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Systems of finite elements are organized using matrix notation for finite length bearings. 
Most fluid film bearings have surface areas which can be divided into a grid of elements 
whose nodes are labeled in matrix form. The resulting equations for nodal pressures are 
·block tridiagonal and the solution is easily obtained with direct methods. Analysis of both
general slider and journal bearings is included. The choice of how the film is divided into
elements can significantly affect the error involved in the numerical solution and some
criteria are developed for optimizing the division scheme. In the analysis of a square
squeeze pad of uniform thickness, choosing the diagonal sides of elements nearly perpen­
dicular to the pressure gradient direction gives an error in the calculated load carrying
capacity of over two times that obtained by aligning element diagonal sides approximate­
ly with the pressure gradient direction. For rotating bearings, varying the grid spacing
in the circumferential direction directly as the film thickness and properly choosing diag­
onal alignment can significantly reduce computer time.

1 Introduction 

Major advantages of the finite element approach accrue from its 
total generality with regard to geometry and boundary conditions. 
Elements can approximate any boundary shape such as curved hy­
drostatic bearings or oil inlet geometry. Use of elements and inter­
polation functions which insure continuity of pressure and mass rate 
of flow across interelement boundaries permit the analysis of films 
with steps such as those found in pressure dam or spiral groove 
bearings. Either pressure or oil flow type boundary conditions are 
easily included. Finally, the bearing surface can be divided up various 
ways and the particular scheme should be chosen to minimize the 
error in the numerical method. 

The finite element method has been used in the solution of fluid 
film lubrication problems for some years. Since Zienkiewicz and 
Cheng (1, 2]1 first recognized that finite elements could be applied 
to field problems, other works have expanded and developed the 
method. Reddi, et al. (3, 4] noted that the system of algebraic equa­
tions generated for the nodal pressures is a banded, symmetric matrix 
which may be solved directly with minimal requirements of computer 
storage and time. As noted by Hays (5], it is desirable to number the 
nodes to minimize the matrix bandwidth. Wada, et al. [6, 7] showed 
that finite elements may produce more accurate solutions for journal 

1 Numbers in brackets desif!nate References at end of paper. 
Contributed by the Lubrication Division and presented at the ,Joint Lubri­

cation Conference, Boston, Mass., October 5-7, 1976, of THE AMERICAN 
SOCIETY OF MECHANICAL ENGINEERS. Manuscript received by the 
Lubrication Division April 2, 1975; revised manuscript received ,June 2, 1976. 
Paper No. 76-Lub-13. 
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bearings than finite differences. The disadvantages of the rectangular 
element developed for finite bearings (7] are that continuity is not 
satisfied along the interelement boundaries. and that the only bearing 
geometry easily analyzed is a rectangular one. Allan (8) has applied 
the met!-: I to hydrodynamic and externally pressurized pocket. 
bearings using a simple iterative scheme to evaluate the nodal pres­
sures. 

More recent works have dealt with generalizations of the method. 
An introduction to both the direct method for infinitely long bearings 
and a variational approach is given by Booker and Huebner [9]. Oden 
[10] has developed general nomenclature techniques for other prob­
lems which are utilized here. Finite elements have also been employed 
in the solution of EHD and transient problems [11]. Oh and Huebner 
[ 12I have solved a complete elastohydrodynamic finite journal bearing 
problem. The problem of thermal effects in lubrication has been
considered by both Tieu [13] and Huebner [14]. Shelly and Ettles [15]
have developed a one-dimensional approximation for bearings using 
exponential elements. The most recent and extensive treatment of
fluid film lubrication is in a textbook which devotes an entire chapter
to the subject [16].

The present study develops a systematic matrix approach for finite 
elements directly from a variational principle for the pressure. The 
fluid pressure, velocity, density, and viscosity are assumed constant 
across the film, but may vary over the length of the bearing. Also the 
film thickness, velocities of the upper and lower surfaces, and squeeze 
velocities may vary over the length of the bearing. Thus, within certain 
limits. this analysis applies to compressible, variable viscosity flows 
(using an iterative process since p andµ are functions of p). 

One purpose of the present work is to develop a systematic matrix 
approach for finite elements which automatically produces a mini­
mum bandwidth of algebraic equations Most finite fluid film bearings 
such as plain journal, pressure dam, squeeze pad, and tilting pad have 
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surface areas which can be divided into a grid whose nodes are labeled 
in matrix form. Note that the grid is not required to be rectangular 
in form, but that the nodal coordinates and nodal pressures can be 
organized into M rows and N columns of an M X N array or matrix. 
This allows the concentration of nodes near oil supply holes, pressure 
dams, or simply in regions where large variations in pressure occur
(as is currently done for finite elements in stress analysis near a hole). 
By organizing the labeling in matrix form throughout the analysis, 
the solution is easily obtained with the direct Gaussian elimination 
method for block tridiagonal matrices [17) or other methods. 

The other purpose of this study is to obtain insight into the opti­
mum methods for dividing the bearing area into elements. An analysis 
of the error produced in solving the uniform rectangular squeeze pad 
and journal bearing using various uniform and variable grid spacings 
shows that the best choice of division scheme can substantially reduce 
the number of nodes required and thus the computer costs. Thus far
this type of study has not been carried out for lubrication prob­
lems. 

Only triangular elements and linear interpolation functions for the 
pressure within them.are used. Analysis of more complex finite ele­
ments has usually shown little advantage over simply increasing the 
number of elements if increased accuracy is desired [18]. 

2 Finite Element Formulation 

Consider a general finite slider bearing of area A such as shown in 
Fig. 1. The pressure must minimize the functional [9] 

J(P) 
= srA {;:� [(::r + (::rJ 

- ph [u:r: ap + Uy aP] + � (ph)P} dA 
ax ay at 

+ f [q:r:n:r: + qyny)P] dC (1) Jc. 
with the boundary conditions such that along part of the boundary, 
Cp, the pressure is specified 

[P]on Cp 
= [Pa]on Cp (2) 

and along the remainder of the boundary, Cq, the mass rate of flow 
is specified 

[q:r:]onC
0 
= [Qa:r:]onC

0 

[qy]onC0 
= [qay]onC0 

(3a) 

(3b) 

The values of Pa and q0 may vary around the boundary. If the pres­
sure is specified around the entire boundary, Cp = C, the last integral 
in equation (1) is simply ignored. 

i;>a 
(External Supply 
or Atmospheric 
Pressure) 

· Fig. 1 

t � (:�:;ze 

�2
,� (t;urhu:e 

Velocity) 

--- \!.1 
(Surface 1/elC"lrity) 

r..h!;!•� = q, 
{'"<!.,c,c; RntP. o,f- flryw 

Cutward) 

Fluid film geometry 

The fluid film must be divided into a global system of elements in
a manner such as that shown in Fig. 2. First the bearing surface is 
divided into M - 1 quadrilaterals in they direction and N - 1 qua­
drilaterals in the x direction as in Fig. 2(a ). This permits the nodia 
at the intersections to be labeled in a rectangular matrix of order M 
X N. Two subscripts are required to identify a particular node. Sec­
ond, the quadrilaterals are divided into triangular elements of type 
1-2 or type 3-4 as shown in Fig. 2(b ). Now three superscripts are used 
to identify the element properties. The first two superscripts indicate 
the upper left node and the third gives the type of element. For this
system the number of elements E is given by 2(M - I)(N - 1). 

The local labeling system used within the eth node starts with la­
beling the node opposite the diagonal with i and continuing with j,

k in the clockwise direction as shown in Fig. 3. Each of the nodal 
pressures P;, Pj, Pk are labeled correspondingly and the coordinates 
of the nodes are denoted by (x;, y;), (Xj, y;), (xk, Yk), These local 
properties within an element have a single subscript while the global 
system considering all of the elements has two subscripts corre­
sponding to a matrix notation. 

-----Nomenclature·---------------------------------------

A = area of bearing, element 
bn , Cn = element constants, n = i,j, k

C = boundary of finite bearing 
Cp, Cq = boundary on which pressure, mass 

flow are specified 
e = element 
E = total number of elements 
h = film thickness 
h = squeeze velocity 
i, j, k = nodes of triangular element labeled 

in clockwise order, local labeling 
I, J = nodes of bearing in y and x directions, 

global labeling 
J(P) = functional 
K1, = squeeze fluidity component 
Kp = pressure fluidity component 
Ku:r:, Kuy = shear fluidity components in x, 
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y directions 
m, n = nodal indices, i, j, k for finite bear­

ings 
M, N = number of nodes in approximate y, 

x directions 
n:r:, ny = unit vectors in x, y directions
P, Pa = pressure, pressure specified on Cp 

q, Q:r:, qy, Qa = mass rate of flow, in x and y 

directions, mass rate of flow specified on 
Cq 

r = ratio of successive grid spacings 
R = radius of shaft (journal) 
t = time 
U = Average surface velocity, vector, U = 1/2 

(U1 + U2) 
U1 = velocity of lower surface of slider, vec-

tor 
U2 = velocity of upper surface of slider, vec­

tor 
Ux, Uy = vector component of U in x, y di-

rections 
W = weight 
x, y = Cartesian coordinates 
AX, ..l.y = grid spacing in x, y directions 
z = axial coordinate 
, = error 
/J = circumferential coordinate around cir­

cular bearing 
. p = fluid density 

µ = fluid viscosity 
Wj, Wb = angular velocity of journal, bushing 

in counterclockwi�e •· 

Trans-



a) CM-l) x (N-1) Quadrilaiterals 

b) Type 1•2 end Type 3-4 Elel'ICnts 

Fig. 2 Dividing fluid film into elements 

Fig. 4 shows the four different types of elements with both local and 
global labeling systems. All four elements are related to the I, Jth 
element in the upper left-hand corner, and the local labeling system 
is related to the global system as shown in Table 1. Two labeling 
systems, local and global, avoid the use of four subscripts or super­
scripts in describing a node. 

The complete finite element formulation for the general slider and 
rotating bearing is given in the Appendix. The matrix equations are 
in the block tridiagonal form suitable for direct solution using banded 
Gauss elimination [17). The solution technique involves the inversion 
of N square matrices of order M X M so that M should always be 
chosen as the smaller number of M and N.

3 Rectangular Squeeze Pad Analysis 

A square squeeze pad with uniform film thickness is employed [9] 
as an example. The sides are of length unity and the other properties 
are given by 

p 

µ 

h 

= 12 

= 2 X 10-• 

= 1 X 10-• 

ah/at= -1 

(density) 

(viscosity) 

(film thickness) 

(squeeze velocity) 

Because of symmetry about the x and y axes, analysis of only one 
quadrant is necessary. An analysis using nine equally spaced nodes. 
and eight 1-2 type elements were carried out with the solution 

r-8750

[P] =
c

-3
:

50 

1.3750 

1.0625 

0 �] 
Integrating the pressure over all of the elements, the weight carried 
by the pad is calculated as W = 0.766. 

Carrying out a similar analysis using finite differences for purposes 
of comparison gives the solution 
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boundary = c<e 

-- cj 

element Ce) 

area = ACe) 

pk 

:iod"I 
coord i n:,tes 

Fig. 3 The eth triangular element with a node located at each corner. Nodes 
are labeled clockwise. 

I + l,J 

(I ,J ,2l 

k 

I,J + I I.+ l,J + I 

al Type 1-2 Elements 

I,J + I ,J 

k 

(I ,J, 3) 

(I,J,4) 

I, J + I + I ,J + I 

bl Type 3-4 Elements 

Fig. 4 Local and global labeling systems for the elements a11&oclate with 
the /, Jth node 

[

1.687 

[P] = 1.3

0

12 

1.312 

1.030 

0 

Calculating the load carrying capacity by the same method as· for the 
finite element solution gives W = 0.126.
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Table 1 Local and global labeling systems 

Element Local labeling system 

e j k 

�I, J, 1) (I+ 1, J) (l+l,J+l) (I, J) 
I, J, 2) (I,J+l) (I, J) (/+l,J+l) 

(I, J, 3) (I, J) (I+ 1, J) (I,J+l) 
(I, J, 4) (/+1,J+l) (/,J+l) (I+ 1, J) 

The exact solution obtained from Hays [19] is evaluated at the 
nodal points to give 

1.377 

1.087 

0 

and the load carrying capacity W = 0.849. The finite element errors
in the nodal pressures are 

-0.1%

-2.2%

0

and for the finite differences they are 

-4.7%

-5.1%

0

These comparisons show that the finite element solution is sometimes 
above and sometimes below the exact solution while the finite dif­
ference solution is consistently below the actual value. Thus the 
weight carried as evaluated with finite elements is in error by 9.8 
percent and with finite differences is 15.0 percent in error. 

If only two type 1-2 elements with four nodes are used, the finite 
element solution for the only unknown node is Pu = 2.0 and W = 0.67 
while the finite difference method with only one node gives Pu = 1.50 
and W = 0.50 compared to the exact solution Pu = 1.77. Using two
type 3-4 elements so that the diagonal goes from lower left to upper 
right gives P11 = 2.0 and W = 0.33. The error in W with 1-2 finite el­
ements and finite differences are 21 and 41 percent, respectively. With 
the 3--4 elements the value of P11 is the same as for the 1-2 elements, 
but the error in Wis 61 percent because the type 4 element has zero 
pressure (ail three nodes are zero) so it carries no load. 

Another study of various methods of dividing up the lower one-half 
of the squeeze pad into elements is shown in Fig. 5 and Table 2. The 
most effective method of choosing elements is choosing diagonals 
(FEM # l) so that they are aligned v·ith the pressure gradient di­
rection which is radially outward from the origin of the xy coordinate 
system. The worst choice is diagonals nearly perpendicular to the 
pressure gradient direction (FEM #3). Table 2 shows that the error 
for FEM # 3 "is 2.3 times the error for FEM # 1 when 45 nodes are 
used. One reason is that the pressure over the entire element on each 
outside corner is zero since the three corresponding nodal pressures 
are all zero. Thus the corner elements make no contribution to the 
load carrying capacity if FEM #3 is used. Method FEM #2 has been 
used by other authors [9], but it gives significantly larger errors. 

Another study was carried out to evaluate the effect of varying the 
grid spacing to concentrate the elements either in the center or near 
the edge of the pad. The quarter pad was divided into squares whose 
successive side lengths increased or decreased by the ratio r in a 
geometric series. The optimum finite element method (FEM # 1) was 
used for all values of r. For this example the lowest error occurred with 
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Fig. 5 Comparison of error for square squeeze pad using the lower half of 
a square squeeze pad 

Table 2 Comparison of error in finite element and finite 
difference numerical solutions for one-half of 

square squeeze pad 

Number of % Error in weight capacity 
nodes used 
in half pad FEM #1 FDM FEM #2 FEM #3 

15(3x 5) 9.8 15.0 18.6 26.4 
28 ( 4 X 7) 5.2 7.2 9.1 12.8 
45 ( 5 X 9) 3.4 4.5 5.5 7.7 

r = ½ when a small number of elements was used and r = ¾ when the 
number of elements was increased (Table 3). Thus concentrating the 
nodes more toward the outer edge increased the accuracy, but not by 
more than a small percentage. 

4 Journal Bearing Analysis 

The effects of variable grid spacing and diagonal alignment were 
further investigated for the more practical problem of a plain journal 
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Table 3 Comparison of errors in finite differences and 
finite elements using variable grid spacing for square 

squeeze pad. The parameter r is the ratio of successive 
grid spacings 

Percentage error in weight carried by 
squeeze pad 

Finite elements using variable grid 
Total number spacing 

of nodes Finite 1 3 3 in quadrant differences r=- r =- r = l r =-
2 4 2 

4 (2 X 2� 41% 21% 21% 21% 21%
9 (3 X 3 15% 7.6% 8.3% 9.8% 13%

16 ( 4 X 4) 7.2% 4.5% 4.1% 5.2% 8.8% 
25 (5 X 5) 4.5% 3.6% 2.6% 3.4% 7.1%

bearing. It was assumed that the lubricant was incompressible and 
isoviscous with the properties 

R = 1.27 cm (0.5 in.) 
L = 2.54 cm (LO in.) 
c = 0.0127 cm (0.005 in.) 
Wj = 314.2 rad/s (3,000 rev/min) 
µ = 1.24 x 10-6 N-s/cm2 (1.8 X 10-5 reyns) 

Due to symmetry only one-half of the bearing was analyzed. The 
bearing surface was divided into. M nodes in the axial direction for 
one-half of the bearing length and N nodes in the circumferential 
direction. 

Finite element solutions for several cases were obtained using the 
formulation presented in the Appendix. The load capacity was cal­
culated after neglecting negative pressures t<:> account for cavitation. 
The bearing eccentricity was taken as 0.5657 and the attitude angle
as 45 deg. The finite element results are compared to an analytical 
solution to the problem [19] which gave a load capacity of 25.429 N 
(5.717. lb) when negative pressures are neglected.

The results for four cases are shown in Table.4. In the first method, 
the grid spacing was varied in direct proportion to the film thickness 
while the diagonals were aligned as in FEM # 1 for the half squeeze 
pad. The second method was the same except that the grid spacing 
was constant. For comparison, methods 3 and 4 represent aligning all 
of the diagonals in the same direction as used in FEM # 2 for the half 
squeeze pad with both variable and equal grid spacing, respectively. 
In all cases the axial grid spacing was taken as equal. 

As shown in Table 4, concentrating grid points where the pressure 
gradient is a maximum (near the minimum film thickness) and 
aligning the diagonals to best approximate the direction of the pres­
sure gradient over most of the bearing produces the least percent of 
error for a given number of nodes. The error given by methods 2 and 
3 shows that the effect of variable grid spacing and diagonal alignment 
is cumulative in improvement over method 4. In nearly all cases the 
error using method 1 was approximately two-thirds of method 4. 

Consider the case of 4 X 31 nodes using method 1 and 5 X :ll nodes 
using method 4 since both gave 4.9 percent error. If a banded Gaussian 
elimination scheme is used, it requires the inversion of N square 
matrices of order M by M. Inversion of a square matrix requires ap­
proximately M3/3 operations so that the use of method 1 results in 
a nearly 50 percent saving in computer time for this portion of the
analysis. As the number of circumferential grid points is reduced to 
11, this effect becomes more pronounced. A 3 X 11 grid using method 
I is more accurate than a 5 X 11 grid using method 4 while the number 
of operations is over four times as large. 

5 Discussion of Results and Conclusions 

The finite element method has heen fully developed in matrix form 
for those lubrication problems which can be divided up into elements 
suitable for labeling in an M by N matrix. Complete flexibility with 
regard to bearing geometry and boundary conditions has been re-
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Table 4 Comparison of the errors of the finite element 
method for a plain journal bearing considering variable 

and equal grids and two types of diagonal alignment 

Variable Equal Variable Equal 
Number of fr;ids grids grids grids 

nodes F M-=tl FEM #l FEM "=2 FEM -=2
(M X N) (% Error) (% Error) (% Error) (% Error)

5X 41 2.7 3.3 3.6 3.9 
4x 41 4.4 5.1 5.6 5.8
3 X 41 9.2 10.1 10.9 11.0 
5X 31 3.3 4.2 4.4 4.9
4X 31 4.9 6.0 6.4 6.8
3X 31 9.5 10.7 11.8 12.1 
5X 21 4.7 6.8 6.5 7.6
4X 21 6.3 8.4 8.6 9.6 
3x 21 10.7 13.0 14.1 14.8
5x 11 12.5 19.8 15.5 20.6 
4X 11 13.6 21.2 17.7 22.2
3x 11 17.1 25.0 23.2 26.6

tained. The resulting matrix equations for the nodal pressures are 
block tridiagonal in form. The bandwidth is minimized due to the 
formulation of the problem permitting a noniterati\·e solution re­
ducing computer storage and time. 

Analysis of the square squeeze pad showed that different types of 
boundary conditions, pressure, and mass rate of flow are automatically 
included in the finite element formulation of the problem. The finite 
difference formulation is simpler but must be modified to include four 
artificial nodes. The error analysis carried out indicates that the di­
vision of the bearing surface into elements is of importance if the 
lowest computation time is desired for a given level of accuracy. For 
the squeeze pad obtaining approximately 4 percent accuracy would 
require only 16 nodes if the best division scheme (FE:'.\1 # 1, r = ?'4) 
were used, but 36 nodes if a poor division scheme (FE.'.\I #3, uniform
spacing) were used. Clearly, a finite element computer program should 
be set up to automatically divide the fluid film into elements to 
minimize the error. Usually some clues as to the direction of the 
pressure gradient in the bearing are available before the problem is 
solved. These clues can be used by the programmer to align the di­
agonal sides of elements in the expected direction of the pressure 
gradient where possible. 

The journal bearing analysis revealed that both diagonal alignment 
and grid spacing are important in reducing error for a given number 
of nodes. When the grid spacing was varied directly as the film 
thickness and the diagonal sides of elements were aligned approxi-

z 

l::'::--1-_�
1 ::5______WJ 

-X=R8

Wb 

---------------X=R0 

y 

Fig. 6 Journal bearing splH at maximum film thickness 
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mately with the pressure gradient direction, a significant reduction 
in the number of operations required to invert the block tridiagonal 
matrices resulted. This reduction is of particular importance in re­
ducing computer time for a variety of practical problems. For example, 
a nonlinear time-transient analysis requires the calculation of the 
nodal pressures for each time step. Another example would be a finite 
element tilting pad bearing program that calculates equilibrium po­
sition and.bearing characteristics. The nodal pressure field must be 
determined for each pad iteration. A similar example is a finite ele­
ment gas bearing program where an iterative procedure is required 
since the density variation is a function of the pressure field. Because 
of the iterative procedures involved in each case mentioned before, 
the number of times the nodal pressures are calculated is increased 
manyfold magnifying the importance of proper grid spacing and di­
agonal alignment in keeping computer time to a minimum. 

The journal bearing analysis also showed that as the grid becomes 
coarser (number of nodes reduced) it becomes more desirable to use 
variable grid spacing and proper diagonal alignment. Often a coarse 
grid is required because of limitations on computer time. For example, 
consider a bearing program that determines equilibrium position and 
bearing characteristics. A coarse grid may be used first to determine 
an approximate equilibrium position. Then, the number of nodes may 
be increased and a more exact equilibrium position determined. 
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APPENDIX 

Equation (1) is solved using the fluidity matrix approach of [9). The 
functional in equation (1) is broken up into integrals over the indi­
vidual elements. Within each element, the pressure P is expressed in 
terms of the nodal pressures and linear interpolation functions [9]. 
The functional is then minimized by differentiating the total func­
tional with respect to all unknown nodal pressures. This minimization 
produces the following set of matrix equations. 

[Kp]" [Kp ]., 0 0 

[Kp]2, [Kp] » [Kp] 2, 0 

0 [Kp ln [Kp] 33 0 

0 0 0 [Kp] NN 

{P} i 

{Kux}i {Kuy}, 

{P} 2 
{Kux}

2 
{Kuy}

2 

X {P} 3 {Kux}, {Kuy}
3 

{P}N {Kux}N { Kuy}N 

{KJi}i {q}, 
{K,;}. {q� 
{Kh}, + 

{q� (A.l) 

{Kii}N q}N

The Jth column of pressures is related only to the J - 1th and J + 
Ith column producing the tridiagonal form shown. The components 
of the pressure fluidity matrix [Kp] are matrices of order M X M 
corresponding to the Jth column of M nodes. This may be written for 
the Jth column as 

[Kp)J,J-1 IPlJ-1 + [Kp]J,J IPIJ + [Kp]J,J+1 IPIJ+l 
= - IKuxlJ - IKuylJ - (K,;IJ + (qlJ, J = I, 2, ... , N (A.2) 

where 

0 

P, 

0 

0 0 

{Kux}J 

Kux1 

Kux� 

0 

0 

0 

J,J 
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Kuyl 

Kuy2 

{Kuy}J Kuy3

KUyM J 

Ki,1 q, 

K i.2 q2 

{K,;}J K;.3 {q}J q, 

K;.,M J q,'\,f J 

Only the subscripts outside the brackets change in writing similar 
expressions for [Kp]J,J-L [Kp]J,J+I, and IPli-1, and IPIJ+I· 

The individual components of all three types of block fluidity 
matrices are also tridiagonal in form. Considering first the lower di­
agonal block pressure fluidity matrix, the components associated with 
the/, Jth node are 

K
pl,I-l(J,J-1) = K};J;;l,J-l,1) + Kt01,J-l,2) 

KpJ,I(J.J-1) = K};;;;l,J-1,2) + Kti71,J-1,4) 

+ K}f;t-1.1> + K}f;t-1,3> 

K
pl,I+HJ,J-11 = K};jt-1,3> + K};kj-1,,>

(A.3) 

(A.4) 

(A.5) 

The components of the main diagonal block pressure fluidity matrix 
are 

K
pl,I-i(J,J) = K};;Tl,J-1,I) + K};;,;1.J-l,4) + K};;'j l.J.2) + K};;;;l,J,3)

. 
(A.6) 

K
pl,I(J,J) = K}fjjl,J-1,1) + K};kkl.J-l.2) + Kti; l,J-1.4) + K};;f-1, 1) 

+ K};;f-1,3) + K};k'f.-1,4) + K};;'"i l,J,2) + K};;;
k
l,J,3) + K};;'"j'·J,4) 

+ K};/.1 > 
+ K};;f-2l + K};;f,3> (A.7)

K
pl,I+l(J,J) = K};:f-!,l) + K};k1-l,4) + K};j7'2) + K};d·3' (A.8)

Since 

It is apparent that 

K
pl-1,I(J.J) = KpJ,l-l(J.J) (A.9) 

so that the [Kp]J.J matrix is symmetric. The components of the upper 
diagonal block pressure fluidity matrix are 

KpJ,l- l(J.J+1) = K};kjl,J,3) + K};1,; 1,J,4) (A.IO) 

K
pJ,l(J.J+I) = K};;,;l,J,2) + K};;Tl,J,4) + K};d·l ) + K};:f·3) (A.11)

(A.12) 

Comparing these components with equations (A.3) -(A.5) shows 
that 

(A.13) 

and the columns of the right-hand side of equation (A.2) are 

Ku:r.:{(J) = K'6;l-J-l,l) + K'6;1·J-l,2) + K'6;rJ-l,4) + Kfyf,-1, 1) 
+ K�i-1,3) + Kf'l�t l,4) + K'/;;;1,J,2) + K�Ji;V3) + K'6;J,J,4) 

+ K'/tf,1) + Kfy_f;,21 
+ K�ft

31 (A.14)

The expressions for they shear and squeeze columnsJl.re the same as 
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equation (A.14) except that Uy or Ii, respectively, replaces Ux in the 
subscripts. Similarly, the boundary flow'column is 

QJ(J) = qy-1,J-l,l) + ql[-l,J-1,2) + qf-1,J-1,4) 
+ qv·J-1.1) + qy.J-U) + qlf·J- 1,4) + qv-1.J.2) + qlf-1,J.3) + qy-1.J.4) 

+ qf,J,o + qf,J,2> + q}1,J,3> (A.15)

Certain subscript and superscript conventions apply to equations 
(A.3)-(A.15). On the left-hand side, the capital letter subscripts before 
the parentheses describe the position of the component within the 
block fluidity matrix or column and the capital letter subscripts inside 
the parentheses describe the position of the block fluidity matrix 
within equation (A.I). On the right-hand side, the first two capital 
letter superscripts give the nodal coordinates of the upper left-hand 
node associated with the element and the third superscript (a number)

° 

indicates the type of element. The small letter subscripts refer to the 
location of the element fluidity matrices and columns. Overall the 
capital letter subscripts range over the same values as the number of 
nodes 

I= I, 2, ... , M 

} 

J = I, 2, ... , N 

subscripts 

while the capital letter superscripts in parentheses refer to the ele­
ments so they range over the values 

I: I, 2, ... , M -1

} superscripts in parentheses 

J - 1, 2, ... , N - 1 

It should be noted that these are completely general and that no 
problem requires that they all be calculated. First, the choice of 1-2 
or 3-4 type elements is made which eliminates half of the terms. 
Second, since the main diagonal block pressure fluidity matrices are 
symmetric, equation (A.5) is not required. Equation (A.9) shows that 
the lower diagonal block pressure fluidity matrices are obtained from 
the transpose of the upper one or vice versa. Third, the boundary flow 
is evaluated only along the portion of the boundary where the flow 
is specified, Cq (usually not specified in lubrication problems) and 
all of the elements which do not have sides along Cq are not calculated: 
Of course all of these quantities are easily incorporated into an au­
tomatic computer program. 

The elements are chosen small enough so that the parameters p, 
h, µ, U:r.: , Uy , ah/at, and q0 are assumed constant within an element. 
The pressure, x shear, y shear, squeeze, and boundary flow fluidity 
matrices are 

Kt1tn = [½ phcnUy r
>

tel [I a ]''> 
K· = - -- (ph)A hn 3 at 

( ) [ 
1 ](e) 

Qn' = 2 �q:,.;n:r.; + qyny)Cq 

where the interpolation constants are 

[' T' r-
Yh 

x,
-

x
r 

bi Cj Yh- Yi Xi -xk 

bh Ck i - Y; Xj -X; 
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(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

(A.21) 
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and the area is given by the determinant

2A <e> =

1 1

Yi Yj

Similar expressions may be found in [9].

1 

(A.22) 

The same analysis can be carried out for a rotating bearing such as
a journal, partial arc, or multilobed bearing. Consider a shaft of radius

R rotating with angular velocity Wj in a journal bearing rotating with
angular velocity Wb- To maintain consistency in coordinate systems.
unwrap the bearing and journal as in Fig. 5. Now, as before, the z­

direction is across the film while an x and y may be used to locate the 
nodes. Equations (A.16), (A.19), and (A.20) remain the same while 
Equations (A.17) and (A.18) become

> [ph ]'e>
Kl5rn = 

4
R(wb + Wj)bn 

K)1_!n = 0

Note that x = RO in equations (A.21) and (A.22).

(A.23)

(A.24)

----.uOISCUSSION-------------------------------

S. M. Rohde2 

The authors have presented some interesting numerical results
pertaining to the application of finite element methods to lubrication
problems. Their conclusions regarding mesh orientation and refine­
ment agree with our own experience. In fact, in [20]'1 an analysis of the
linear equation at each node arising in both the finite difference and·
finite element formulations for the squeeze film problem was per­
formed. Numerical comparisons similar to those presented in this
paper were presented there. In particular, it was shown that the
pressure distribution corresponding to (in the present paper) FEM
# 2 is everywhere greater than that of FEM # 3.

A key and perhaps the most important point which the authors
make is that for rectangular or "rectangular-like" regions the FEM
topology becomes particularly simple leading to reduced bandwidth,
etc. Furthermore. a large class of lubrication problems fall into this
category. These facts were noted several years ago by the discussor
[21]. Likewise it was also noted in [2) that such an "indexing" could
be efficiently used to incorporate Reynold's boundary condition with
an iterative scheme. More recently that construction was proven
[22).

As noted in [21], any region which is "mappable" into a unit square
can be indexed like the unit square. In this respect the unit square is 
a .. canonical" region. Recent advances in automatic mesh generation 
[23, 2-1] have been based on precisely such mappings. We have recently 
used this approach (and some modifications) for generating two and
three dimensional finite element discretizations. We will now illustrate
the potential of the method of generating a FEM mesh via some ex­
amples. The reader is referred to [23, 24] for a complete treatment.

Basically, as shown in Fig. 7, a mapping is desired which maps the
unit square S, US s S 1, 0 St S 1 onto the region R which is to he
discretized. The mapping [25) is to take the interior of S onto the in­
terior of Rand the boundaries of S onto the boundaries of R. Every
point in the interior of R is to he the image of a unique point in S.

Denoting the four boundaries (curves) of R by f; as shown, in Fig. 7
a hilinearly blended transfinite interpolant may he written as

!
x(s, t)

) = F(s, t) = (1 - .s )fi(t) + sf2(tl 
y(.s, t) 

+ (I - tlf,b) + tf4 {s) - (1 - s)tr,(1) - s(l - t)rJO) 

- (1 -s)(l - t)f:i(O) - stf 1 (1) 

Equation (1) provides a suitable mapping of the interior (and
boundaries/ of S onto the interior (and boundaries) of R. Our expe­
rience with equation (1), which represents the simple�t form of the
transfinite interpolant [23, 24], has been very good. To use this rep­
resentation one merely programs the four parameterizations of the

"Research Lahoratories, (ieneral Motors Corf'., Warren. Mich. 
a Numhers in brackets designate Additional References at end of papPr.
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Fig. 7 

Fig. 8(a) 

Fig. 8(b) 
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Fig. B(c) 

-boundaries. Picking these parameterizations as well as the appropriate
four boundaries can, however, sometimes require some experimen­
tation. Here an interactive g raphics terminal is almost mandatory. 
Figure 2ashm,,;s a uniform 10 X 10 mesh dividing S. Fig. 8(b) shows
a simple mapping in which

f1(t) = {
�} 

{l + sin 1rt} 
f.,(t) =-

t 

f:l(s) = f �l 
f4(S) = r;J. 

Fig. B(c) shows a more severe situation in which 

In Fig. S(d) we have 

) 
{
0.4 sin rt}fi(t = 

11 + 0.2 sin:l-irt J f:!(t) =

ls If:1(.�) =
0 

10. l �in 11'l)l 1 (t) = 

{ l + 0.15 sin 2,rt j tAt) 

{ s
1 

f·i(s) = · 
0.2 sin ;rs 

f4(s) = 
{ s 

I l + 0.2 sin r.� 

Finally in Fig. B(e) we have 

,.(t) = 
!0.2(1 - t

)l 
0 

{ l - 0.3( (l - t) I,.,(t) =-
. 0 

) {-0.45 - o.25 cos .,,::; 
I l:1(s = 

0. 25 sin 1r.< 
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Fig. S(d) 

Fig. B(e) 

{�). 0 :S S :S 0.3 

{(s - 0.3) /0.4) f4(s) = , 0.3 < s :S 0.4
0.3 

I 1
.
0 I (

1
.
0

-s) 
, 0.7 < .� :S l 

In conclusion it should be emphasized that the inclusion of an auto­
matic mesh generation scheme such as presented in this discussion•. 
represents an extremely simple addition to a finite element lubrication 
code and is well worth the effort, 
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J. F. Booker4 

It is a good sign to find so many authors and discussors using the 
finite element method in lubrication. The method has come a long 

4 Associate Professor, School of Mechanical and Aerospace Engineering, Cornell
University, Ithaca, N. Y. 
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way in quite a short time (as these things are measured). 
. The present paper and much of the earlier discussion centers on 

the mapping of bearing pads onto a generic rectangle for purposes of 
mesh generation. While this is certainly appropriate for many bearing 
and grooving geometries, the resulting regularity of nodal spacing is 
of some concern. One of the great putative advantages of the finite 
element method over the competing finite difference method is the 
ease with which meshes can be refined locally as required for solution 
accuracy. One hopes that this possibility is not being compromised 
too greatly in the schemes of the authors and discussors. 

The authors have considered in some detail the matter of optimal 
mesh design. The finding that meshes should be finest in regions of 
high pressure gradients is, of course, not unexpected. It leads imme­
diately to the awkward situation (found in other application fields 
as well) that the optimum problem formulation depends on the so­
lution! The iterative process suggested by this paradox is being pur­
sued actively in the structural mechanics field at present; perhaps 
some impact of that work will be felt in our own field before too 
long. 

A. Curnier5 

Along the plan followed by the authors, three subjects may bi
distinguished: 

1 The pressure variational principle formulation which is quite 
classical and does not call for any comment; 

2 the bandwidth minimization: the current trend is to relieve the 
user from being too much concerned with minimizing the bandwidth 
of his mesh by using, for instance, profile storage and solvers; 

:l the mesh design optimizations: the paper provides very helpful 
practical guidelines for the user to design a near optimal mesh based 
on the intuitive picture of the solution: 

(a) Align the diagonals dividing the preliminary quadrilaterals 
into the definitive triangular elements with the expected pressure 
gradient directions 

(b) concentrate nodes where large pressure gradients are ex­
pected. 
These two qualitative results can be explained and to some extent 
quantified as it is sketched now: 

(a) Linear elements do preserve the continuity of pressure gra­
dients inside an element and hereby along each side of the diagonal 
element interfaces: they do not preserve it across such diagonals. 
Result;� (a) is a consequence of this remark .. 

(b) For a linear element used to solve a second order elliptic 
problem like the one at hand, the error pressure is expected to de­
crease as the square of the mesh refinement: 

if p = exact pressure 
p" f.e.m. pressure 
h mesh coarseness characteristic dimension (h = max 

lh1 I, hi = side length of triangle j = 1,3 
C constant (element, p") 
IIPI I;= f !!(p2 + p-2 + __ . + pC-<l2)dH 

then 11 p -p1, 11., = C-'h 2-,, and in particular 
Jlp-p,,JJn=Cr/12 

Therefore the only limitation on the rate of convergence (for a given 
problem and a given element) is the smoothness of the solution p. 

The above rate of convergence is in the mean, for a regular mesh 
and without singularities. The pointwise convergence rate can be 
expected to be the same for a smooth solution and in fact 

IP, - Ph,I.< � C.h 2
-H IP,'2 

where e = element 

'' Ph.D. student. Division of Structural Engineering and Structural Me­
chanics, University of California, Berkeley, Calif. 
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lpl;= l,(pf.,)2)dQ 
J!� 

Since h, µ, ux , u, are chosen constant over an element, the soluti_on
p exhibits singula�ities (probably more drastic as h decreases). With 
a regular mesh, the order �f convergence wil� definite!! be �=�uced. 
However, by properly gradmg the mesh ( that 1s by keepmg h. IP, I 2 
roughly the same from one element to the next) the same orde� of 
accuracy can be achieved for a triangular as for a regular solut10n 
p. 

Finally, it is recalled that the strict Ritz procedure always corre­
sponds ,to an approximation which is too "stiff." The dis�rete energy 
exceeds the exact one which corresponds to an underestimate of the 
pressure gradients and pressures. This is true in the mean only since 
the link between energy and pressure is not strictly monotone. In other 
words p" may exceed p in some parts of the mesh and still have 
smaller derivatives in the mean square sense. This can be changed by 
using a dual or hybrid formulation. 

Results concerning rectangular and higher order elements can be 
obtained along the same lines. 

Authors' Closure 

The authors would like to thank the three discussers of the paper 
for their constructive comments. We are glad to see so much interest 
in the method developed here as we feel it provides detailed structure 
to material noted by other authors where little is explored in 
depth. 

In the first discussion, substantial agreement with the authors work 
for the squeeze film problem is noted and some additional recent 
references are included. A useful mesh generation scheme particularly 
suited to the matrix labeling technique employed in the _paper is 
presented. It appears to the authors that the matrix labeling facilitates 
automatic mesh generation of this and other types. In fact, the de­
velopment of practical analysis computer programs for nonresearch 
engineers almost requires automatic schemes. 

The second discusser is to be strongly commended for his excellent 
work in finite element analysis. It seems that the question of refining 
meshes locally has usually been done by adding a few extra nodes in 
the region where greatest accuracy is desired. Often in complex 
structural problems many of the nodes are assigned by hand so that 
adding another few nodes is much easier than regenerating a sub­
stantial portion of the mesh. Perhaps it is time to consider that the 
flexibilitv of the finite element method should be used to concentrate 
the grid points in the desired region using a combination of automatic 
mesh generation scheme and some sort of simple user assigned con­
centration factor. Simply adding a few nodes in one region can greatly 
increase the matrix bandwidth (and solution time) for the sake of only 
a few additional nodes. It should be emphasized again that the method 
developed in the paper does not depend in any way upon the regu­
larity of nodal spacing but only on the regularity of the nodal num­
bering process. The relation between the two depends upon the in-
genuity of the programmer. 

. . In the third discussion the comments are more mathematical m 
nature. The continuity of pressure gradients preserved along the sides 
of elements, but not across them, has been observed by Oden (10] and 
other authors. Noting this point does, however, contribute to under­
standing the results for optimum alignment of the diagonals. Certainly 
much more work can be done with regard to other element configu­
rations. 

In the time since the paper was written and accepted for publica­
tion, the method described here has been applied to many practical 
applications. It has proved useful in analysing partial arc, axial groove. 
multilobe, tilting pad, and pressure dam bearings. In most industrial 
applications the load is known while the equilibrium position must 
be found by an iterative process. A coarse grid system using ap­
proximately 3 axial node points and 9 circumferential node points per 
pad is used to obtain a first estimate of the equilibrium eccentricity 
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Fig. 9 Bearing characteristics versus Sommerfeld number and eccentricity 
ratio for a 5 pad lilt pad bearing 

and attitude angle. Then a full grid system of, say, 5 by 31 nodes per 
pad is employed. For eccentricities around 0.5, this reduces the 
number of full grid iterations to 2 or 3. A casual survey of computer 
execution times indicates approximately a 50 percent saving by using 
the coarse grid system. Numerical differentiation is then used to de­
termine dynamic coefficients and the Routh criteria used for the 
stability of each bearing. Thus even the linearized bearing analysis, 
as opposed to a transient one, for a four pad multilobe bearing can 
involve 36 solutions of Reynolds equation to obtain the equilibrium 
position. This includes taking four pads per evaluation, three evalu­
ations to determine the appropriate slopes for a Newton Raphson 
iterative process, and three iterations. Furthermore, 32 more evalu­
ations are required to determine the dynamic coefficients (taking four 
pads and central differences for the coefficients). The situation is 
much worse for tilt pad bearings when pad iterations are necessary. 
Clearly the consideration of error and computer time saving is not 
merely academic. 

To further demonstrate the practical applicability of the method 
outlined in this paper, Fig_ 9 presents stiffness and damping coeffi­
cients for a 5 pad tilt pad bearing_ These coefficients were determined 
using the finite element analysis outlined here and the pad assembly 
method (25].� These coefficients may be used in critical speed and 
stability programs when rotor-bearing systems are analyzed. Also, 
these coefficient.� may be employed in a linear time transient program. 
Finally, the characteristics may be used in a simple stability analysis 
for the bearing. A sample stability curve is shown in Fig. 10 for a :.! pad 
multilobe hearing where 

LID= .75 

X = 100° 

a= _g 

and the loading is on the center of the bottom pad. The finite element 
solution is compared to a long bearing solution with end leakage 
correction (26] and a finite difference solution (27]. The stability 
parameter. w., is discussed in detail in references [26] and [28]. 
Additional Nomenclature 
c = pad radial clearance, (mm) 

6 Numbers 25-28 in brackets dei;ignate Additional References at end 1,f clo­
sure. 
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Fig. 10 Stability threshold versus Sommerfeld number fbr three pad mullilobe
bearing. 100° pad arc length, ollset factor 0.8, preload 0.7, load on center of
pad, L/D = O. 75 

Cb = bearing radial clearance, (mm)
Cr, Cyy = principal horizontal, vertical damping coefficients, (N­

-s/mm) 
- -;,; C 

cw;
C 

cw; - . . • 1 h . taJ Cu, Lyy = "'" --, yy 
--, d1mens1onless prmc1pa orizon • 

Wr Wr 

,·ertical damping coefficients 
D = bearing diameter, (mm) 
K.m K."Y = principal horizontal, vertical stiffness coefficients. (N/

mm)

Ku. K_,_. .= Ku ;
T

. Kyy ;
T

. dimensionless principal horizontal, 

,·ertical stiffness coefficients 
L = bearing length (mm) 
.\I' = journal mass (N-s2/mm) 

mh = 1 - Cb' bearing preload factor

.V, = journal rotational speed. (rev/s) 

, µN,LD (R)2 , d b S = --- - , Sommerfel num er 
Wr c 

Irr = bearing external load, (N) 

a =
6
P, bearing offset factor 
X 

<n = bearing eccentricity ratio 
11

1
, = angle from leading edge of pad to pad pivot point, (degrees) 

, = pad arc length, (degrees) 

\ 
cM' 

b"l' ..,_ = Wj --, sta 1 1ty parameter 
Wr 
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