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ABSTRACT 

Recent advances in digital computing resources have made 
the analysis of large nonlinear rotor-bearing systems practical 
in a desktop computing environment. With modern personal 
computers and workstations, it is now possible to perform 
large time transient numerical solutions of nonlinear models 
that previously could only be approximated as linear systems 
due to limitations in computing capabilities. Summarized in 
this paper is a transient rotordynamic analysis based on 
modal techniques that incorporates an efficient model for a 
nonlinear squeeze film damper. An application is presented 
in which the analysis is used to predict nonlinear unbalance 
response in an aircraft turbofan engine for the optimization of 
squeeze film damper and bearing support characteristics. The 
efficiencies of the modal approach yield typical run times of 
less than 20 minutes on a 300 MHz desktop computer. 
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INTRODUCTION 

Vibration analysis of rotor-bearing systems has historically 
contained a number of approximations due to the limitations 
in computing resources and, in some cases, an incomplete 
understanding of the physics involved. One common 
approximation that remains prevalent even today is the 
assumption of linearity. By approximating a nonlinear 
structural system as linear, the model may be constructed of 
ordinary differential equations that are easily solved in closed 
form, thereby minimizing the computing requirements. In a 
steady-state linear solution of rotor unbalance response, the 
rotor, bearing, and any support structure such as bearing 
pedestals are modeled using well known beam theory for the 
rotor and lumped parameter or plate/shell theory for the 
foundation. A global system of mass, stiffness, and damping 
matrices is constructed with the nonlinear elements assumed 
to behave linearly about an equilibrium position. With these 
"linearized" oil film and seal coefficients inserted properly into 
the system matrices, a harmonic solution is assumed of the 
form 

X(t) = Xe 1,.,, = X,cos(wt) + X
1
isin(wt) (1) 

with a forcing function of the form 

F(t} = Fe 1,.,t = F,cos(wt) + F
1
/sin(wt) (2) 

Using complex variables, the solution of forced rotor response 
to unbalance is easily achieved in closed form for each rotor 
speed. While economical and straightforward compu­
tationally, this approach neglects important aspects of the 
physics acting in many systems which contain nonlinear 
elements or become subjected to transient events. One such 
system is a rotor running in oil film bearings or squeeze film 
dampers. In such a system, the assumption of linearity can 
overlook important effects such as asynchronous whirl, limit 
cycles, nonlinear jumps, and dry rubs. 

A more general and comprehensive approach for computing 
forced vibration in rotor systems is through time transient 
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numerical integration. A number of researchers [1--6] have 
developed and applied transient methods in rotordynamics. 
With a transient analysis, the rotor model degrees of freedom 
are marched forward in time through a force balance at each 
time step. This allows any nonlinear elements to be included 
directly as long as their forces can be represented as a 
function of position and velocity states. Supersynchronous 
and subsynchronous vibrations are included implicitly in 
transient analyses because of the absence of the synchronous 
harmonic restriction. Transient events are also characterized 
inherently by a transient marching solution as long the time 
steps are fine enough to simulate the transient disturbance 
and the resulting response. It is because of this generality 
that transient solutions are such powerful tools for simulating 
the wide variety of effects that can play in rotordynamics 
simulations. 

ROTOR-SUPPORT MODEL 

Illustrated in Figure 1 is a general two-level rotor-support 
model showing the major components represented by the 
transient analysis model. The first level outboard of the shaft 
is labeled the "oil film" and connects the rotor with the 
pedestal supports. The oil film may be one of a number of 
different linear or nonlinear elements including fixed-geometry 
bearings, tilting pad bearings, labyrinth seals, or squeeze film 
dampers. These are represented by direct and cross-coupled 
stiffness and damping coefficients in a linear model, or by 
state-dependent forces in a nonlinear analysis. In the current 
transient analysis, the oil film consists of a squeeze film 
damper model based on a closed form pressure integration. 

Outboard of the oil film is a lumped-mass support model that 
can represent support structures such as bearing pedestals, 
turbocharger housings, or simple engine casings. The outer­
most level connecting the pedestals to ground is represented 
by constant damping coefficients and stiffness coefficients 
having either linear, quadratic, or cubic force-displacement 
characteristics. The stiffness and damping coefficients in the 
support m9del contain both principle and cross-coupled terms. 

Moo,.L REPRESENTATION 

In a modal transient solution, the undamped or damped 
modes are first computed and the resulting eigenvalues and 
eigenvectors are used to transform the physical equations into 
a reduced set of modal equations. A transformation of 
coordinates is then implemented as follows, based on the 
system vibration characteristics 

(3) 

where {u} is the vector containing the physical nodal 
displacements of the system, [ct,] is the matrix whose columns 
are the eigenvectors, and {q} is the vector containing the 
modal displacements. The subscripts n and m are the 
number of physical degrees of freedom and the number of 
modes retained, respectively. The modal equations represent 
the complete physical system with an uncoupled set of modal 
coordinates, rat�er than a coupled set of physical coordinates. 
This approach is appealing in that it allows the deletion of 

2 

Figure 1. Two-Level Rotor Model. 

higher frequency modes that have little participation in the 
dynamic response, yielding significantly fewer degrees of 
freedom than the original physical model. Similar methods 
have been used for transient simulations by Adams [3], 
Choy [4], and Hassenpflug [5]. 

MODAL EQUATIONS OF MOTION

Development of the modal equations of motion begins with 
the general second order differential equation of motion 
expressed in matrix form as 

[M]{ii(t)} + [C]{ti(t)} + [KJ{u(t)} " {F(t)} (4) 

For computation of the real modes, the damping and forcing 
function are dropped, leaving the undamped homogeneous 
equation 

[M]{ii(t)} + [KJ{u(t)} = 0 

Assuming a solution of the form 

u(t) : Ae 1
"'' 

then the second derivative becomes 

ii(t) = -w2u(t) 

(5) 

(6) 

(7) 

Substituting Equation 7 into the homogenous equation of 
motion yields the standard undamped eigenvalue equation 

(8) 

/ 



Where v, are the eigenvectors, from which the orthonormal 
modes may be computed as 

(9) 

The orthogonality conditions for the modes are 

Returning to the undamped rotor equation of motion given in 
Equation 5, we now add the unbalance forces, support forces, 
and gyroscopic forces on the right side and drop the time 
dependence to give the non-homogeneous equation of motion 
as 

where 

F, " Total Force Vector. 
F ub = Unbalance Forces. 

F
11
up = Support Forces.

Fgyr = Gyroscopic Forces. 

The unbalance forces for any station, i, are defined by the 
unbalance masses, Mi.c, eccentricity, e, and phase angle, 4>,
for station i as 

The gyroscopic moments for small displacements without 
rotor acceleration effects are 

(13) 

Note that the gyroscopics forces couple the rotor horizontal 
and vertical responses, but the modes can remain in 
uncoupled form as long as the forces are applied on the right 
side of Equation 11. 

The modal transformation is based on the assumption that the 
physical responses are expressible as a linear combination of 
the modal responses transformed by the mode shapes as 

{u} = [q>]{q} (14) 

Substituting this transformation into Equation 11 yields 

[M][cj)l{q} + [K](q>]{q} = {F1} (15) 
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Premultiplying both sides by the transpose of the mode 
shapes gives 

[4>JT[M)[q>J{q} + [qi] T[KJ[<l>){q} = [4>t{F,} (16) 

Substituting in the orthogonality relations of Equation 1 O 
yields the uncoupled modal equations of motion as 

{q} + [w2]{q} = {f} (17) 

where {f} is now the modal force vector after transformation 
to modal space. Since the modes remain uncoupled, the 
modal equations may be solved individually as

•• 2 
' qi + W1 qi 

= I (18) 

It is common to include the effects of material damping in the 
rotor through a modal damping term,�. for each mode to yield 

ii, + 2w1(1q1 + w� q1 f1 (19) 

This is the form of the modal equations which are assembled 
for solution by transient numerical integration with the modal 
forces, fr, and the modal responses, q;, evaluated at each time 
step. An iterative predictor-corrector integration scheme is 
implemented using a central difference predictor step in 
combination with a Newmark Beta corrector step. 

SQUEEZE FILM DAMPER MODEL 

Current trends in turbomachinery design for increased 
operating speeds and higher specific power levels have led to 
lighter and more flexible rotor-bearing systems. With the 
higher power levels also come increased fluid pressure 
gradients that introduce more of the destabilizing forces 
associated with fluid cross-coupling effects. Consequently, 
there are an increasing number of designs that require the 
supplemental damping of a squeeze film damper mounted 
concentrically with the existing oil film or rolling element 
bearings to help attenuate the vibration response. This is 
especially true in applications such as aircraft engines that 
use rolling element bearings instead of fluid film bearings, 
where the inherently low damping of the rolling element 
bearings alone would not be sufficient to attenuate the· 
vibration response as critical speeds are traversed. In such 
systems, it would often be impossible to run at all without the 
supplemental damping offered by squeeze film dampers. 

Illustrated in Figure 2 are end and cross sectional views of a 
squeeze film damper showing the geometry and coordinate 
conventions. The damper consists of inner and outer sleeves 
separated by a thin film of oil. Often there is a circumferential 
oil supply groove to distribute oil around the damper. 
Sometimes there are end seals to allow pressurization of the 
damper oil film for reduction of cavitation. Other dampers are 
open on the ends so that the oil drains to the surrounding 
ambient pressure. Geometrically, a squeeze film damper is 
very similar to a plain journal bearing except that there is no 
rotational velocity. Because of this relatively simple geometry 
that is continuous in the circumferential direction, a squeeze 
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Figure 2. Squeeze Film Damper Geometry. 

film damper may be modeled with good accuracy in closed 
form. 

A brief discussion of the theoretical damper pressure and 
force expressions is given below for understanding of their 
use in the transient integration model. A full development of 
the isoviscous squeeze film damper theory is given in [7]. 

Development of the damper force expressions begins with a 
second order partial differential fluid equation called Reynolds 
Equation which is given as 

.2...[� aP] = w1 
ah + 2 ah

az 6µ az ae at
(20) 

If the bearing is relatively short relative to the diameter 
(L !. 0.50), the parabolic pressure distribution of Figure 3 may 
be assumed in the axial direction with the peak pressure 
located at the axial centerline. With this pressure distribution, 
the pressure gradient, aP1az, is zero at Z=Ll.2. The pressure 
must also drop to xero at Z=0 and Z=L. With these 
assumptions, the Reynolds Equation may be integrated twice 
with respect to Z to yield the pressure as 

P(0,Z) = 3µ (z2 - LZ) ( (J)J 
ah + 2 ah) 

h3 ae at 

j oP/az • 0 
/ 

p •0 

"'�=======,; 

-Ll2-
1 

-----L----

Figure 3. Short Bearing Axial Pressure Profile. 

(21) 
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The derivatives of film thickness with respect to e and t are 

ah = xsin(0) -ycos(0)
ae 

ah = - xcos{8) - ysin{8)
at 

(22) 

The incremental force acting on the journal is expressed in 
terms of incremental values of e and z as 

l!.F = -P(8,Z)Rd0dZ (23) 

The total force components in the x and y directions are found 
by integrating the incremental forces over the entire journal 
surface to give 

F" = -J
0

2"J/P(8,Z)Rcos(8)dZd8 

F
y 

= -t"f/ P(0,Z)Rsln{8)dZd8
(24) 

Substituting the expressions for ah/00 and ah/at into the 
pressure equation, dropping the journal spin rate, and 
integrating around the bearing circumference gives the final X 
and Y direction journal forces as 

{F"} = 1,JRL 3 (
2

• (.xcos(0) -t }'sin(0)) {C?s(0)}de
F, J

0 (c -xcos(0) - ysin(0))' sm(B) 

(25) 

This journal force expression was incorporated into the 
transient analysis for exaluation of the instantaneous damper 
forces at each integration time step. 



AIRCRAFT TURBOFAN ENGINE 

An aircraft turbofan engine high pressure (HP} rotor was
analyzed using the nonlinear model to predict the sensitivity
to varous levels of rotor unbalance. Two in-flight failures
involving severe rotor-to-stator rubs were believed to be the
result of high unbalance sensitivity caused by the
nonlinearities in the original short damper design. 
Consequently, the objective of the rotordynamic analysis was
to establish a set of design recommendations that would help
prevent future rub incidents through improvements to the
bearing damper design.

Illustrated in Figure 4 is a cross-sectional view of the HP rotor
from a finite element model developed to study the rotor
centrifugal growth. The running speed range is from idle at
15,000 rpm, to full-throttle at 30,000 rpm. Bearing number 1
at the compressor end is a ball bearing supported in a
squeeze film damper, while bearing number 2 is a roller
bearing mounted directly to the casing.

Illustrated in Figure 5 is the rotordynamic model developed to
compute critical speeds and response of the HP rotor. Mass
and inertia properties are lumped at four stations
corresponding to the three compressor stages and the turbine
stage. The casing substructure was modeled through
elastically-supported lumped masses. Substructure stiffnesses

HP ROTOR CROSS SECTION FROM FEA MODEL 

Figure 4. Cross-Sectional View of Engine HP Rotor. 

ROTORDVNAMIC MODEL OF HP ROTOR 

_J? 
• 

-­
.. I.Ml.If/Ill 

--

---

Figure 5. Rotordynamic Model of Engine HP Rotor. 
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of 4.0 x 105 lb/in and 1.5 x 105 lb/in were used the number 1
and number 2 bearing locations, respectively.

The first three undamped rotor mode shapes and natural
frequencies are shown in Figure 6 for the HP rotor with the
damper stiffness set to 2.0 x 105 lbf/in. The undamped
frequencies do not match exactly the corresponding damped
critical speeds because they have constant dynamic
coefficients and are without a frequency-dependent force
excitation. However, they do characterize very well the
general behavior and mode shape of each mode.

The first undamped critical speed at 8891 rpm is the classic
first rigid rotor conical mode typical of relatively short, stiff
rotors. Because nearly all of the modal compliance is in the
number 2 bearing, rather than the rotor, the bearing and
support stiffness is the primary modal compliance controlling
this mode. With no damper at the number 2 bearing, this
mode is poorly damped and exhibits a high amplification
factor as it is traversed. Fortunately, at 8891 rpm this mode
is well below the running speed range of 15,000 to 30,000
rpm, making it inconsequential as long as the balance
condition is good enough to allow safe traversing of this mode
during startup and coastdown.

The second critical speed at 19,514 rpm is also a conical
mode, however now exhibiting more rotor bending than the
first mode. Like the first mode, the primary controlling
compliance is from the bearing and substructure, making the
modal frequency and response amplitude very sensitive to
bearing stiffness and damping changes, respectively. While
the computed frequency is 19,514 rpm, it should be
remembered that this mode can vary in frequency from
approximately 14,000 rpm to 26,000 rpm, depending on the
damper effective stiffness and the unbalance. Since the
damper stiffness is highly dependent on the whirl amplitude,
which in turn is dependent on unbalance, this mode exhibits
unbalance-dependent frequency ch aracteristics.
Consequently, this mode can be driven well into the operating
speed range with the introduction of a large unbalance source
or sudden disturbance such as compressor surge.

The third mode is fundamentally different from the first two
modes because this is the first flexible-rotor mode, where the
bearing and support properties have a minimal effect on the

Figure 6. First Three Rotor Undamped Mode Shapes.



frequency or response amplitude and the rotor stiffness is the 
controlling compliance in the mode. Fortunately, this mode 
has a much higher computed frequency of 52,082 rpm, 
placing it well above the rotor operating speed range and 
making its effects on the rotordynamics inconsequential. 

Computed rotor unbalance response at the rub area between 
compressor stages 2 and 3 is shown for four unbalance levels 
in Figure 7 with a damper geometry similar to the original 
"short" damper. The curves were generated by ramping the 
rotor speed from 5000 rpm to 35,000 rpm over a 30 second 
time interval. Inspection of the four curves reveals a 
stationary, linear first mode at approximately 8500 rpm. In 
contrast, the second mode reflects a dramatic nonlinear effect 
with an increase in both amplitude and frequency over the 
unbalance range plotted. The frequency increases from about 
14,000 rpm to around 26,000 rpm, while the amplitude varies 
between 1.5 and 15.0 mils. The increase in frequency can 
place the second mode well within the operating range of 
15,000 rpm to 30,000 rpm if high unbalance develops. At the 
two highest unbalance levels, there is a nonlinear jump, where 
the response reaches a point of multiple solutions and 
suddenly drops to a lower amplitude. 

To assess the effects of various damper designs, the 
unbalance response versus running speed was computed for 
various damper geometries. Two 0.3 oz-in unbalances were 
applied, one at the first compressor stage at 0.0 degrees, and 
one at the turbine stage at 180.0 degrees. This corresponds 
to a severe 15X unbalance condition that is approximately 15 
times the manufacturer's nominal {1X) unbalance condition. 
The response analysis was conducted using eight free-free 
rotor modes, two rigid body modes and two flexible body 
modes in each plane. A time step of 0.00003 seconds was 
used. 

Plotted in Figure 8 are the resulting unbalance responses 
versus rotor speed at three rotor locations for the original 
0.95 inch long damper. Inspection of the curves reveals the 
first mode resonance at about 8500.0 rpm, and the highly­
sensitive second mode resonance near 25,000 rpm with a 
corresponding nonlinear jump. Under such conditions, the 
damper effective stiffness is high and the effective damping is 

0.015 .,.------------------,
EXISTING DAMPER W /0 ENO SEALS 
Ld= 0.95 in, Cr• 0.ll05 in, llPo U)t-6 reyns 

�0.010

! 
a:: 

� 0.005
!& 

o.oooL-__./J/!:.2:::;�=:;=�����
0.0 5000.0 �000.0 15000.0 20000.0 25000.0 30000.0 35000.0

ROTOR SPEED (RPM) 

Figure 7. Rub Area Response of HP Rotor Under 
Increasing Unbalance. 
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low, making the damper less effective and forcing the second 
critical speed well into the cruise operating speed range of 
15,000 rpm to 30,000 rpm. The high stiffness and low 
damping also cause the second mode to have a relatively high 
amplification factor that gives a peak bearing 1 response of 
approximately 0.010 inches (10 mils) at 25,000 rpm. 

Similar curves are shown in Figure 9 for an extended-length 
(1.29 inch) damper with the clearance increasd to 
0.007 inches. The curves now indicate better attenuation of 
the second mode response compared to the orig:nal damper, 
yielding approximately a 25 percent reduction in predicted 
peak bearing 1 response from 0.010 inches to 0.0075 inches. 
Opening up the clearance has also yielded a beneficial drop 
in the predicted second mode frequency from 25,000 rpm to 
about 21,500 rpm that moves it toward the lower end of the 
operating speed range. 

Under severe conditions, such as compressor surge, it is 
believed that the rotor experiences a combination of random 
{broad band) radial impulses as well as an increase in 
aerodynamic cross-coupling. To simulate the surge event 
analytically, the rotor was held at a constant 30,000 rpm with 
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Figure 8. Unbalance Response of HP Rotor With 
Original Damper at 15X Unbalance. 
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an impulse applied to the turbine station at a magnitude of 
500.0 lb for 0.001 seconds. Along with the impulse was a 
suddenly-applied cross-coupling of 8,000 lb/in that was 
continued throughout the simulation. 

The resulting transient response is plotted in Figure 1 0 for the 
original damper geometry and support stiffness of 
150,000 lb/in. The first several cycles at low amplitude are 
from a small residual unbalance of 0.05 oz-in and have a 
frequency of 30,000 cpm corresponding to synchronous 
unbalance response. After the impulse at 0.5 seconds, the 
amplitude jumps dramatically as expected. The frequency 
also drops to about 9300 cpm, which corresponds to the rotor 
first mode. 

To observe the effects of higher bearing 2 support stiffness on 
the transient response, the transient impulse run was repeated 
with the support stiffness increased to 300,000.0 lb/in. The 
extended-length damper with the increased clearance was 
used. Illustrated in Figure 11 is the resulting transient 
response, showing a dramatic improvement in sub­
synchronous whirl attenuation. The response now exhibits a 
much better logarithmic decrement of approximately 0.1, and 
drops very rapidly back to the steady-state value after only 
0.15 seconds. This confirms the advantages of the modified 
damper in combination with a stiffened bearing 2 support for 
helping attenuate the subsynchronous first-mode whirl. 
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Figure 10. Transient Surge Response of HP Rotor. 
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CONCLUSIONS 

An analytical model has been successfully developed and 
applied to predict the transient and steady-state behavior of a 
flexible rotor on nonlinear fluid film supports. A modal 
approach was used for the rotor that incorporates uncoupled 
(planar) modes which are acted upon by physical forces 
transformed into modal coordinates. An application was 
presented in which an aircraft turbofan engine high-pressure 
rotor was analyzed to predict the nonlinear unbalance 
response of the rotor in a squeeze film damper. The primary 
conclusions which may be drawin from the discussion 
presented are as follows: 

1. A transient rotordynamic analysis may be executed
using an uncoupled set of planar rotor modes acted
upon by external forces that are transformed into modal
coordinates at each time step.

2. Nonlinear support elements such as a squeeze film
damper may be modeled efficiently through closed-form
integration of the circumferential pressure profile at each
integration time step.

3. Nonlinear effects in hydrodynamic supports can change
dramatically the response characteristics of rotors under
high unbalance, yielding severe vibration that cannot be
predicted with a linear analysis.
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