented in this example to
demonstrate the steady-state response due to shaft bow, mass imbaance, and their
combined effects. As shown in the following Figure 3.5-1, arigid disk is located at the
midspan of a flexible shaft with residual shaft bow. Since only the fundamental
trandational motion is considered, the rigid disk has a mass of 4 Lbm (0.01036 Lbf-
s'2/in) and zero mass moment of inertia (I¢=Ip=0). The flexible shaft with elastic
modulus of 3.0EQ7 psi has a length of 12 inches and a diameter of 0.275 inches. The
shaft mass is negligible in this case, otherwise, the shaft modal mass (0.4857 pAL ) needs
to be added into the disk to form an effective (modal) mass for this translational motion,
as demonstrated in Chapter 1. A linear isotropic viscous damping with a value of
C=0.3114 Lbf-glin, is applied at the disk location. For demonstrative purposes, the
pertinent parameters for this Laval-Jeffcott rotor are summarized bel ow:

L =12.0in (total length)

D = 0.275in (shaft diameter)

E = 3.0E07 psi (Young's modulus)

M = 4.0 Lbm (0.01036 L bf-s2/in) (disk mass)
C =0.3114 Lbf-g/in (viscous damping at disk)
e =0.001 in (mass eccentricity)

Ob= 0.001 in (shaft bow at disk)

The trandational stiffness at the midspan of the shaft due to bending is:

_ 48El N

K E =233.95Lbf/in where | =
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The Laval-Jeffcoit Rotor

Disk Data
Shaft Data _ m=0.01036 Lh£5"2fin (4 Lhm)
L=12 in e=0.001 in

D=0.275 in

E=3H07 psi Shaft how = 0,001 in

massless, elastic shaft at disk location

C=03114
Lhfslin

Figure 3.5-1 The Laval-Jeffcott rotor

This simple 2DOF system can be modeled by using geometric constraints, that is,
constrain all the degrees-of-freedom at stations 1 and 3, and rotational degrees-of-
freedom at station 2, as demonstrated in the earlier examples. However, in thisexample a
bearing stiffness of 1E10 Lbf/in is applied at both ends, instead of constraints as used in
earlier examples. This bearing stiffness is much larger than the shaft bending stiffness.
Therefore, they act like rigid bearings. Without loss of generality, the residual bow is
assumed to be:

X=q, and y=0

The above assumption is similar to assuming the phase angle of unbalance eccentricity be
zero in the unbalance response analysis, which was presented in the previous sections.
However, the phase angle of the unbalance force in this example is a parameter that will
be studied.
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