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ABSTRACT 

In the design of rotating machinery, it is often desirable and 
necessary to change a subset of system parameters to meet the 
design requirements. The success in designing rotor bearing 
systems and/or in solving the vibration problems depends 
heavily upon the understanding of fundamental physical 
properties and insights of the systems. , The modeling 
improvements and computational techniques have been 
extensively presented over the years. The design methodologies 
and fundamental properties have not been widely addressed to 
assist design engineers in solving their practical problems. The 
objective of this paper is to relate the various fonns of energy 
and work and their contributions to the system dynamic 
characteristics. The design strategies and methodologies using 
the energy approach are also presented and illustrated in a 
turbine driven machine. 

NOMENCLATURE 

a,b 
C 
EI 
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ld, Ip 

j 
K 
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semi-major and semi-minor axes 
damping matrix 
bending modulus 
dissipation function 
gyroscopic matrix 
intermediate matrix 
diametral and polar moment of inertia 

✓ -1 
stiffness matrix
mass/inertia matrix
mass

axial force 
force vector 
displacement vector 

r 

T 

t 

u 

V 

wcyc 

(x,y,z) 
K.GA 

tP 
'F 

0 

orbit radius vector 
kinetic energy 
time 
circular motion 
potential energy 
work done per cycle 

translational displacements 
effective shear modulus 
phase angle 
shape functions 
rotational displacement 

Q rotor speed 
ro whirl frequency 
Superscripts 
b,d,e,s bearing, disk, element, support 
Subscripts 
c,s cosine and sine components 
f, b forward, backward 
gyro gyroscopic 
T,R translation, rotation 

INTRODUCTION 

Over the last 20 years, there has been considerable research 
activity in the area of modeling and analysis of dynamic behavior 
of rotor-bearing-foundation systems. The dynamic characteristics 
of interest are critical speeds, system stability, and response to 
unbalance excitation. These dynamic characteristics are 
influenced by all the system parameters and some parameters 
may be more sensitive to certain dynamic behavior than others. 
In the design and retrofit process, it is frequently desirable and 
often necessary to adjust some system parameters in order to 
obtain a more favorable design or to meet the new operating 

Presented at the International Gas Turbine and Aeroengine Congress & Exposition 
Houston, Texas - June 5-8, 1995 

This paper has been accepted for publication in the Transactions of the ASME 
Discussion of it will be accepted at ASME Headquarters until September 30, 1995 

Dyrobes Rotordynamics Software 
https://dyrobes.com

https://dyrobes.com/
https://dyrobes.com/


requirements. In general, this procedure is carried out by experienced engineers with analytical tools (i.e. computer hardware and software) in an iterative process based on their experience and technical expertise. Tatdng advantage of rapid developments in the finite element methods and numerical optimization techniques, the design parameter changes now can be approached by systematic and automated procedures. The finite element method has been widely used in modeling and analyzing the complex rotor bearing systems with minimal numerical problems. Recently, automated optimization techniques combined with the finite element formulation in the application of rotor bearing systems have been presented by Chen (1987) to achieve the various design goals. However, caution should always be exercised while using the "black box" as a_ design tool. Due to the complexity of the problems, the converged solution may not always be the global optimum. The success in designing rotor bearing systems and/or in solving the vibration problems depends heavily upon the understanding of fundamental physical properties and insights of the systems. Comprehensive coverage in computational techniques and modeling improvements has been presented in the analysis of rotor bearing systems over the years. The design strategies and methodologies have not been well addressed to assist design engineers in solving their practical problems. The use of vibration energies in the design of rotor systems was first proposed by Simmons (1976) and the emphasis was mainly on the torsional natural frequencies using the Rayleigh quotient. The design philosophy of using energy distribution in lateral vibration was presented by Gunter and Gaston (1987) in the analysis of undamped critical speeds and was briefly discussed by Nelson and Crandall (1992). The physical insights into the rotor stability using the energy (work) calculation was presented by Adams and Padovan (1981) and then was utilized by Longxiang et al. (1993) in redesigning the bearings for a 200 MV turbine generator. The dynamic behavior of an entire rotor-bearing-foundation system is described by the governing equations of motion which are derived by the energy expressions. Therefore, the system dynamic characteristics are strongly influenced by the energy distribution. By knowing the energy distribution, one can predict the effects of parameter changes on the system behavior and identify the source of the vibration problem. This paper describes the various forms of energy and work and their contributions to the dynamics of the system. The design methodologies using energy and work are also presented. Using the energy approach, the definition of rigid and flexible rotors can be quantitatively identified. The computation of energy distribution can be easily incorporated into any existing rotor dynamics programs based on the finite element method. A 1500 KW turbine driven pump is presented to illustrate the design methodology using the energy approach. 
ROTOR MOTIONS For small vibration, the motion of a discretized finite element station is usually described by two translational displacements (x,y) in the X and Y directions respectively and two rotational (angular) displacements ( 0 

:r 
, 0 

Y 
) about the X 
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and Y axes respectively. The Z axis is the coordinate along the shaft centerline. The (X, Y,Z) axes describe a fixed global right­hand-ruled Cartesian coordinate system. In the rigorous definition, the rotational displacements depend upon the translational displacements and they can not be treated as generalized coordinates in the Lagrange's equations. However, for small displacements, they lead to linearized equations of motion. For large displacements, the Eulerian angles are normally used which lead to nonlinear equations of motion for the spinning disk. The disadvantage of using Eulerian angles is that they can not be directly expressed in the shaft element strain energy formulation without making an assumption of small displacements. The rotor motion of most common interest is a harmonic motion with a whirl frequency of ro. At each finite element station, the rotor motion has the form: 
x(t) = X

e 
COSa> t+ X, SIDW t 

y(t) = Ye 
cosmt+ y,sinmt 

for translational displacements, and 
0

:r
(t) = 0

:re 
cosmt+0

:r,
sinwt

0 y(t) = 0 ye cos wt +0 ys sinw t 
for rotational displacements. 

(1) 

(2) 

(3) 
(4) 

This simple expression can represent a steady state synchronous unbalance response with whirl frequency CD equal to the rotor speed O or can be a precessional mode orbit with whirl frequency ro equal to the associated natural frequency of that mode. The whirl frequency is always a positive value, and the direction of whirling (forward or backward precession) is determined by the sign of (xe
y, -x,yJ. 

Each pair of displacements ( X, y) or ( 0 x, 0 Y) describes an 
elliptical orbit with semi-major axis a and semi-minor axis b.Considering the translational orbit, the axes are: 

I lxe x,1 I ( )b=- =-xe
y,-x,Ye 

(6) a Ye Y, a 
Mathematically, a positive semi-minor axis indicates that the whirling orbit is a forward precession (progression) orbit and a negative semi-minor axis implies the motion is a backward precession (regression) orbit. In general, the rotor whirls either forward or backward. However, the rotor can also have mixed precession, i.e., the rotor can possess forward precession and backward precession simultaneously at different sections. Hence, the semi-minor axis should be evaluated at all the finite element stations to determine the direction of precession. The elliptical orbit may also be decomposed into two circular orbits: one is a forward circular motion with a amplitude of 



I u f I , and the othei: is a backward circular motion with a 

amplitude of I u b I . Thus, the displacement radius vector can be 
expressed in the complex form: 

When the forward amplitude is greater than the backward 
amplitude, the overall rotor motion is forward. When the 
backward amplitude is greater than the forward amplitude, the 
resulting motion is backward. The relationship between the 
semi-axes and the amplitudes of the circular motions are: 

(8) 

The above expressions are also applicable to the rotational 
displacements. 

The motions of non-rotating components (flexible support, 
foundation) can be described by a total of six degrees of freedom 
including axial translation and rotation, although four degrees of 
freedom are commonly utilized. 

EQUATIONS OF MOTION AND ENERGY 
The equations of motion which describe the dynamic 

behavior of the entire rotor system are obtained by assembling 
the equations of motion of the appropriate components. The 
governing equations of motion for a general rotor-bearing­
foundation system is of the form: 

Mq(t)+(G +Cb)q(t)+(K + K
b
)q(t)= Q(t) (9) 

where q and Q are the system displacement and force vectors 
respectively. The mass/inertia matrix M is 'a positive definite 
real symmetric matrix which is contributed by the kinetic 
energy. The gyroscopic matrix G is a real skew-symmetric 
matrix which is contributed by the part of the rotational kinetic 
energy caused by the gyroscopic moments. The structural 
stiffiless matrix K is a real symmetric matrix contributed by the 
strain energy. The bearing coefficient matrices Cb and Kb , in
general, can be any real non-symmetric matrices due to the fact 
that bearings are non-conservative in nature. Since the 
equations of motion are derived from the energy expressions, the 
system dynamic characteristics are strongly influenced by the 
energy distribution. A typical rotor system consists of discrete 
rigid disks, shaft elements with distributed mass and elasticity, 
general linear bearings, and flexible bearing supports. The 
various forms of energy for these components are presented 
below. 

Rigid Disks 
The kinetic energy of a spinning disk with translational and 

rotational motion may be expressed in a fixed coordinate system 
as the sum of the translational and rotational kinetic energies 
(Dimentberg, 1961 ): 
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(10) 

The first two terms are homogeneous quadratic functions of the 
generalized velocities and are commonly presented in a natural 
system (Meirovitch, 1980). The first term is the translational 
kinetic energy contributed by the disk mass effect. The second 
term is a fraction of the rotational kinetic energy contributed by 
the rotatory inertia. The first two terms are always positive. 
The third term is linear in the generalized velocities and is 
referred to as the gyroscopic effect which is contributed by the 
gyroscopic moments. The fourth term, caused by the pure 
spinning of the disk, does not depend upon the vibration 
coordinates and can be ignored in the vibrational analysis. Due 
to the gyroscopic effect, the kinetic energy given in equation (10) 
is known as nonnatural (Meirovitch, 1980) and the effect also 
makes the rotordynamics study unique from the general 
structural dynamics. 

To gain insight into the gyroscopic effect, substituting the 
rotational displacements in equations (3) and (4) and their 
derivatives into the rotational Kinetic energy generated by the 
gyroscopic effect, we have 

I · · I 
T = -ill (B B -8 B ) = -ill m (0 0 - 0 0 )U0 2 P xy x y  2 P :u yc xc ys 

(11) 

where a, b, and lii11, lub l in equation (11) are parameters for

the rotational displacement orbit. Since I
P

, .Q, m are all positive 
values, the sign of equation (11) is determined by the value 
inside the parenthesis. For the forward precessional mode (b > 
0), the gyroscopic effect contributes negative kinetic energy 
(much like inertia decreased effect) and tends to raise the 
corresponding forward whirl frequency. For the backward 
precessional mode (b < 0), the gyroscopic effect contributes 
positive kinetic energy (much like inertia added effect) and tends 
to lower the corresponding backward whirl frequency. Thus, it 
is the forward vibrational modes getting the "gyroscopic 
stiffening" effect and the backward vibrational modes getting the 
"gyroscopic softening" effect. The gyroscopic effect is linearly 
proportional to the polar moment of inertia, spinning speed, 
whirl frequency, and area of rotational displacement whirl orbit. 
It can be significant in the study of high speed overhung rotor 
system where a large wheel is mounted outside the bearing span 
and has large rotational displacement. 

The coefficient matrices in the equations of motion can be 
obtained from the Lagrange's equations or can be easily 
identified by expanding the energy expression in matrix form. 
The kinetic energy of a spinning disk excluding the spinning 

effect, ½ Q2 lp , can be conveniently written in matrix form:



where qd (!) = (x,y,,.0:r ,0 Yl is the displacement vector of the
finite element station at which the disk is located. The 
symmetric matrices M; and M; an! the translational mass 
matrix and rotational inertia matrices, respectively. The only 
non-zero elements in these matrices are the (1,1) and (2,2) 
elements with a value of md and Id in Mj and M; 

respectively. The gyroscopic matrix Ga is a skew-symmetric 
matrix derived from the intermediate skew-symmetric matrix 
gd

d ( d)
T d d 1� � G = g - g = -2g = illp 

� � � �1 0 1 
-1 0 

(13) 

The rigid disks possess only kinetic energy, not potential 
energy. 

Shaft Elements 

The kinetic energy of a finite element segment is obtained by 
integrating the differential energy for an infinitesimal rotor 
element over the length of the element: 

Since the internal displacements ( x, y, 0 :r , 0 Y ) are functions of
spatial coordinate (s) and time (t), the finite element method is 
utilized to separate the variables. The internal displacements of 
a typical element can be approximately expressed by the 
following relationship: 

l x(s,!).l
y(s,t)
0:r (s,t) 
0

y
(s,t) 

(15) 
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The displacement vector q' (t) = (%,q2,q3
, ••• ,q7,q8

)7 is the
time dependent end-point displacements (two translations and 
two rotations) of the finite rotor element. The shape function 
matrix, 'P, is established by utilizing the Timoshenko Beam 
Theory which includes the transverse shear deformation effect. 
The individual shape functions represent the static displacement 
modes associated with a uniform Timoshenko beam with a unit

displacement of one of the end-point coordinates and the rest of 
the coordinates constrained to zero. The derivation of the shape 
function is well documented (Nelson, 1977) and will not be 
repeated here. 

Substituting equation (15) into the element kinetic energy 
expression and neglecting the last term (spinning energy), which 
does not depend upon the displacements, we have: 
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(16) 

where 

M; = J: iii 'l'J'I'r ds 
is the translational mass matrix, 

r'~ T M; = Jo Ia 'l'R 'l'R ds 
is the rotational inertia matrix, and 

g' = f' ..!_n7P 'l'![O -lJ'l'R ds Jo 2 I 0 

is the intermediate skew-symmetric matrix. The element 
gyroscopic matrix is: 

G' = (g• r -g' = -2g' = s: Q Ip 
'l'J[ �l 

�]'l'R ds (17)

The potential (strain) energy of the rotating shaft element 
consists of elastic bending energy due to the bending moments, 
shear energy due to the shear forces, and work due to the 
constant axial load. The translational displacements of a typical 
point internal to the element consists of the deformations due to 
bending moment and shear force. However, the rotational 
displacements are only related to the bending deformation. An 
element under shear force alone will only possess distorsion but 
no rotation. The potential energy of a rotating shaft element 
under a constant axial load is: 

V' =Ha((a;,r +(a;)}+ 
½f.=[(:-0,)' +(Z +o,)}, + os)

½J>[(:)' +(:)} 
where EI is the bending modulus, ru-A is the effective shear 
modulus, and P is the axial load. The shape factor K. depends on 
the shape of the cross section and Poisson's ratio. Substituting 
the shape functions relationship, the potential energy can be 
conveniently written in matrix form: 

I T 

] v· =2q' [K
b 

+K, +K
a 

q'

where 
I T 

Kb = f
0 
El ('I'�) ('I'�) ds 

is the bending stiffuess matrix, 

is the shear stiffness matrix, and 

(19)



I T -

K. = foP('Pf) {'Pf)ds 
is the geometric stiffuess matrix due to ioo.al load. 

The above shaft element stiffness matrices are all symmetric. 
The shear deformation effect can be important when analyzing a 
short stubby rotor system. Since the effect of shear deformation 
is included in the "shape functions" of the elements, therefore, it 
is taken into account not only in the potential energy calculation 
but also in the kinetic energy calculation. The total effect of the 
shear deformation is to lower the natural :frequencies. The 
geometric stiffuess matrix is positive when the element is under 
tensile load and negative when the element is under compressive 
force. 

Flexible Supports 
For the flexible bearing support, the kinetic energy and 

potential energy are of the forms: 

and 

T' = 2_q,.r M' q' (20) 
2 

Vs 1 ,TK' s 

=-q q 
2 

(21) 

where q
s 

is the displacement vector of the support and the mass

and stiffness matrices are symmetric. 

Linear Bearings 
The linear bearings are generally modeled by eight bearing 

dynamic damping and stiffness coefficients. The associated 
dissipation function and potential energy are assumed to be 
derived from the following quadratic expressions: 

and 

pb 1 ·bT 
Cb ·b 

=-q q 
2 

vb I br Kb b 
=-q q 

2 

(22) 

(23) 

where q
b 

is the displacement vector associated with the bearing

coordinates. For fluid film bearings, the forces are non­
conservative and the damping and stiffness matrices are non­
symmetric. The dam.ping provides stabilizing forces to 
attenuate the resonant response and to overcome the disturbance. 
However, the cross-coupling stiffuess can introduce a major 
destabilizing effect on the rotor system. The work done on the 
system (negative energy removed from the system) by a bearing 
per cycle of a harmonic motion is: 

W,yc =-n-w[C
-"'

(x; +x;)+C
"'

(y; + y;)+ 

(C
;xy 

+C
Y-<

)(x,y, +x,y,)] (24) 

+n-(Kxy - K yx) (a -b)

With the positive (K
xy 

- K
Y-<

), the cross-coupling stiffuess can 

actually add energy to the system for a forward precessional 
motion ( b > 0) and destabilize the rotor system in the linear 
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sense. Another interesting finding is that the cross-coupling 
damping coefficients can also either remove energy from the 
system or add energy to the system. This work done by the 
bearing can provide rich information in the determination of 
bearing sensitivity to the system stability. 

Seal forces, aerodynamic forces, and other interaction forces 
acting on the rotors can be modeled as pseudo bearings. 

DESIGN METHODOLOGY 
The objectives in the design of rotor systems include the 

placement of critical speeds, minimization of unbalance 
response, and maximization of the system stability. Since the 
system dynamic behavior is governed by the equations of motion 
and the system matrices are constructed by the various energies, 
the system dynamic characteristics depend upon the energy 
distribution. The analytical calculation of critical speeds, 
damped eigenvalues, and forced response from the equations of 
motion, eq. (9), is documented in Nelson and Crandall (1992) 
and will not be repeated here. However, the general design 
methodology and criteria using energies are described below. It 
should be noted that the energy is also closely related to the 
mode shape and the amplitude of a vibration mode is a 
normalized eigenvector, thus the energy distribution is 
calculated as a percentage of the total energy of that particular 
mode. 

Critical Speeds 
The most primary consideration in the design of rotating 

machinery is the placement of forward synchronous critical 
speeds with respect to the operating speed of the machine. The 
other dynamic behavior ( e.g. unbalance response and system 
stability) are all somewhat related to the position of the critical 
speeds. When the critical speeds are within the operating speed 
range, the rotor may experience large synchronous vibration. 
When the first critical speed is too low ( e.g. lower than or 
around 50% of the design speed), the rotor may be susceptible to 
instability and experience high sub-synchronous vibration. 
When the rotor is operated far below the first critical speed, it 
can be sensitive to the operating environment. Since damping 
has little effect on the position of the critical speeds, the 
undamped system has been widely used to predict critical 
speeds. Damping effects are considered in the unbalance 
response and system stability analyses. 

Whenever possible, it is desirable to have at least 15% ( 10% 
is required in most standards) separation margin between the 
operating speed and the critical speeds to ensure safe and 
smooth operation. When the critical speeds are within the 
undesirable range, some parameters need to be adjusted to shift 
the critical speeds outside this operating range. Bearing 
stiffnesses, mass properties of the disks, and shaft elements of 
the rotating assemblies are usually the variables that can be 
changed to achieve this requirement. Bearing locations have a 
great influence in positioning the critical speeds, however, they 
can not be easily changed in an existing design without major 
modification in the layout and general arrangement. 

If the bearing stiffnesses are the only variables that can be 
changed, then one should look to those bearings with high 



potential energy densjty. If a particular bearing has very small 
potential energy density (e.g. less than 5%) of a particular 
mode, then minor modification in this bearing has little effect on 
that mode. In fact, increasing the bearing stiflhess will have an 
adverse effect due to the. reduction in the modal damping. An 
increase or decrease in diameter of the shaft elements with large 
potential energy density can be used to effectively raise or lower 
the critical speed. Decreasing or increasing the mass of a disk 
with high translational kinetic energy density can also 
significantly increase or decrease the critical speed. Caution 
must be taken to ensure that the center of gravity of the disk will 
not be moved while changing the mass properties of the disk. 
Also, decreasing or increasing the polar moment of inertia of a 
disk, which has high rotational kinetic energy density, can 
decrease or increase the critical speed due to the gyroscopic 
effects. If the kinetic and potential energies of a vibration mode 
are significant in the flexible bearing supports, changing the 
support structure can be very effective in shifting that associated 
frequency. For the support modes, the non-contact displacement 
probes measuring the shaft vibration may not be enough for a 
safe monitoring system and an accelerometer or velocity pickup 
on the bearing housing may be required. 

The potential energy distribution among the rotor assembly, 
bearings, and flexible supports can also provide information for 
design purposes. If the rotor assembly (shaft elements) 
possesses more than 70% of the total potential energy of a 
vibration mode, then this vibration mode is characterized as a 
flexible rotor mode. If the rotor assembly ( shaft elements) 
possesses less than 30% of the total potential energy of a 
vibration mode, then this vibration mode is characterized as a 
rigid rotor mode. Typically, the first two· lowest frequency 
modes are the rigid rotor modes and other high frequency modes 
are flexible rotor modes. In some cases, the rigid rotor modes 
could be overdamped or could not be excited by the synchronous 
excitation, thus they will not be observed in the response data. 
For rotors operated above the rigid bearing criticals ( e.g. most 
high speed compressors), it is desirable to design the bearings 
such that the potential energy of the critical speed can be evenly 
distributed among the rotor and bearings. If the critical speed 
falls into the rigid rotor section, the system will be more 
susceptible to instability ( e.g. oil whirl or whip) and the 
vibration could be large enough in the bearing station to damage 
the bearing. if the critical speed falls into the flexible rotor 
section, the vibrations may be very large at some critical stations 
due to the lack of damping. 

The damped critical speeds are usually determined from the 
whirl speed map which is a plot of damped natural frequencies 
(whirl speeds) versus the rotor speed. The damped critical 
speeds due to the synchronous unbalance excitation are the 
intersections of the synchronous excitation line and the 
frequency curves. In the presence of gyroscopic effect and the 
general linearized bearing model, the frequency curves may be 
overlapping and complicated. The associated precessional mode 
shapes must be used to identify the modes and properly construct 
the map. 

Unbalance Response and Balancing 
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The rotors always have some amount of residual unbalance 
no matter how well they are balanced. Very often some 
correction weights are needed to minimize the response at 
certain locations. Unbalance located at large modal 
displacements will produce a large modal unbalance force for 
that mode. Usually, the unbalance weights may only be placed 
or removed at certain disks. Therefore, one should look to the 
disks with large kinetic energy density to make corrections. A 
caution must be made since corrections for one particular mode 
may be quite different from that of another mode. The influence 
coefficient method combined with energy distribution 
information can be very effective in balancing which may 
eliminate unnecessary trial runs. 

System Stability 
The system stability is usually determined by the value of 

logarithmic decrement. The instability threshold is determined 
from the stability map which is a plot of logarithmic decrements 
versus the rotor speed. When the logarithmic decrement is 
positive, the system is said to be stable. When the logarithmic 
decrement becomes negative, the system is said to be unstable in 
the linear theory. When the logarithmic decrement is zero, the 
system is in the state of instability threshold. Assuming that 
only the bearings (real or pseudo) remove/add energy from/to the 
system, the total energy removed/added by the bearings can also 
be used to determine the system stability. When the total work 
done on the system by the bearings is negative (i.e. energy has 
been removed by the bearings), the system is stable. When the 
total work done on the system by the bearings is positive, the 
system is unstable. At the threshold of instability, the total work 
done equals zero. By knowing the work distribution, one can not 
only determine the system stability but also determine the 
sensitivity and contribution of each bearing to the system 
stability. The latter information is extremely useful to the 
engineers in the design and retrofit process and this information 
does not exist by knowing the logarithmic decrement alone. 

The system stability is strongly influenced by the bearings 
with large work done. The bearings with negative work 
contribute stabilizing effects and the bearings with positive work 
contribute destabilizing effects. If required, one should always 
try to maximize the energy removed by the bearings to increase 
the system stability. It should be noted that the bearing 
contribution at different vibration modes can be quite different. 
One question that should always be raised before any bearing 
modification is "what vibration mode do we want to stabilize"? 
Once the question is answered, work done by the bearings on the 
specified vibration mode is then calculated and tabulated. 
Bearings with large work done should be redesigned first. In 
this economic and efficiency conscious age, designing bearings 
to maximize stability and also minimize frictional power loss 
can be a difficult task. 

EXAMPLE 

A turbine driven pump is employed as an example. The 
complete rotor assembly is supported by three 2-axial groove 
bearings as shown in Figure 1. On the left side of bearing #2 is 
a turbine and on the right side is a pump. The design speed is 



f'' 
Pump 

FIG. 1 SYSTEM CONFIGURATION 

3500 rpm. However, the actual operating speed can fluctuate 
from 3000 to 4000 rpm under various operating conditions. 

The whirl speed map is plotted in Figure 2. The first seven 
damped natural frequencies, which are below 5000 rpm, are 
plotted. The modes are numbered according to the values of 
their associated frequencies at a rotor speed of 3500 rpm. The 
logarithmic decrements of these modes are plotted in Figure 3. 
The logarithmic decrement of the fourth mode is very high 
(above 10), therefore, it is not shown in Figure 3. The first 
mode is a forward mode with most of the motion occurring at the 
turbine, as shown in Figure 4. Shaft elements around bearing # 1 
possess most of the shaft potential energy and bearing #2 
possesses most of the bearing potential energy. This mode 
becomes unstable when the rotor speed is above 3675 :rpm as 
shown in Figure 3. The second mode is a forward mode with 
most of the motion occuning at the pump side. The first two 
modes are excited by the synchronous excitation around 1500 
and 1600 rpm. Since the logarithmic decrements at these critical 
speeds are relatively high (above 0.5), smooth operation through 
these critical speeds is anticipated. The third and fifth modes 
are also forward modes. These two modes are excited by the 
synchronous excitation around 2400 rpm and some vibration is 
anticipated due to the relatively low logarithmic decrement 
(below 0.25) in the third mode. The third and fifth critical speed 
modes have very similar mode shapes with one associated with 
the X-Z plane and the other associated with the Y-Z plane. The 
undamped planar mode shape is plotted in Figure 5. The total 
kinetic energy is distributed between the disks (64 percent) and 
shaft elements (36 percetit). The supports have less than one 
percent of the total kinetic energy. The total potential energy is 
distributed between the bearings (32 percent) and shaft elements 
(68 percent). Again, the supports have an insignificant effect in 
the potential energy. Clearly, the mode is not sensitive to the 
supports. The shaft energy distributions are plotted in Figure 6 
with the kinetic energy in the upper half and potential energy in 
the lower half. Figure 6 shows that the shaft elements of the 
pump are more sensitive to this mode than those of the turbine 
since the pump possesses most of the kinetic and potential 
energies. The energy distributions for disks and bearings are 
plotted in Figure 7. It shows that bearings #2 and #3 have a 
strong influence on this critical speed and that bearing # 1 has 
almost no influence on this mode. Figure 7 also shows that disk 
#10 (impeller of the pump) has a significant effect on this mode 
due to its 55 percent contribution to the total kinetic energy. 
Changing the mass properties of disk #10 can be very effective 
in shifting this critical speed. The fourth mode is a bearing 
mode. All the motion occurs near bearing # 1 and the 
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logarithmic decrement is very high (above 10). The sixth mode 
is a backward precessional mode which is not likely to be 
excited by the unbalance. There is a safe separation margin 
between the critical speeds and the operating speed in this 
application. 

The instability (negative logarithmic decrement) occuning 
around 3675 rpm poses a possible problem since the rotor speed 
can go up to 4000 rpm. To understand the bearing contribution 
to the system stability, the work done by the bearings to the 
unstable mode is plotted in Figure 8. It shows that the total 
work done is negative when the rotor speed is below 3675 rpm 
and becomes positive when the rotor speed is above this 
instability threshold. Figure 8 also shows that bearing #2 has a 
significant contribution to the instability and bearing #3 has 
little influence on the instability. To correct the instability 
problem, a 5-pad tilting pad bearing is recommended to replace 
the 2-axial groove bearing in bearing #2. The onset of instability 
threshold with this modification is raised to 4375 rpm which is 
outside the operating speed range. Again, the work done by the 
bearings is plotted in Figure 9. The total work done by the 
bearings is negative when the rotor speed is below 4375 :rpm and 
becomes positive when the rotor speed is above 4375 rpm. 

CONCLUSION 

The calculation methods on various forms of energy and 
work have been presented. The energy computation can be 
easily incorporated into any existing rotor dynamics programs 
based on the finite element method. The contribution of energy 
and work to the dynamics of rotor systems has been described. 
The dynamic characteristics of rotor-bearing-foundation systems 
are strongly influenced by the energy distribution. Knowing the 
energy distribution, one can predict the effects of parameter 
changes on the system behavior and identify the source of the 
vibration problem. The design methodologies using energy and 
work have been presented. A 1500 KW turbine driven pump 
has been analyzed to illustrate the design methodology. 

APPENDIX 

The shape factor ,c for a hollow circular cross-section beam 
is given by: 

6 (l+ v) (1+�2r 
K----------'-----

- (7+6v) (1+�2r +(20+12v)�2 

(Al) 

where v is the Poisons' ratio and 9t= r; I is the ratio of inner to
/ro 

outer diameter. The most common cases used in the rotor 
dynamics analysis are: 

For a solid shaft, 
6(1+ v) 

K = ---'-------

(7 +6v) 
(for v=0.3, JC=-0.886)

2(1+ v) 
For a thin-walled tube, K = __,_ ____ ( for v=O .3, JC=-0. 5 31)

4+3v 
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