
 

55 

The Laval-Jeffcott
Rotor Model 3

 
 
 
3.1 The Two-Degrees-of-Freedom Rotor System  
 
The fundamental dynamic characteristics of a rotor system can be studied and analyzed 
by using simple rotor models.  Two types of rotor models are discussed in this chapter: 
one is the flexible rotor with rigid bearings and the other is the rigid rotor with flexible 
bearings.  Two-degrees-of-freedom (2 DOF) systems are considered in these models and 
many assumptions made here are not practical and do not correspond with reality, but 
they can simplify the solution and allow for parametric studies be performed.  This 
allows us to understand the effects of each parameter on rotor dynamics behaviors.  They 
also provide many valuable physical insights into more complicated systems. 
 
3.1.1 The Flexible Rotor with Rigid Bearings 
 
A single disk centrally mounted on a uniform, flexible, and massless shaft, which is 
supported by two identical bearings, as illustrated in Figure 3.1-1, is most widely utilized 
by researchers to study and understand basic rotordynamics phenomena.  If the bearings 
are infinitely stiff (rigid bearings), this model is normally referred to as the Laval Rotor in 
Europe, and Jeffcott Rotor in other parts of the world. 

 

 
 

Figure 3.1-1 A simple Laval-Jeffcott rotor 
 
 For the centrally mounted disk, the system is symmetric and the first two fundamental 
translational and rotational motions are decoupled and can be considered separately, as 
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shown in Figure 3.1-2.  For the pure translational motion, as shown in Figure 3.1-2 (a), 
the disk has maximum translational displacement and zero rotation (slope).  For the pure 
rotational motion, as shown in Figure 3.1-2 (b), the disk has maximum rotation (slope) 
and zero translational displacement.   
 

 
 

Figure 3.1-2 Two fundamental motions for a symmetric flexible rotor 
 
 Since the translational and rotational motions are decoupled, the translational and 
rotational stiffness of the elastic shaft can be obtained from the basic beam deflection 
equations.  For the determination of translational shaft bending stiffness, consider a 
simply supported beam with a concentrated load at midspan (disk location).  At midspan, 
the slope is zero and the defection due to the point load (F) is: 
 

   
48

3

EI
FL=∆                 (3.1-1) 

 
From the linear force-displacement relationship, the shaft bending stiffness for the 
fundamental translational motion is: 
 

 3
48

L
EIkT =                            (3.1-2) 

 
For the determination of rotational shaft bending stiffness, consider a simply supported 
beam with a moment load at midspan (disk location).  At midspan, the deflection is zero 
and the slope due to the moment (M) load is: 
 

    
12EI
ML=Θ                (3.1-3) 

 
Again, the shaft rotation stiffness for the fundamental rotational motion is: 
 

 
L
EIkR

12=                 (3.1-4) 

 
For the Laval-Jeffcott rotor system, with flexible rotor and rigid bearings, the 
translational and rotational motions correspond to the first and second bending modes. 
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3.1.2 The Rigid Rotor with Flexible Bearings 
 
Another simple rotor model, commonly used to study the fundamental rotordynamics, is 
a symmetric rigid rotor on two identical flexible supports, as illustrated in Figure 3.1-3.  
The rotor is considered rigid and symmetric.  Again, the translational and rotational 
motions at the center of mass are decoupled and can be studied separately, as shown in 
Figure 3.1-4. 

 
Figure 3.1-3 A symmetric rigid rotor with flexible bearings 

 
Figure 3.1-4 Two fundamental motions for a symmetric rigid rotor 

 
 Since the rotor is rigid and symmetric, and the two bearings are identical with a 
stiffness of Kb, the translational and rotational stiffnesses can be determined from the 
force and moment equations as: 
 
 bT kk 2=  Translational stiffness      (3.1-5) 
  

2

2
1 Lkk bR =  Rotational stiffness      (3.1-6) 
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For the symmetric rigid rotor with flexible bearings, the translational and rotational 
motions are commonly referred as two fundamental rigid body modes, i.e. translatory 
and conical modes. 
 
 
3.2 Translational Motion 
 
For a pure translational motion, consider a more generalized Laval-Jeffcott rotor system 
with flexible supports, as illustrated in Figure 3.2-1.  When the bearings are flexible and 
each bearing has a stiffness of Kb, the equivalent stiffness of the system K, combining 
shaft stiffness Ks and bearing stiffness Kb is:  
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   (3.2-1) 

 
It is evident from Eq. (3.2-1) that when the bearing stiffness is much larger than the shaft 
bending stiffness ( sb KK >> ), the equivalent stiffness reduces to be Ks.  This is a typical 
Laval-Jeffcott rotor system with elastic shaft and rigid supports.  When the shaft bending 
stiffness is much larger than the bearing stiffness ( bs KK >> ), the equivalent stiffness 
reduces to be 2Kb and it becomes a symmetric rigid rotor supported by flexible bearings. 
 
 

 
 

Figure 3.2-1 A generalized Laval-Jeffcott rotor 
 
 When the stiffnesses and dampings in both X and Y directions are the same, the 
system is referred to as an isotropic system.  In general, the equivalent stiffnesses (Kx, Ky) 
and viscous dampings (Cx, Cy) in both X and Y directions, are not the same due to the 
asymmetric properties of the bearings, even though the shaft is axisymmetric (isotropic).  
This system is thus referred to as anisotropic system.   
 Consider a generalized Laval-Jeffcott rotor system with equivalent support stiffnesses 
of Kx and Ky and associated viscous damping Cx and Cy in the X and Y direction, as 
illustrated in Figure 3.2-2.  The disk has a mass of m and the center of gravity is offset 
from the shaft geometric center by an eccentricity of e.  The motion at the disk center is 
described by two translational displacements (x, y), as illustrated in Figure 3.2-2.   
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Figure 3.2-2 A two-degrees-of-freedom model 
 
 For the case of constant angular speed of rotation, Ω, the equations of motion for the 
mass center, can be derived from Newton’s Laws of motion: 
 

 ( )( ) xKxCtex
dt
dm xxe −−=+Ω+ &φcos2

2

     (3.2-2) 

 

 ( )( ) yKyCtey
dt
dm yye −−=+Ω+ &φsin2

2

     (3.2-3) 

 
It can be rewritten as 
 
 ( )exx tmexKxCxm φ+ΩΩ=++ cos2&&&      (3.2-4) 
 
 ( )eyy tmeyKyCym φ+ΩΩ=++ sin2&&&      (3.2-5) 
 
where eφ  is the phase angle for the mass unbalance position.  For single unbalance force, 
as in this case, eφ  can be set to zero without loss of generality.  The equations of motion 
show that the motions in the X and Y directions are both dynamically (inertially) and 
statically (elastically) decoupled in this simple model.  Therefore, they can be solved 
separately.  Since there are no cross-coupling stiffnesses in this model, it is sometimes 
referred to as an orthotropic system.  For the isotropic systems, the equations of motion 
for the x and y displacements are identical, except for the 90 degrees phase difference in 
unbalance excitations. 
 
 
3.3 Natural Frequencies and Natural Modes 
 
The undamped natural frequency, viscous damping factor (ratio), and damped natural 
frequency for each direction are: 
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 For this simple rotor system with purely translational motion, the natural frequencies 
are independent of the rotor spin-speed.  In rotordynamics, the natural frequencies are 
commonly referred to as the whirl speeds.  For each natural frequency (eigenvalue), there 
is an associated modal orbit (eigenvector).  Since the motions in both directions are 
decoupled, the modal orbit at each natural frequency degenerates into a straight line. 
Hence, the modal orbits (eigenvectors) for the natural frequencies are: 
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       (3.3-2) 

 
Following the discussion from Chapter 2, the straight line path on the other hand, can be 
considered as being made up of two circular orbits of equal amplitude and whirling in 
opposite directions, with the same frequency.  Therefore, each natural frequency may be 
treated as two natural modes with the same whirl frequency, where one is a purely 
forward circular mode and the other is a purely backward circular mode.  
 When the excitation frequency of a periodic force applied to a rotor system coincides 
with a natural frequency of that system, the rotor system may be in a state of resonance 
(or critical condition).  The most common excitation in rotating machinery is the 
unbalance excitation that is synchronized with the rotor spin speed.  There are other 
synchronous excitations, such as excitations due to shaft bow and disk skew.  Non-
synchronous excitations include aerodynamic excitations for compressors, gear mesh 
excitation for geared systems, etc.  In rotating machinery, the excitation frequencies are 
commonly related to the rotor spin speed with a constant multiple or fraction.  
Traditionally, when the rotor spin speed coincides with one of the natural frequencies, the 
spin speed is referred to as critical speed, since the unbalance excitation is the most 
common excitation.  In a more general definition, when a rotor spin speed coincides with 
a constant multiple or fraction of one of the natural frequencies of the rotor system, then 
the spin speed is defined as a critical speed.  That is, at the critical speed, one of the 
natural frequencies coincides with the excitation frequency. 
 To determine the damped critical speeds, a “Whirl Speed Map” is normally needed.  
A whirl speed map, also called “Campbell Diagram” or “Frequency Interference 
Diagram”, is a plot of damped natural frequencies (whirl speeds) of the rotor system vs. 
the rotor spin speed.  The damped critical speeds and any excitation resonance speeds are 
determined by noting the coincidence of the shaft speed with the system natural 
frequencies for a given excitation frequency line ( Ω=αωexc ) in the whirl speed map.  A 
value of one (1) in the excitation slope is associated with the synchronous excitation that 
is of main interest, because rotating unbalance is always present no matter how well the 
rotor is balanced.  For the translational motion of this simple Laval-Jeffcott rotor system, 
the natural frequencies are independent of the spin speed.  The whirl speed map with 
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synchronous excitation is presented in Figure 3.3-1.  It shows that the first critical speed 
is the first natural frequency and the second critical speed is the second natural frequency 
in this case. 
 

 
 

Figure 3.3-1 Whirl speed map for a 2DOF system 
 
 The modal motions at X and Y directions are decoupled in this case.  There is one 
natural frequency for each direction of motion.  Also, for each natural frequency, the 
associated modal orbit is a straight line in each direction.  However, a straight line path 
can be considered as being made up of two circular orbits of equal amplitude and 
whirling in opposite directions, with the same natural frequency.  Therefore, each natural 
frequency may be treated as two natural modes with the same whirl speed, where one is a 
purely forward (f) circular mode and the other is a purely backward (b) circular mode, as 
noted in Figure 3.3-1 by (1f, 1b) and (2f, 2b).  Since the natural frequencies are 
independent of the spin speed for this simple rotor system, the natural frequencies are the 
critical speeds for synchronous unbalance excitation.   
 
 
3.4 Steady State Response to Unbalance 
 
Following the discussion in Chapter 1, the steady-state responses, due to mass unbalance 
excitation are:  
 
 )cos(sin  cos)( xsc txtxtxtx φ−Ω=Ω+Ω=      (3.4-1)  
 
 )cos(sin  cos)( ysc tytytyty φ−Ω=Ω+Ω=      (3.4-2) 
where 
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and 
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 Note that x and y displacements oscillate at the same frequency, Ω (same as rotor spin 
speed) with different amplitudes and phase angles.  Following the discussion in Chapter 
2, the steady-state unbalance response of Eqs. (3.4-1) and (3.4-2) define an elliptical 
motion.  The ellipse properties, such as semi-major (a), semi-minor axes (b), and attitude 
angle ( aφ ), may be calculated from equations given in Chapter 2.  The direction of 
precession (whirling) of the steady state orbit, is determined by the sign of the rate of 
precession (φ& ): 
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   (3.4-7) 

 
That is, 
 
 ( )( ) ( ) 0   422222 >Ω+Ω−Ω− nynxyxnynx ωωζζωω      Forward Precession         (3.4-8a) 
 
 ( )( ) ( ) 0    422222 <Ω+Ω−Ω− nynxyxnynx ωωζζωω      Backward Precession      (3.4-8b) 
 
 ( )( ) ( ) 0    422222 =Ω+Ω−Ω− nynxyxnynx ωωζζωω      Straight Line Motion       (3.4-8c) 
 
From the above equations, steady-state unbalance orbit motion is a forward precession 
when the rotor speed is below the first resonance frequency (critical speed) and above the 
second resonance frequency (critical speed).  The orbit motion is a backward precession 
between the two resonance frequencies (critical speeds) if damping does not exist.  
However, the backward whirl zone decreases as the damping increases, and when there is 
enough damping, the backward whirl does not occur at all, as illustrated in Eq. (3.4-8).  
Since for the isotropic systems, there is only one resonance, backward whirl does not 
exist.  For anisotropic systems, backward whirl may exist, depending on the amount of 
damping present in the systems. 
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 To gain some insights into orbit motion, an undamped orthotropic system (Cx=Cy=0) 
with yx KK <  is used to illustrate orbit behavior.  There are two distinct resonance 
frequencies (critical speeds): 
 
 ycrxcr ωω =Ω<=Ω 2,1,            (3.4-9) 
 
From previous equations for the steady state response, we have: 
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and  

( ) ( )( )[ ]2222 Ω−Ω−=− yxcssc signyxyxsign ωω                (3.4-12) 
 
Thus, the steady-state response becomes: 
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The above expressions satisfy the following relationship: 
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As expected, the above equation defines an elliptical orbit.  The steady-state unbalance 
response for this undamped orthotropic 2DOF system is presented in Figure 3.4-1.  The 
pertinent parameters are listed in the plot for reference.  The orbit motions for various 
rotor speeds are analyzed and summarized below: 
 
Case 1:  xω<Ω  below the first critical speed 
 
 scsc yxyx >>>      ,0     ,0  
 0     ,0    ,    , >=== φφ &

asc ybxa  
 

The motion is a forward elliptical orbit where the semi-major axis is aligned with 
the X axis.    
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Figure 3.4-1 The steady state unbalance response and orbit analysis 
 
Case 2:  xω=Ω  on the first critical speed (at resonance) 
 
 scsc yxyx >>∞=      ,0     ,  
 0     ,0    ,    , ===∞= φφ &

asyba  
 
 The motion is an unbounded straight line (resonance) aligned with the X axis.   

In practice, the amplitude is limited by the damping and geometric constraints. 
 

Case 3:  ( )22

2
1

yxx ωωω +<Ω<  between the critical speeds 

  
scsc yxyx >><        ,0     ,0  

 0     ,0    ,    , <=−== φφ &
asc ybxa  

 
The motion is a backward elliptical orbit where the semi-major axis is aligned 
with the X axis. 
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Case 4:  ( )22

2
1

yx ωω +=Ω  between the critical speeds 

 
 scsc yxyx =><        ,0     ,0  

 0     ,0      ,   ,    , <=−=−== φφ &
ascc yxabxa  

 
 The motion is a purely backward circular orbit. 
 

Case 5:  ( ) yyx ωωω <Ω<+ 22

2
1  between the critical speeds 

 
 scsc yxyx <><        ,0     ,0  

 0     ,90    ,    , <=== φφ &
acs xbya  

 
 The motion is a backward elliptical orbit where the semi-major axis is aligned  

with the Y axis. 
 
Case 6:  yω=Ω  on the second critical speed (at resonance) 
 
 scsc yxyx <∞=<      ,     ,0  

 0     ,90    ,    , ===∞= φφ &
acxba  

 
 The motion is an unbounded straight line (resonance) aligned with the Y axis.   

In practice, the amplitude is limited by the damping and geometric constraints. 
 
Case 7:  yω>Ω  above the second critical speed 
 
 0     ,90    ,    , >=== φφ &

acs xbya  
 

The motion is a forward elliptical orbit where the semi-major axis is aligned with 
the Y axis. 

 
Case 8:  ∞=Ω  far above the second critical speed 
 
 0     ,0    ,    , >=−====== φφ &

ascsc eyxeyxba  
 

The motion is a purely forward circular orbit where the radius is equal to the 
mass eccentricity. 

 
 It is evident from Figure 3.4-1 that: 
 



CHAPTER 3: THE LAVAL-JEFFCOTT ROTOR MODEL 

 

66

1. There are two distinct natural frequencies (critical speeds), xω and yω  for X and 
Y directions, respectively.  The motions become infinite straight lines when the 
rotor spin speeds are at critical speeds ( )yx ωω =Ω=Ω   , . 

 
2. Phase angle in the X displacement, xφ , is zero before the first critical speed, xω , 

and becomes 180 degrees after the first critical speed.   The phase angle changes 
from zero to 180 degrees at critical speed.  Phase angle in the Y displacement, yφ , 
behaves the same, except it has a 90 degrees phase lag due to the 90 degrees lag in 
the unbalance excitation. 

 
3. The direction of precession can be easily identified by using the phase angle 

relationship when the phase angles are available: 
 

When  xω<Ω , 0)(  >−> xy φφπ  Forward precession 
When  yx ωω <Ω< , 0)(  >−> yx φφπ  Backward precession 
When  yx ωω =Ω=Ω   , , xy φφ =  Straight line 

 
 For the isotropic systems ( yxyx CCKK ==   and  ), the natural frequencies are the 
same for both directions.  From previous equations, we have: 
 
 nynxn ωωω ==  
 
 scsc xyyx −==    and    
and 
 
 ab =       (circular orbit) 
 
 0)()( 22 >+=− cccssc yxsignyxyxsign  (forward whirl) 
 
Therefore, for the isotropic systems the steady-state unbalance response orbit motion is a 
purely forward circular whirl, with the whirl speed equal to the shaft spinning speed.  
That is, the steady-state unbalance response is a forward synchronous circular motion for 
the isotropic systems without any backward whirl.  
 
 
Complex Notation 
 
It is sometimes desirable and convenient to analyze the equations of motion and solutions 
by using complex displacements.  The harmonic excitation can be represented by 
complex vector, and the response orbit motion can be represented by a combination of 
the forward and backward circular precessions of the motion.  The equations of motion 
for a simple 2DOF Laval-Jeffcott rotor system in complex notation becomes 
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mpmp emerKrKrCrCrm ΩΩ=++++ 2** ˆˆˆˆˆ &&&&                (3.4-16) 
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and the complex conjugate vector is 
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also,  

 ( ) ( )yxmyxp CCCCCC −=+=
2
1       ,

2
1                           (3.4-19) 

 

 ( ) ( )yxmyxp KKKKKK −=+=
2
1       ,

2
1                (3.4-20) 

 
Differentiating Equations (3.4-17) and (3.4-18), and substituting into Equation (3.4-16), 
yields: 
 

 ( ) 22  1ˆ ΩΩ+Ω−
∆

= meCjmKr ppf                 (3.4-21) 

 

 ( ) 2*  1ˆ ΩΩ+
∆
−= meCjKr mmb                  (3.4-22) 

 
where 
 ( ) ( )222

mmpp CjKCjmK Ω+−Ω+Ω−=∆                (3.4-23) 
 
 For isotropic systems, 0 ,0 == mm CK , we then have 0ˆˆ * == bb rr .  The response orbit 
is a purely forward circular motion.   
  
 For anisotropic undamped systems, we have: 
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From the above equations, the response can be divided into several spinning speed zones: 
 
 bfyx rr ˆˆ           and     >⇒>Ω<Ω ωω  Forward elliptical whirl 
 

 bfyx rr ˆˆ                        <⇒<Ω< ωω  Backward elliptical whirl 
 

 ( ) 0ˆ              
2
1 22 =⇒+=Ω fyx rωω   Purely backward circular whirl 

 
These conclusions are in agreement with the previous discussion. 
 
 
Example 3.1: 2DOF System – Steady State Unbalance Response 
 
Before we move on to more practical and general examples, a generalized 2DOF 
orthotropic system, subject to unbalance excitation, is presented in this example.  The 
pertinent parameters are listed below: 
 
 1  ,4  ,400  ,100  ,1 ======= eCCCKKm yxyx  
 
The equations of motion are: 
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 There are several ways to model this simple 2DOF system in DyRoBeS.  Since we are 
going to perform some parametric studies, the simplest way to construct the rotor system 
is demonstrated in this example.  The rotor system contains a dummy shaft element with 
a zero mass density and a zero elastic modulus, as shown in Figure 3.4-2.  The rotational 
degrees-of-freedom at station 1, and all four degrees-of-freedom (translational and 
rotational) at station 2 are constrained.  A concentrated mass with an unbalance and a 
bearing with translational properties, are placed at station 1.  They are the only active 
components in this case.   
 

Figure 3.4-2 2DOF model 
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 Formulas for the basic parameters and results have been presented before and are 
listed below for reference.   
 

  
m
K

n =ω   Undamped natural frequency 

 

 
nm

C
ω

ξ
2

=   Damping factor 

 
 21 ξωω −= nd  Damped natural frequency 
 
The maximum steady-state response due to mass unbalance occurs at 
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The numerical results are summarized below: 
 

Numerical results X direction Y direction 
Undamped Natural Frequency (R/S) 10 20 
Undamped Natural Frequency (RPM) 95 191 
For C=4   
Damping Factor (Zeta) 0.2 0.10 
Damped Natural Frequency (RPM) 94 190 
Max. Amplitude at Speed (RPM) 100 193 
Max. Amplitude 2.552 5.025 

 
The whirl speed map for this simple system was shown in Figure 3.3-1.  The steady-state 
unbalance response for speeds from 0 to 300 rpm with an increment of 1 rpm was 
analyzed using DyRoBeS.  The Bode Plot for the x and y displacements are presented in 
Figure 3.4-3.   
 As expected, there is a peak response at each direction due to the bearing asymmetry.  
The maximum amplitudes and speeds calculated using DyRoBeS, are in agreement with 
the analytical solutions.  The y displacement phase angle ( yφ ) equals the x displacement 
phase angle ( xφ ) at the rotor speed of 98 rpm that is greater than the first undamped 
natural frequency of 95 rpm, and at the rotor speed of 186 rpm that is less than the second 
undamped natural frequency of 191 rpm.  That is: 
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Figure 3.4-3 Bode plot for 2DOF system with unbalance 
 
 It indicates that the rotor whirls in forward precession when the rotor speed is below 
98 rpm and oscillates along a straight line at 98 rpm. Then it reverses the direction of 
precession and becomes a backward precession until the rotor speed reaches 186 rpm, 
where the rotor oscillates along a straight line again.  When the rotor speed is above 186 
rpm, the direction of precession is reversed from a backward to a forward precession.  
This phenomenon can be easily observed from the phase angle data shown in the Bode 
plot and also from the major and minor axes of the elliptical orbit plot, as shown in 
Figure 3.4-4.  The negative semi-minor axis indicates the backward precession.  The orbit 
changes its direction of precession by going through the straight-line motion. 
 

 
 

Figure 3.4-4 Elliptical orbital axes 
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 Several orbits at different rotor speeds are shown in Figure 3.4-5.  For systems with 
damping, the straight-line motions will not be aligned in the X or Y axes, due to the 
damping effect. 

 

 
Figure 3.4-5 Steady state rotor orbits at different rotor speeds 

 
 This phenomenon can also easily be observed by utilizing the Displacement Orbit 
Animation feature provided by DyRoBeS.  Readers are encouraged to run the 
Startup/Shutdown Animation, to visualize the orbit changing sizes and directions as the 
rotor speed increases or decreases, as illustrated in Figure 3.4-6. 
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Figure 3.4-6 Animation for the orbits startup and shutdown 
 
 Typically, the vibration probes (displacement pick-up) are not in the X and Y 
directions.  The Bode plot at the probes locations can be quite different from the x and y 
displacements as illustrated in Figure 3.4-7.  Figure 3.4-8 is the Bode plot for probes 
located at 45 and 135 degrees, measured from the X axis, respectively. 
 

 
 

Figure 3.4-7 Two vibration probes 
 
 Unlike the Bode plot for the x and y displacement in Figure 3.4-3, there are two peak 
responses at each probe in Figure 3.4-8.  Each peak corresponds to a resonance condition: 
one for each natural frequency.  One can still identify the forward/backward precessions 
and straight-line motion by the difference in the phase angles.  
 
Forward precession:  on. so and   ,2)(3or      ,0)( πφφπφφπ >−>>−> xyxy  
Backward precession: on. so and   ,)(0or     ,)(2 πφφπφφπ −>−>>−> xyxy  
Straight-Line Motion: on. so and  ,3 ,2 , ,0)( πππφφ =− xy  
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Figure 3.4-8 Bode plot for two probes 
 
 It is common in many Industry Standards that utilize the peak amplitude 
measurements at the vibration probes, to locate the critical speeds instead of using the 
natural frequencies to define the critical speeds.  The above figure shows that for 
different probe angles, the result can be significantly different.  Caution must be taken 
when utilizing the response measurements to define critical speeds. 
 It is also noted that for this damped system, the range between two transition speeds 
where the straight-line motion occurred, is smaller than those in the undamped system.  It 
indicates that the speed range for the backward precession gets smaller as damping 
increases.  In this example, when C=Cx=Cy=10 ( 25.0 and 5.0 == yx ξξ ), there is only 
one speed (135 rpm), which has a straight-line motion.  When C>10, there is no straight-
line motion and backward precession does not exist.  The major and minor axes of the 
elliptical orbits for various damping are plotted below: 
 

 
 

Figure 3.4-9 Elliptical orbital axes for various damping levels 
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 Since this is a simple 2DOF model, the speeds for the straight-line motion can be 
obtained mathematically from the equations derived before.  For the orbit to be a straight-
line motion, we have: 
 
 yb φφ == xor              ,0                  (3.4-26) 
 
By substitution phase equations (3.4-4) and (3.4-6) into Equation (3.4-26), yields 
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By using the following relationships: 
 

 
α

πα 1tan
2

tan 11 −− −=                   (3.4-28) 

and 
 
 ( )αα −−=− tantan 1                                                                                       (3.4-29) 
 
We have 
 
 ( )( ) 0242 =+Ω+−+Ω yxyxyx KKKKMCCM               (3.4-30) 
 
This draws the same conclusion as presented before, by using the semi-minor axis 
magnitude equation or the rate of precession.  For a given simple Laval-Jeffcott rotor 
system as presented in this example, the above equation can be used to determine the 
speeds where the straight-line motion occurs.  The speeds where straight-line motions 
occurred, by using the above equation, can be graphed versus damping (C=Cx=Cy) in 
Figure 3.4-10. 
 

 
Figure 3.4-10 Speeds for straight-line motion vs. damping 
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 However, for the above equation to have real roots, the following equation must be 
satisfied: 
 

( )( ) 04 22 ≥−+− yxyxyx KKMKKMCC                (3.4-31) 
 
The equal sign can also be used to determine if the change in the direction of precession 
exists or not.  The results are identical to those obtained from the steady-state response 
analysis, by varying the damping for every analysis as shown in Figure 3.4-9.  It is 
evident from Eq. (3.4-31) that for the undamped system, the two straight-line motions 
occur at the two undamped natural frequencies (95, 191 rpm).  As the damping increases, 
these two speeds approach each other with different approaching rates.  When damping 
reaches a certain value (C=10 in this case), the backward precession does not exist 
anymore, thus there will be no straight-line motion.   
 The amount of damping required to eliminate the backward precession is also 
dependent upon the bearing asymmetry.  Figure 3.4-11 shows the damping required to 
eliminate the backward precession for a range of bearing asymmetry. 

 
Figure 3.4-11 Damping required to eliminate the backward precession  

 
It shows that for an isotropic system (Ky/Kx=1), the displacement orbit is forward circular 
and no straight-line motion exists.  As the bearing asymmetry increases, more damping is 
required to eliminate the backward precession. 
 
 
3.5 Steady State Response to Shaft Bow 
 
The residual shaft bow may be present in the rotor-bearing systems due to many various 
reasons, including assembly tolerances and uneven thermal distribution.  When the 
residual shaft bow exists in a rotor system, a constant magnitude rotating force 
synchronized with the shaft spin speed acts on the rotor system.  The excitation force 
caused by the residual shaft bow is of the form: 
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 bsqKF =          (3.5-1) 
 
where Ks is the shaft bending stiffness and qb is the amount of shaft initial displacements 
in fixed reference frame, due to residual shaft bow.  The shaft bow rotates with the 
rotating reference and is specified in the rotating reference frame.  By utilizing the 
coordinate transformation between fixed and rotating reference frames, presented in 
Chapter 2, the synchronous excitation force due to the residual shaft bow in the fixed 
reference frame becomes: 
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 The synchronous excitation force due to residual shaft bow is similar to the 
synchronous excitation due to mass unbalance.  However, the excitation amplitude of a 
shaft bow is a constant, while the excitation amplitude of an unbalance is a function of 
square of spin speed. 
 
 
Example 3.2: Laval-Jeffcott Rotor– Residual Shaft Bow and Unbalance Response 
 
A Laval-Jeffcott rotor system supported by rigid bearings is presented in this example to 
demonstrate the steady-state response due to shaft bow, mass imbalance, and their 
combined effects.  As shown in the following Figure 3.5-1, a rigid disk is located at the 
midspan of a flexible shaft with residual shaft bow.  Since only the fundamental 
translational motion is considered, the rigid disk has a mass of 4 Lbm (0.01036 Lbf-
s^2/in) and zero mass moment of inertia (Id=Ip=0).  The flexible shaft with elastic 
modulus of 3.0E07 psi has a length of 12 inches and a diameter of 0.275 inches.  The 
shaft mass is negligible in this case, otherwise, the shaft modal mass ( ALρ4857.0 ) needs 
to be added into the disk to form an effective (modal) mass for this translational motion, 
as demonstrated in Chapter 1.  A linear isotropic viscous damping with a value of 
C=0.3114 Lbf-s/in, is applied at the disk location.  For demonstrative purposes, the 
pertinent parameters for this Laval-Jeffcott rotor are summarized below: 
 
 L = 12.0 in (total length) 
 D = 0.275 in (shaft diameter) 
 E = 3.0E07 psi (Young’s modulus) 
 M = 4.0 Lbm (0.01036 Lbf-s^2/in) (disk mass) 
 C = 0.3114 Lbf-s/in (viscous damping at disk) 
 e  = 0.001 in (mass eccentricity) 
 qb= 0.001 in (shaft bow at disk) 
 
The translational stiffness at the midspan of the shaft due to bending is: 
 

 Lbf/in 95.23348
3 ==

L
EIK  where 

64

4DI π=  
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Figure 3.5-1 The Laval-Jeffcott rotor 

 
This simple 2DOF system can be modeled by using geometric constraints, that is, 
constrain all the degrees-of-freedom at stations 1 and 3, and rotational degrees-of-
freedom at station 2, as demonstrated in the earlier examples.  However, in this example a 
bearing stiffness of 1E10 Lbf/in is applied at both ends, instead of constraints as used in 
earlier examples.  This bearing stiffness is much larger than the shaft bending stiffness.  
Therefore, they act like rigid bearings.  Without loss of generality, the residual bow is 
assumed to be: 
 
 0    and      , =′=′ yqx b  
 
The above assumption is similar to assuming the phase angle of unbalance eccentricity be 
zero in the unbalance response analysis, which was presented in the previous sections.  
However, the phase angle of the unbalance force in this example is a parameter that will 
be studied.   
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