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Introduction and Background 

The development of the computer from the late 1950's has resulted in more powerful 
computers of smaller size and of such low cost that extensive computational power is available to 
engineers at an affordable cost. The recent extensive advances in the power of microprocessors has 
resulted in a generation of new desktop and portable computers that rival mainframe, and even super-
computers, of only a decade ago. · 

With these high-powered personal computers have also come the development of powerful 
engineering software programs for use in computer-aided design and manufacturing ( CAD/CAM) and 
extensive finite element packages for the analysis of various statics, dynamics, and stress problems 
of interest to the engineer. Although there is an extensive array of pre-programmed software 
available to the engineer and scientist for various problems and tasks, this does not preclude his need 
or desire to perform his own specialized programming tasks. · 

Computer Languages 

Computer languages can be described in terms of levels. The lowest level is machine 
language, which is closely tied to the computer hardware and is a binary language, since the 
instructions are written in binary sequences of zeros and ones. An assembly language is used to 
generate a binary code and also is machine specific. The instructions may resemble written 
statements instead of binary code, but the language does not have a rich array of commands or 
statements at its disposal. Thus, writing programs in assembly language can be very tedious and is 
generally not done by the engineer for normal problem solution. Programs written in assembly 
language are done in order to achieve the maximum speed of execution. Instrumentation that 
contains microprocessors are programmed in assembly language in order to run at maximum speed. 
These programs are called real time programs. For example, a controller for a magnetic bearing 
needs to run in real time to operate without failure. 

Engineers usually write programs in terms of a higher level language such as FORTRAN 
(FORmula TRANslation). The initial version of FORTRAN was developed in the late 1950's for 
solving engineering and scientific problems. FORTRAN is a third-generation, high-level language, 
as compared to machine and assembly language programs. FORTRAN must first be compiled in 
order to execute on a computer. FORTRAN has been constantly updated, with new versions such 
as FORTRAN 77 and the current standard, FORTRAN 90. FORTRAN 90 has strong numerical 
computational capabilities and many of the features and structures found in C. Although FORTRAN 
has been the past choice of the scientific community, it lacks many features such as built-in graphical 
capabilities, GUI (graphical user interface), and advanced matrix and file manipulation capabilities. 
In order to enhance the capabilities of FORTRAN, various extensive library subroutines have been 
developed, such as the IMSL library. The main problem with FORTRAN is that it is a compiled 
language, rather than an interactive language, and hence the program must be compiled first, and 
errors in syntax corrected, before the program may be run. This process can be extremely time 
consuming and some bugs are difficult to trace and correct. 
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In order to teach computer programming with greater ease, BASIC (Beginner's All-Purpose 
Symbolic Instruction Code) was developed in the mid-1960's as an educational tool. Many PC 
computers have been supplied with a BASIC computer language, such as GW BASIC and MS BASIC. 
These BASIC programs are hardly adequate for scientific programming because of their lack of 
structure and inability to operate with large matrices in a rapid fashion. However, a major advantage 
of BASIC is that the language is interpretive in nature. That is, it is computed line by line, and hence 
one could identify the location of an error in logic and syntax with greater ease. This made 
debugging extremely easy. However, the normal BASIC languages lack speed and robustness for 
consideration as a serious engineering platform. Simultaneous with the development of BASIC, 
various Computer Science Departments were pushing the teaching of ALGOL and PASCAL as 
teaching languages. These languages had little appeal to the practicing engineer as they were simply 
lacking in any desirable mathematical or graphical features. 

Matrix Theory in Vibration Analysis 

Matrix theory had been well established by the 1950's as evidenced by texts such as 
Hildebrand, 1960. However, from an engineering standpoint, matrix theory had little practical 
application since it was impossible to compute even small order matrices without the aid of a 
computer. The idea of inversion of large matrices and eigenvalue extraction was not in the normal 
toolbox of practicing engineers without the aid of mainframe computers. 

In the late 1970's the Hewlett Packard Corp. introduced a remarkable BASIC language which 
was to be later referred to as Rocky Mountain Basic or simply HP BASIC. This language could 
multiply and invert matrices. This lead to the possibility of using the numerical and transfer matrix 
methods ofMyklestad, Prohl, and Lund in the direct matrix formulation of rotor dynamics problems. 
The author presented a paper at the Vibration Institute in 1981 on Rotor Dynamics on The 
Minicomputer. The HP 9845 computer with the HP Basic language used at that time cost over 
$35,000. Although newer and more powerful and cheaper HP workstations were developed, the HP 
Basic was abandoned in favor of C ( HP BASIC, however, is available as HT BASIC.). The 
abandonment of HP BASIC with its extensive matrix and graphical commands was felt as a 
considerable loss to the vibration analysis community. 

The MATLAB ( or Matrix Laboratory) language was developed originally for UNIX in C and 
was later ported to the PC computers. The current Windows NT computers with 128Meg of memory 
are equivalent to mainframe computers of the previous decade ( only better since they are more user 
friendly and in direct control of the engineer). This has given the engineer a new set of tools that 
may be applied to control theory, finite elements, graphics, as well as vibration analysis. Currently 
matrix theory is of great interest to the engineer and scientist as it now is easy to apply. The analogy 
is that one does not need to be a car mechanic to drive a car ( a little bit of training, however, does 
help to keep one from crashing! ). One does not need to be an expert in matrix theory to use it. 
There are currently a number of excellent texts on vibrations and dynamics that make use of matrix 
theory as listed in the references such as Bathe, Diamarogonous, Genta, and Kramer. Of particular 
interest is the text by Kwon & Bang on The Finite Element Method using MATLAB. 

In this paper some 111A TLAB examples are presented to illustrate the application of MATLAB 
to vibration analysis. The examples represent about 1 % of the commands and functions available. 
The commands presented are sufficient to enable one to solve a large class of problems from forced 
response, transient analysis and eigenvalue analysis. One may also develop a multi-plane balancing 
program using the such matrix functions as singular value decomposition. 
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2. MATLAB Language and Syntax 

The syntax of MATLAB is very easy to master if one has familiarity with any of the higher 
languages, such as FORTRAN, BASIC, or C. For engineers who are used to writing in FORTRAN, 
a MATLAB file can be constructed to resemble FORTRAN. However, its power resides in its 
extensive matrix capabilities. The language is constructed on the C platform and, hence, users who 
are familiar with C or C++ will recognize some of the more advanced constructs of the language. 
For simple problems, program commands may be generated at the MATLAB prompt. Since the 
program is interpretive, an answer is given immediately. However, the real power of MATLAB 
resides in the development of m files. The m file is simply an ASCII, or script, file representing a 
set of commands with an extension of .m, instead of .txt for the normal text file. All MATLAB 
script, or function files have the extension .m. 

Common Functions 

Table 2.1 represents some common functions used in MATLAB. The variable x may 
represent a real or an imaginary number. In addition to the standard functions familiar to those used 
in FORTRAN and BASIC, there are certain interesting functions in MATLAB that can operate on 
complex numbers. These are ABS, ANGLE, REAL, and IMAG. These functions return the 
absolute value of the complex number, the angle, and real and imaginary components. The ability 
to deal with complex numbers makes the language particularly suitable for vibration analysis and 
control theory. When entering a complex number with a real component of five and an imaginary 
component of ten, one could use the following: 

A = 5.0 + 10.0 i 
or 

A ~ 5.0 + 10.0*j 

Note that either i or j could be used to indicate the imaginary value. Lower case must be used. 
Complex numbers may be multiplied or divided, similar to real numbers. 

Table 2.2 represents more advanced functions and operations. The stated functions, as shown 
in Table 2.2, will provide the significant tools required for vibration analysis of a large class of 
problems. Since most of the listed functions are m files, the functions may be viewed in detail and 
even modified to suit a particular application. 

Special Variables and Commands 

ans - default name used for results 
pi- default value= 3.1416 
eps - smallest number when 
whos - list of variables and sizes of arrays 
clear - clears variables from work space 
print - dwinc - send figure to color printer 
help 'topics' - gives help on listed topics 
diary (filename) - saves all terminal input and output to filename 
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Simple Matrix Commands 

The ability to generate and manipulate matrices is the essence of MATLAB and is what 
makes the language so powerful and attractive to use for engineering analysis. A few simple matrix 
commands will be given to illustrate the ability to deal with matrices. The symbol>> represents the 
interactive MATLAB command window. 

>> A = -3:3 

A = -3 -2 -1 0 1 2 3 

>> A = zeros (3) 

A= 0 0 0 

0 0 0 

0 0 0 

>> A = [ 1 -2 1 

A = 1 -2 1 

-2 3 -2 

1 -2 4 

>> det(a) 

ans= -3 

>> b = inv(a) 

b = -2.6607 

-2.0000 

-2.0000 

-0.3233 

>> c = a*b 

C = 1.0000 

0 

0 

>> RT = [ 1 

>> R=RT' 

R= 1 

4 

1 

>> X = A \R 

X = -11 

- 6 

0 

-1.0000 

0 

0 

1.0000 

0 

4 1 ] 

>> X = inv(A) * R 

X = -11 

- 6 

0 

-2 3 -2 

-0.3333 

0 

0.3333 

0 

0 

1.000 

2.2 

(specify array from -3 to 3) 

(specify 3 xJ matrix of zeros) 

1 -2 4 ] (specify a 3 xJ matrix) 

(determinant of a) 

(compute inverse matrix a) 

(verify c = identity matrix) 

(generate row vector) 

(transpose of RT to generate a column vector) 

(solution of R = A * A') 

(solution of R = A * X by inversion of A matrix) 



angle(z) 

abs(x) 

acos(x) 

acosh(x) 

angle(x) 

asin(x) 

asinh(x) 

atan(x) 

atan2(x,y) 

atanh(x) 

ceil(x) 

conj(x) 

cos(x) 

cosh(x) 

det(A) 

exp(x) 

fu:(x) 

floor(x) 

gcd(x,y) 

imag(x) 

lcm(x,y) 

log(x) 

loglO(x) 

max(x) 

real(x) 

rem(x,y) 

round(x) 
sign(x) 

sin(x) 
sinh(x) 
sqrt(X) 
tan(x) 
tanh(x) 

Table 2.1 - Common Functions 

Angle of complex vector z, radians 

Absolute value or magnitude of complex number 

Inverse cosine 

Inverse hyperbolic cosine 

Four-quadrant angle of complex number 

Inverse sine 

Inverse hyperbolic sine 

Inverse tangent 

Four-quadrant inverse tangent 

Inverse hyperbolic tangent 

Round toward plus infinity 

Complex conjugate 

Cosine 

Hyperbolic cosine 

Determinant of square matrix A, scaler 

Exponential: er 
Round toward zero 

Round toward minus infinity 

Greatest common divisor of integers x and y 

Complex imaginary part 

Least common multiple of integers x and y 

Natural logarithm 

Common logarithm 

Maximum value of vector x 

Complex real part 

Remainder after division 

Rem(x,y) gives the remainder ofx/y 
Round toward nearest integer 
Signum function: return sign of argument, e.g., 
sign(l.2)=1,sign(-23.4)= -1,sign(0)=0 
Sine 
Hyperbolic sine 
Square root 
Tangent 
Hyperbolic tangent 
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Table 2.2 - Advanced Functions and Operations 

Plot(x,y) - plots arrays x and yin a graph and scales both x and y coordinates. X and y 
must be the same dimension 

y = det(A) - calculates the determinate of a matrix and returns scales value 

b = Inv(A) - computes inverse of a matrix 

xt = X ' - computes transpose of x 

X=AIR - computes solution ofn simultaneous equations with {R} = [A] {X} where [A] 
may be real or imaginary 

{V, DJ= eig (A,B) - solves the general eigenvalue problem of A * V = B * V * D 
where A and B are square matrices 
V = eigenvectors and D is a diagonal matrix of the eigenvalues 
or 

{V, DJ= eig (A) - solves the eigenvalue problem of 
A*V=V*D 

[U,S, VJ = svd(A) - singular value decomposition of nxm A matrix 
S = diagonal matrix of singular values 
May be used for least squared error solutions and more accurate 
eigenvalue compositions over QR 

YI= Interpl (x,y,xl, 'cubic~ - Generates an interpolated set of points yl for given xl 
vector using cubic spline interpolation 

a = polyfit (x,y,n) - Generates the coefficients for an nth order polynomial such that 
f(x) = ao xn + al xn-2 + ... ¾-1 X + ¾ 

Y= polyval (a,x) - computes values ofy for vector x corresponding to polynomial with 
coefficients a 

Y = quad8( 'F ',A,B) - Numerical evaluation of integral F from A to B using 8-panel Newton­
Cotes 8-panel method 

Y = FFT(x,n) - Performs FFT analysis over vector x with n points 

[T,YJ = ODE23('F~Time,Yo) -Integrates the equations Y' = F(t,y) with initial condition Yo 
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. 3 MATLAB Applications For Vibration Analysis 

In this section some simple examples will be presented on the use of MATLAB for vibration 
analysis. The examples presented here are given in order to illustrate some of the power and ease 
of use of the MATLAB command structure. One of the problems facing anyone attempting to use 
a new programming language is the overwhelming number of commands available and the syntax 
of the language. However, to perform many of the basic computations involved in vibration 
analysis, one may be very effective with the use of only 1 % of the commands available to the 
programmer. 

3.1 Fourier Approximation of a Square Wave 

In Example 3.1 , a square wave is approximated by a Fourier series of 3 and 5 terms. It is a 
simple procedure to extend the analysis to 10 or 20 terms by means of a recursion loop. The 
equation for the square wave is given by: 

4 cos(3ro *f) cos(Sro * f) 
x(t) = n x(cos(ro*f) - 4 + 5 

cos(7 *ro *f) + ... ) 
7 

Three & Five Term Approxmations of a Square Wave 
1.5.------,-----,--------r--- -,-----,--- --,-----,i-----. 

1 - --+ --- - - - - 1- - - - - --4--- - -- - 1-- --
1 I 

0.5 - -
I I I I I I 

_ _ _ T _ __ --, --- -- -r-- ---r-- -- - 7 - - - --,-- - - --r-- ---

I 0 ___ ___ .L_ __ _ _ _ I_ _ _ _ _ _ I __ _ 

I 

I 

-0.5 - - - - - .,. - - - - - ..., - - - - - -J- - -
I I 

-1 

1 

I 

I I 
___ L ___ __ _ J. _ _ _ ___ I __ _ 

I 

---~-- - ---t- - _ __ _, ___ ---~ --
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I 

-1.5L__ _ _ ___..1_ ___ __J___ _ __ .,__ _ _ _,_ __ __._ ___ ...,__ _ _ ---:----=:--- ~ 
-2 -1 .5 -1 -0.5 0 0.5 1 1.5 2 

t 

Figure 3.1 Three and Five Term Approximation of a Square Wave 
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Table 3.l Fourier Series Script File 

% sqrt3t.m 
% Plot Fourier approximation to a square wave 
t=-2: 0.005 2; % generate t vector with 801 elements 
omega=2*pi; % pi is 3.1416 built in function 
xl= cos (omega*t); % calculate xl vector with 801 elements 
x2=-cos(3*omega*t) /3; 
x3= cos (5*omega*t) /5; 
x =4*(xl +x2 +x3) /pi; 
plot(t,x, '-' ),grid % plot and scale the t vector vs x 
title('Three & Five Term Approximations of a Square Wave') 
xlabel ('t') 
hold on % hold figure for a second plot 

x4=-cos(7*omega*t) /7; 
x5=cos(9*omega*t) /9; 
x7=4*(xl +x2+x3+x4+x5) /pi; 
plot( t,x7,'linewidth', 1) 

Table 3 .1 represents the script file for the Fourier series representation of the square wave. 
This simple file illustrates the generation of a vector t from -2 to 2 with steps of 0.005, having 801 
elements. Therefore, the computations for xl, x2, and x3 represent vectors with the same dimension 
as t . These elements also have 801 elements. The vectors of xl, x2, and x3 are automatically 
generated by the calculations involving the vector t. Thus, the programmer does not need to specify 
the dimension statement. 

The graph is generated simply by the plot command of plot (t,x), grid to generate a plot with 
a grid. The scaling and labeling is automatically done. By using the command hold on, the graph 
is kept open and a second plot is generated. A title may be added with the use of the title command. 
Labels along the x and y axes are generated by xlable andylabel statements, respectively. If one 
wishes to change the scaling in the x and y directions, one would use the command axis ([xmin, 
xmax, ymin, ymax]). For example, if one wished to plot the x axis between -1 and+ I and they axis 
from -2 to +2, the corresponding statement would be axis ([-1, 1, -2, 21). The capabilities of 
MATLAB are such that one can use it for generating graphs, instead of using a standard plotting 
program. There are many advantages to using MATLAB for graphics and plottip.g of functions, as 
it is possible to plot in various colors, change line thickness, interpolate or curve fit experimental 
data, or numerically differentiate or integrate the area under the curves. 

A value at any point on the curve may be obtained by the command 

[x,y] = ginput(n) ; 
where: 

n =no.of desired points 
[ x,y] = x, y vectors of coordinates of points 
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3.2 Forced Response of Single-Mass Systems 

In this example, the forced response of a single degree-of-freedom system is presented. The 
equations of motion for the system is given by 

M X + C X + K X = F cos co t 
0 

Figure 3 .2 represents the dimensionless amplitude and dimensionless forces transmitted for a range 
of~= 0.005 to 0.5. 
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Figure 3.2 Forced Response and Transmitted Forces for 
a Single Degree-of-Freedom System 
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Table 3.2 Single Degree-of-Freedom Unbalance Response Script File 

% Unbalance Response of single Degree of Freedom System 
% constant Forcing Function 
% E.J. Gunter Dept of Mech & Aerospace Engineering 
% A= amplitude vector for the various damping cases 

% TRD = dynamic transmissibility = Ft/Fo 

zeta=[0.05 0.1 0.2s 0.333 
%freq=o:o.os:2; 
freq=linspace(0,4,200); 

for k=1:s; 
z=zeta(k); 

0.5]; 

for 1=1:200 % frequency sweep 
f=freq(l) ; 
f2=f•f; 
n1=(1. 0 -f2) A2; 
n2:(2*Z*f)-2; 
d =sqrt(n1 +n2); 
A(k,l)= 1.0/d ; % amplitude 
n=sqrt( 1 + n2); 
TRD(k,l)=n/d; 

end; 
end; 
subpl.ot(2,1,1) 
plot(freq,A) 
grid 
xlabel(' Frequency Ratio ,Dim'); 
ylabel('AMPLITUDE, Dim'); 
title('Forced Response of Single Mass system For Various Dam.ping 
text(.B,.75, •z=.S'); 
text(1.1s,s,•z=.l'); 
text(l.OS,9.6,"z=.OS') 

pause 
subplot(2,1,2) 
pl.ot(freq,TRD); 
hold on 
set(gca,'DefaultTextFont','Times','DefaultFontsize',14) 
grid 
xlabel(' Frequency Ratio ,Dim'); 
ylabel('Forces Transmitted, Dim'); 
title('Forces Transmitted for Single Mass system For various Dam.ping 

In Table 3 .2, the calculation for the response was computed by using two nested do loops for k = 1 :5 
for the five values of damping, and l = 1 :200 for the 200 values of the frequency. With 11M TLAB, 
one or more of the do or for loops may be condensed, but for those familiar with FORTRAN, one 
can write the program to be similar to FORTRAN. This procedure is recommended until one 
becomes more familiar with the compact 11M TLAB matrix statements. 

In Figure 3.2, two plots are generated using the subplot command. Subplot(2,1,1) 
represents the first plot of two. The first plot is in the first column and first row. Subplot(2,1,2) 
represents the second plot in the second row. By using the subplot command, one may have as 
many plots on a page as desired. It should be noted that with the set command, one may change the 
font type and size. 
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Table 3.2 Single Degree-of-Freedom Unbalance Response Script File 

% Unbalance Response of single Degree of Freedom system 
% constant Forcing Function 
% E.J. Gunter Dept of Mech & Aerospace Engineering 
% A= amplitude vector for the various damping cases 

% TRD = dynamic transmissibility = Ft/Po 

zeta=[o.os 0.1 0.25 0.333 
%freq=O:O.OS:2; 
freq=linspace(0,4,200)i 

for k=1:5; 
z=zeta C:lt) ; 

0.5]; 

for 1=1:200 % frequency sweep 
f=freg(l) ; 

end; 

f2=f•f; 
n1=(1.o -f2)-2; 
D2:(2*Z*f) ~2; 
d =sqrt(n1 +n2); 
A(k,l)= 1.0/d ; % amplitude 
n=sqrt( 1 + n2); 
TRD(k,l)=n/d; 

end; 
subplot(2,1,1) 
plot(freg,A) 
grid 

pause 

xlabel(' Frequency Ratio ,Dim'); 
ylabel('AHPLITUDE, Dim'); 
title('Forced Response of Single Mass system For various Damping 
text(.B,.75, •z=.S'); 
text(1.15,s,•z=.1'); 
text(1.05,9.6,'z=.0S') 

subplot(2,1,2) 
plot(freq,TRD); 
hold on 
set(gca,'DefaultTextFont','Times','DefaultFontBize',14) 
grid 
xlabel{' Frequency Ratio ,Dim'); 
ylabel('Forces Transmitted, Dim'); 
title('Forces Transmitted for single Mass system For various Damping 

In Table 3 .2, the calculation for the response was computed by using two nested do loops fork= 1 :5 
for the five values of damping, and I= 1 :200 for the 200 values of the frequency. With MATLAB, 
one or more of the do or for loops may be condensed, but for those familiar with FORTRAN, one 
can write the program to be similar to FORTRAN. This procedure is recommended until one 
becomes more familiar with the compact MATLAB matrix statements. 

In Figure 3.2, two plots are generated using the subplot command. Subplot(2,1,1) 
represents the first plot of two. The first plot is in the first column and first row. Subplot(2,1,2) 
reptesents the second plot in the second row. By using the subplot command, one may have as 
many plots on a page as desired. It should be noted that with the set command, one may change the 
font type and size. 
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3.3 Tuned Vibration Absorber 

Figure 3 .3 represents a schematic figure of a tuned vibration absorber shown in Thomson, 
Theory of Vibration With Application, page 167. Although the system has only two degrees-of­
freedom, the technique used in the solution is applicable to multiple degrees-of-freedom systems 
with damping. 

0 
Figure 3.3 Tuned Vibrations Absorber 

(Thomson) 

In the problem shown by Thomson for the vibration absorber, no damping is included. This is easily 
accomplished by first writing the kinetic, potential, and dissipative energies of the system. 

·2 ·2 T=½MX +½MX 
1 1 2 2 

(3.3.1) 

• 2 • • 2 D=½CX +½C (X-X) 
I I 2 2 I 

The system equations of motion may be generated by LaGrange' s Equation of Motion, shown below 
in its most generalized form, including the Rayleigh dissipation function and generalized forcing 
function. 

d ( ar) 
dt ax 

ar an av_F 
---+ - -+ - --

ax ax ax x 
(3.3.2) 

Application ofLaGrange's Equation to (3.3.1) leads to the generalization of two coupled equations 
in X1 and X2, as follows: 

M1 .xI + ( c i + c2 ) xI - c2 x2 
(3.3.3) 

+ (K + K) X - K X = U al eirot 
1 2 1 2 2 1 
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The general matrix form of the coupled linear equations of motion is 

[M] {.X} + [C] {.X} + [K] {X} = 002 { U} eiwt (3.3.4) 

Let X (t) =Xe icot for harmonic motion. The complex equations for forced response are 

[ [ K] - ro2 [ M] + i ro [ C] ] {X} = ro2 { U} (3.3.5) 

or 

[A] {X} = {R} (3.3.6) 

For the two degree-of-freedom problem shown with included damping, the complex a coefficients 
are given by 

Table 3.3 represents the script file for the dynamic vibration absorber. The system is assumed to 
have a natural frequency at 1,850 RPM. The tuner is designed to be in resonance at 1,800 RPM, 
which is the operating speed of the rotor. The weight of the absorber is 50 lb and the weight of the 
rotor is 200 lb. The response is completed using two for loops for clarity to make the file similar 
to FORTRAN. The computation of the absolute value of the complex motion is achieved by using 
the·function abs. 
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Table 3.3 Vibration Absorber Script File 

% V2dABS.M Vibration Absorber For Rotor Operating at 1800 rpm 
% Prob 5.37 pg 151 Thomson 
% Rotor Weight W1 =200 lb, W2=50 lb absorber weight 
% Absorber tuned for 1800 RPM 
% kl value tuned for critical speed at 1850 RPM 
% c2= absorber damper 
elf; clear 
W1:200; 
m2=W2/386; 
c2= [ 2 5 

W2=50; 
m1=W1/386; 

% Main weight & absorber weight 

10 20 50 ]; % Values of damping-Lb-Sec/In 
Ntuned=1800 ; 
om2=(Ntuned/9.55)A2 
k2= m2*om2 
omcr=1850/9.55 
kl=ml*omcr"'2 
um::2.0/386 

% 
% 

% 

absorber frequency tuned to running speed 
; 

Absorber spring rate tuned to 1800 RPM 

% kl= major spring rate system 

freq=linspace(1000,3000,200); 
for n=1:5; 

for l=l:200; 
omega=freq(l)/9.55; 
omega2=(freq(l)/9.55 )"'2 

% lb-in/g unbalance 
% Starting speed=1000 
% Loop thru 5 damping 
% Loop thru 200 speed 
% Speed in Rad/sec 

; % 

tuned to 1850 RPM 

,fina1=3000,200 cases 
values 
cases 

fu=omega2*um ; % Rotating unbalance force, Lb 
a(1,1)= k1 + k2 -m1*omega2 
a(2,1)=-k2 -i*omega*c2(n) 

+ i*omega*c2(n) ; % Computer complex coef 

a(l,2)= a(2,l) ; 
a(2,2)= k2-m2*omega2+ i*omega*c2(n) ; % influence coefficient matr: 
b=inv(a); % Invert complex matrix 
zl(n,l)=b(l,1)*fu ; 
zlmils(n,l)=abs(z1(n,1))*1000 ; 
z2(n,l)=b(2,l)*fu ; 
z2r(n,l)=zl(n,l)-z2(n,l) ; 
z2rmils(n,l)=abs(z2r(n,1))*1000; 
z2mils(n,l)=abs(z2(n,1))*1000; 
ftr=zl(n,l).*kl ; 
ftrans(n,l)=abs( £tr) ; 

% Relative absorber motion 
% Amplitude in mils 

% force traaansmmm.itted 
% trd(n,l)=k(n)/kd; % ftran(n,1)./fu ; % dynamic traansmissibility 

end; 
end; 
subplot(2,1,1) 
plot(freq,zlmils, 1 linewidth 1 ,l), grid 
xlabel('Rotor Speed, RPM' ) 
ylabel( 'Amplitude, Mils') 
title( 1 RESPONSE With VARIOUS TUNED ABSORBER DAMPING VALUES') 
legend('C2=2','C2=5','C2=10','C2=20 1 , 1 C2=50 1 ) 

axis([l000 3000 0 800]) 

grid 
subplot(2,2,l) 
plot(freq,ftrans, 1 linewidth 1 ,l), 
xlabel('Rotor Speed, RPM' ) 
ylabel( 'Forces Transmitted 
title(• FORCES TRANSMITTED 

, Lbs•) 

axis( [ 1000 3000 0 3000 
With Various ABSORBER DAMPER RATES') 
] ) 
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The solution to the complex vector displacements {X} is given by 

(3.3.7) 

In MATLAB, this is performed either by direct inversion, such as the statement 

X=Inv(A) * R 

or 

X=A/R 

In the first method of solution, an inversion of the complex matrix A is performed similar to the 
theoretical solution as shown in Eq. (3.3.7). Such a solution method can be time consuming for a 
system with hundreds of degrees-of-freedom. A quicker solution is obtained by the second method. 
In this method (shown with the backslash), an LU decomposition is performed, rather than a direct 
inversion of the A matrix. This procedure is very efficient and may be used on systems with 
thousands of degrees-of-freedom. This is the procedure of choice used in the majority oflarge finite 
element system solvers. 

Figure 3.4 represents the motion of the machine or rotor mass over a speed range with the 
vibration absorber tuned to 1,800 RPM.. The response was run with five cases of damping, ranging 
from 2 to 50 lb-sec/in damping in the absorber. Without any damping in the absorber, the motion 
at 1,800 RPM would be zero. However, the mass of the absorber M2 creates resonance frequencies 
below and above the tuned absorber frequency of 1,800 RPM. The new frequencies are 
approximately 1,430 RPM and 2,330 RPM. For the case ofno absorber damping, the amplitude of 
motion at these two resonance frequencies would be unbounded. These responses become finite 
with absorber damping applied. 

As the absorber damping is increased, the amplitude of motion at the tuned frequency of 
1,800 RPM increases. Therefore, the introduction of absorber damping is a compromise in order to 
limit the motion at 1,430 and 2,330 RPM. There are two speeds in which the amplitude of motion 
is independent of damping. These two speeds are at 1,500 RPM and 2,300 RPM. These two points 
were referred to as the P and Q points for an absorber as first described by Den Hartog. An optimum 
damping for the system could be chosen such that the slope is zero through the first ( or P) point. 
This would require a damping of about 12 lb-sec/in in the absorber. As the absorber damping 
exceeds 50 lb-sec/in, the damper becomes locked up. The new natural frequency of the locked-up 
system drops to 1,650 RPM due to the added mass of the absorber. Damping values in excess of 50 
lb-sec/in would result in large amplitudes of motion and bearing forces transmitted. 

Figure 3.5 represents the forces transmitted to the foundation. At running speed, the 
unbalance force is 184 lb. Note that with only 2 lb-sec/in absorber damping, the transmitted force 
at the 1st resonance is over 2500 lb. However if the absorber could be controlled magnetically, then 
the absorber could be locked until the P point is reached. It is then unlocked until the Q point is 
reached. At speeds above the Q point the dynamic vibration absorber is again locked up before it 
moves into the second resonance speed. The transient motion of the rotor and absorber at P & Q 
points due to unlocking and locking may be studied by the method outlined in the next section. 
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3.4 Transient Response of Vibration Absorber 

The initial transient motion of the absorber may be computed by writing the equations in state space 
formulation with four coupled first order equations in Y as follows 

Y=f(Y,t) (3.4.1) 

The derivatives of Y are given by 

(3.4.2) 

and the Y vector is given by 

(3.4.3) 

.MATLAB has a number of numerical integration procedures. In this example, the numerical 
integration function ODE23 will be used. This is a low order numerical integration routine based 
on a 2nd order Runge-Kutta integration method. For more information on this and other numerical 
methods, at the .MATLAB >> prompt type 

>>help ODE23 

In order to apply the function ODE23 or any of the other numerical integration procedures, a separate 
function file must be generated to have the derivatives of Y. The function file, called absorber.m 
is shown in Table 3.4. The first line of the function file must start with the word "function" and the 
file must be saved corresponding the function call. In this case, the file is saved as absorber.m. The 
function call differentiates the function file from the main body, which is a script file. The majority 
of the function calls of .MATLAB are ASCII files that may be modified. 

Table 3.4 represents the functional file, which is stored as absorber.m. Note the important 
statements 

[rows, cols] = size (y) 
yd= zeros (rows, cols) 

These statements set dimension size and initialize the derivative matrix yd. The values of y(l) 
through y(4) are not single-valued functions, but are variable vectors with the dimension oft. As 
the absorber function is called, the variables are increased in dimension. The number of rows in the 
matrices yd and y are determined by the number of time steps. One has only to set the initial time 
(0) and the final time (I sec) and the increment and number of time steps are automatically 
computed. This is in considerable contrast to a FORTRAN program in which the size of the matrices 
must be initially set. This variable or dynamic dimensioning of the matrices is one of the powerful 
features of MATLAB. The author has encountered on many occasions the statement of DIMENSION 

OUT OF BOUNDS in a FORTRAN transient analysis program. 
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Table 3.4 Function File for Absorber 

function yd=absorber{t,y) 
% 2 mass system vibration absorber,Ml main mass, Kl main 
% M2 & K2 tuned to running speed at 1,800 RPM (omega=l94 
% Her= system natural frequency at 1,850 RPM 
% y(2)=Xl motion, y(4)= X2 absorber absolute motion 
% y(l)=Xl velocity, y(3)= X2 absorber absolute velocity 
%global Ml M2 Kl K2 Cl C2 omega Fu 
Ml:200/386; M2=50/386; 
Cl:0.05; %Damping in rotor 

stiffness 
rad/sec) 

C2=2 ; %Relative damping in absorber 
Kl= 19444 
omega=lS00/9.55; 
K2=M2*omega~2; 
Fu:200; 
[rows,cols]=size{y); 
yd=zeros(rows,cols); 

% System spring lb/in-resonance at 1850 RPM 
% Operating speed, rad/sec 
% Absorber spring tuned to 1800 rpm 
% Applied Forcing function, Lb 
% * Set Matrix size, trows, 4 columns 
% * Set size matrix 

% Specify the 1st order functional form 
yd(l)=-{(Cl+C2)*y(l)-C2*y{3) +(Kl+K2)*y(2)-K2*y{4))/Ml+Fu*sin(omega*t)/Ml; 
yd(2)= y{l); % Xl velocity 
yd{3)=-( C2*( y{3)-y{l) ) + K2*( y{4) -y{2) ) )/M2; % X2 acceleration 
yd(4)=y(3); % X2 velocity 
% end absorber function 

Table 3.5 represents the main program or script file that calls the numerical integration 
procedure ODE23. Note that ODE23 calls the function absorber which contains the system first 
order derivatives. The response is plotted for one sec of motion, as shown in Figure 3.6. The first 
plot, using the sllbplo( command, is for the motion of the major mass. The array y (:;2) represents 
the second column, which is the motion ofX1 for all the time values. In Figure 3.6, the top figure 
represents the major mass. 

It is seen that the maximum amplitude of motion after two cycles is approximately± 20 mils. 
After one sec of motion, the amplitude reduces to ± 4 mils. In this example, an absorber damper 
value of C2 = 2 lb-sec/in was assumed. Although the steady state response of the rotor mass is less 
than 4 mils, it is seen that the sudden application of the dynamic load may cause excessive 
amplitudes of motion. Therefore the final damping selected for the absorber may be a compromise 
based on range of operation and transient considerations. 

The second figure represents the absolute motion of the absorber. Note that after two cycles 
of motion, the absorber peak amplitude is over ± 70 mils of motion. Thus, the absorber transient 
motion is almost four times as great as the main mass. After one sec of motion, the system is 
approaching steady-state conditions in which the absorber is moving with± 40 mils of motion. In 
Fig 3.6 (b) there appears to be a beating motion caused by the suddenly applied unbalance. This 
nature of the beating motion may be evaluated by performing an FFT analysis on the absorber. 
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Table 3.5 Script File Tranabs.m for Transient Analysis 

% tranabs.m transient motion of two mass absorber with suddenly 
% applied unbalance 
% 11/19/96 E.J. Gunter 
% y(2)= xl main mass motion, y(4)= x2 absorber motion 
% global Ml M2 Kl K2 Cl C2 omega Fu 
elf 
clear 
Ml=200/386; % main mass 
M2=50/386 ; 
Cl=0.05 ; 
C2=2.0 ; 
N= 1800; omega=N/9.55 ; 
IC2=M2*omega"'2 ; 
Kl:19444 ; 
Fu=200 

% speed rad/sec 
% tuned absorber to running speed 
% resonance at 1850 RPM original 

t0=0.0 ; tf= 1.0 ; % initial & final time 
% set initial conditions as column vector 
yo = [ 0 • 0 ; 0 • 0 ; 0 • 0 ; O • 0] ; % v1 , xl , v2 , x2 
[t,y]=ode23( 1 absorber 1 ,t0,tf,y0) ; % Call Numerical integrater 

subplot(2,l,l) 
plot(t,y(:,2)*1000, 1 linewidth 1 ,l.S),grid 
xlabel('Time, Sec•) 
ylabel( 1 Amplitude, Mils') 
title('Motion With Suddenly Applied Unbalance With Tuned Absorber,C2=2') 

subplot(2,l,2) 
plot(t,y(:,4)*1000,•linewidth•,l.S),grid 
xlabel('Time, Sec•) 
ylabel('Amplitude, Mils') 
title ( '~sorb~r Motion With !3ulf<ienlv Jlppl:i,P<i Unbalance , C2=2 •) 

The classical method of solution of a transient response is by means of a convolution integral of the 

form: 

For the case of a damped single degree of freedom system, the convolution function of the integral 

equation, h(t) is given by: 

The convolution integral is difficult to evaluate for even the simplest of forcing functions. The 
theory also is applicable only to linear systems. For more complex systems, a damped eigenvalue 
analysis of the roots is first required. Therefore the classical method of transient analysis by 
convolution integral is obsolete. It should also be pointed out that a computer program is always 
required to plot out the results. MATLAB has a variety of equation solvers to handle nonlinear and 

stiff equations. 
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Figure 3.6 Transient Motion of Rotor and Absorber With Suddenly-Applied Unbalance 
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3.5 fft Analysis of Transient Motion 

In order to better understand the transient motion and the beating effect observed in the 
absorber motion, an/ft (fast Fourier Transform) analysis using MATLAB was performed . Table 3.6 
represents the additional commands required to perform the fft. Since this function is included in 
only the student version, the Signal Processing Toolbox is required. Figure 3.7 shows the fft 
analysis of the absorber. The frequencies seen in the signal are 30 Hz, running speed, and the two 
resonance frequencies at approximately 24 Hz and 39 Hz. Without the use of the fft it would be 
difficult to determine the presence of the second resonance frequency at 39 Hz. 

Table 3.6 FFT Analysis Statements 

% perform fft on main mass using 1024 points, use whos to insure that 
% ntotal >1024 to use fast fourier transform, else must use slow dff 

n:1024; 
ttotal=t(n); fs=l024/ttotal; % sample frequecy 
ts=l/fs ; % time per sample 
k=0:n-1 % counter for plotting 
dhz=fs/n ; % frequency increment of £ft 
flcomplex=fft(y(:,4),n) ; % compute complex fft for frequency content 
fl=abs(flcomplex) ; % convert to absolute magnitude 
hertz=k*dhz ; % frequency steps 
subplot(2,1,2) ; % plot fft vs hZ 
stem( hertz(l:n/2) , fl(l:n/2) ) % plot using vertical lines 
xlabel('Frequency ,Hz') 
ylabel('Amplitude') 
title('FFT Analysis of Absorber Mass•) 
axis(r 0 60 o 20]) 

FFT of TRANSIENT MOTION of MAIN MASS 
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Figure 3. 7 FFT Analysis of Transient Motion of Dynamic Vibration Absorber 
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