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Lund’s Contribution to Rotor
Stability: The Indispensable
and Fundamental Basis of

Modern Compressor Design

In the early design of compressors and turbines, it was of importance to locate the rotor

critical speeds so as to insure that a turbo rotor would not be operating at a critical
Edgar J. Gunter speed. As compressor and turbine design became more sophisticated, a more detailed

analysis of the rotor damped critical speeds and rotor log decrements was necessary. With
compressors and turbines operating at higher speeds, under high power levels, and at
multiples of the first critical speed, the problem of stability or self-excited whirling is of
paramount importance. The onset of self-excited motion may lead to large amplitudes of
motion with possible destructions of the rotor or the inability of the compressor to operate
at peak power levels. Encountering this phenomenon with a compressor on an off-shore
oil platform can mean millions of dollars of lost production. Self-excited whirling can be
caused by fluid-film bearings, seals, Alford-type cross-coupling forces, or internal shaft
friction, to name a few of the excitation mechanisms. The problem of computing the
approximate values of the rotor log decrement under full speed and loading conditions
requires the solution of a complex eigenvalue problem. The computation of the rotor
complex roots is an order of magnitude more difficult than the problem of undamped
critical speed calculations. J. W. Lund presented the first practical numerical procedure
for computing turbo-rotor log decrements. The mathematical transfer matrix method pio-
neered by Lund has allowed industry to develop and stabilize a vast array of rotating
machinery leading to the savings to industry of millions of dollars. Without the procedures
of Lund, for example, it would not have been possible to resolve stability problems
encountered with both the hydrogen and oxygen space shuttle pumps. This paper
briefly presents some of the attributes of the Lund stability procedure and its unique
characteristics. [DOI: 10.1115/1.1605978
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Introduction analysis of turbo-rotors for the first time using a digital computer.

This paper is written in tribute to Jgrgen W. Lund, who may bgsin_g_ the Lun_d procedure, it was now possible to compute rotor
looked upon as the father of modern rotor dynamics. Over ti§iAPility for eight- and eleven-stage compressors with multiple
years, | have kept a collection of Lund’s various papers. Lund hi¥id-film bearings, seals, and aerodynamic Alford-type cross-
presented significant papers on gas bearings, multi-lobed flufRupling effects.
film and tilting-pad bearings, unbalance response, rotor-bearingln order to accurately compute the stability characteristics of a
stability and balancing, and transient rotor response. In this pape@mpressor or turbine, one must know the stiffness and damping
I wish to discuss the significant contributions that Lund has madeefficients for the fluid-film bearings. Next to Osborne Reynolds’
towards the predictions of stability of turbo-machinery. Practicalriginal paper, “On The Theory of Lubrication and Its Application
computer programs based on the theories and numerical methtm®1r. Tower’s Experiments,” published in 1886 in Phil. Trans.
presented by Lund in rotor bearing dynamics have literally rev&ociety of London 3], | consider Lund’s paper with K. K. Th-
lutionized the design of modern turbo-rotors. ompson to be one of the most comprehensive papers written on

It may be difficult for current designers to appreciate the cortuid-film bearings. The reason for this is twofold: First, a numeri-
tributions made by Lund in the field of rotor-bearing stabilitycal procedure is presented for the analysis of load and dynamic
Now, there exist numerous commercial programs available fepefficients of finite width fluid-film bearings; and second, exten-
stability analysis based upon both the transfer matrix and the finé§e pearing data is presented on the axial and various multi-lobed
element approaches. The API Code now requires that lateral, t9karings for various aspect ratios based upon interpolation of the
sional, and damped eigenvalues be computed for new compre§Sig data. | should not fail to mention the significant publications
de_ls_'rggrse' are two papers in particular that | wish to comment by Lund on tilting-pad bearings, as wé#]. His contribution in
and discuss in dgtari)l The Erst paper is “Stability and Dampg ting-pad bearings will be addressed in more detail by Dr. John

¥ icholas[5]. Any serious student of rotor dynamics should not

Critical Speeds of a Flexible Rotor in Fluid-Film Bearings,” 197 . : . .
[1] and the other is his bearing paper with K. K. Thompson on u&nly study these papers in detail, but should review the deriva-

Calculation Method and Data for the Dynamic Coefficients dfonS of the governing equations for stability and bearing analysis.
OiI-Lubricated_JournaI 'Bearings," 197@]. The first paper sets  |nroduction to Stability and Computation Problems.  In
forth the practical solution for the stability or damped eigenvalug,qer to better illustrate the contribution by Lund to stability
Contributed by the Technical Committee on Vibration and Sound for publicatioanaIySIS of tu_rbo-machlnery, We. will examlr_le several simple S.y;-
in the Jargen Lund Special Issue of tHEURNAL OF VIBRATION AND ACOUSTICS fems and their governing equations of motion. Some of the diffi-
Manuscript received June 2003. Guest Associate Editor: R. Gordon Kirk. culties and complications involved with the solution of damped
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The amplitude
X(t)=€P[A coswyt+ B sinwgt]

For a system oh degrees-of-freedom, the size of the characteris-
tic polynomial would be B8, as follows

(A=ND)(A=Np) .. (V= Agp-1)(A—Npp)=0 %)

For the case of Eq4), we obtain

A= (A F AN+ A A,=0 (6)

For Eq.(5), we would obtain

2n
DAL O WS WSS WS D N e S W) (7)
r=1

The coefficients2?” |\, and 72"\, are called the invariants of
the characteristic polynomial. We now observe an interesting fea-
Fig. 1 Single-degree-of-freedom system ture of the characteristic polynomial. The first coefficient, or in-
variant, is the sum of the eigenvalues, and the last invariant is
equal to the product of all the eigenvalues. By examining the
invariant coefficients of the characteristic polynomial governing
Hie stability problem, we are struck by two apparent facts. First,
dor a system ofn degrees-of-freedom, the characteristic polyno-
mial will be of order 2, and that the last coefficient, or invariant,
Single-Mass System. The simplest damped eigenvalue probwill be a product of 21 eigenvalues. From a practical standpoint,
lem starts with the single-mass, single degree-of-freedom systéis means that without proper scaling, any rotor system beyond
shown in Fig. 1. This is the classical mechanical system, as show@th order(which is a very small rotor modelill begin to en-
in every elementary vibrations text counter numerical roundoff errors. With proper scaling, one can
extend the system to order 20.

eigenvalues will be pointed out. It will later be presented how t
transfer matrix method of Lund avoids many of these difficultie

M dz_x ic d_X LKX=0 1) Thus, we see that for a simple linear system the motion is stable
dt? dt or damped out when the real rgots negative, is at the threshold
. of stability whenp=0, and is unstable whep>0. Near the
Assume a solution of the form threshold of stability, the value of the real compongig small in
X(t)=AeM comparispn to the damp.e.d natural frequengy. Thqs, accurate
. . computations of the stability threshold can be a difficult numerical
This results in problem for a large multi-mass system.
2 _ In stability, we do not refer to the magnitude of the real mpot
(MAT+CA+K)A=0 @) but rather to the log decrement defined by
Dividing by M, we obtain
X(t) 27é
N2+ 2w+ 02=0 () In = =5 (8)
X(t+7) J1-&2
here ¢
c For low values of the damping rati§ the amplification factor at
&= o Cc=2Muw, the critical speed is given by
Cc
1 =

A=~ — 9
v T ©

. . . i Thus, a stable machine with a log decrement of 0.1 would give
Equation(3) is referred to as the characteristic equation for thg critical speed amplification factor of over 30. Accurate calcula-
system. From the examination of the coefficients of the charactggn of the rotor log decrement is important not only from a sta-

istic polynomial, we may gather a great deal of insight into thgjjity standpoint, but also to insure that the rotor critical speed
nature of the stability problem. We will also understand somgmpjification factors are reasonable.

methods which are not appropriate for stability analysis. _ ] ) _ _ _
Equation(3) is second order and may be factored into its roots Single-Mass Flexible Rotor. Figure 2 is the classical single-
as follows: mass Jeffcott rotor on simple supports. The center IDgjs

whirling about the originp. For steady-state motion two degrees-
(A=N)(A=A2)=0 (4)  of-freedom are required to express the motion.

The simple solution to the 2nd order characteristic polynomial It would appear to be natural to express the equation of motion

of Eq. (3) is the classical solution where the complex eigenvalu@ polar coordinates, with the radial motiaf representing the
is: elastic deflection of the rotor ang the precession rate. This

) seems particularly desirable when including plain journal bear-
No=pFiwg, Pp=—{w. ings. The use of polar coordinates is not a desirable approach, as
Where it leads to nonlinear dynamical equations of motion.
One of the earliest papers on rotor dynamics was W. A. Rankine
-C “On the Centrifugal Force of Rotating Shafts,” in 1869. Rankine
p=real part 5o =—fw, used a rotating coordinate system similar to Fig. 2 and arrived at
the following equation of motion for the radial direction, as shown
wq=damped natural frequeneyw,y1— & in Ref. [3].
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Thus, he arrived at the conclusion that when the rotor speed
was below the critical speed,., the rotor was stable, in “indif- Fig. 3 Extended Jeffcott rotor on flexible supports
ferent” equilibrium at the critical speed, and was unstable above
the critical speed. The problem lies in the neglect of the Coriolis
terms of the second equation of motion. Papers are still being
presented today in which the author attempts to solve the dynam- XAT={X, XX} T
ics problem in rotating coordinates. This problem was correctly 1723
solved by Jeffcott in 1919 when he used a fixed Cartesian cogzq
dinate system. Lund makes use of the fixed Cartesian coordinate
system in his general flexible rotor stability analysis. With the two VT =1Y,Y,Yq)T
degree-of-freedom Jeffcott rotor on simple supports, the situation 17273
of self-excited whirl motion may be caused by the internal sh
dampingC, or the aerodynamic cross-coupling acting at the
turbine wheel. Assuming there is external dampihgcting at the

a*the six equations of motion are of the form

disk, the two coupled equations of motion are given by M X n G Cy X
. . MY T[c,e cullY
MX+(C+C))X+KX+(Q+wC,)Y=0 (11)
MY+ (C+C)Y+KY—(Q+wC)X=0 12) Ks X| Ko Kay|[X] _
+ v[T =0 (13)
Ks Kyx Ky lY

The two equations form a 4th order characteristic polynomial.
At the time | was analyzing the Jeffcott rotor for my thesis re-
search, | could determine the stability boundary by the use of t
Routh Hurwitz criterion and could even integrate the equations 8
motion with an analog computer, but | could not determine the |
decrement of even this simplest of systems. It was not possible to

ch item in Eq(13) represents a:83 matrix. The matrixKy is
particular interest, as this represents the effective finite element
iffness matrix of the shaft and is given by

compute the log decrement until Lund presented his stability 5 _5 5

method. 4 2 4
Extended Jeffcott Rotor. The single-mass Jeffcott rotor as _ K K K

shown in Fig. 2 does not simulate a realistic rotor since it has [Ksl=] — 2 T2

pinned bearings. The second major contribution Lund made to the

ability to compute compressor or turbine log decrements was the E _ E E

publication of various papers on gas bearings, as well as oil- 4 2 4

lubricated bearings. Referenf®] by Lund on fixed-lobed bear-
ings is of particular significance, as already mentioned, and habereK = shaft stiffness- 48E1/L° for a simple shaft. As a finite
bearing coefficients listed fdr/D ratios of 0.5 and 1.0. element three-point stiffness matrix, the matrix must be positive,

Figure 3 represents the extended Jeffcott rotor on flexible sugefinite, and singular to represent a free-free shaft. The 12th order
ports. This model may be effectively applied to first mode stabilitgharacteristic polynomial for this system may be generated by the
log decrement studies by assuming the center rivass be the Leverrier’s algorithm, as given in Reff6]. This method of stabil-
rotor multi-station modal mass and using the modal compresstyr analysis is not practical for a large multi-mass compressor, as
stiffness akK. The Lund bearing coefficients may then be used tihe shaft nth order stiffness matrix would have to be obtained
rapidly determine the stability characteristics for various bearirfgom structural analysis, and numerical difficulties in the root
types. solving procedures would limit its utility.

The equations of motion are expressed in fi¥edr Cartesian It is of interest to note that a number of papers have been
coordinates. For a multi-mass rotor it is not feasible or desirable generated on the extended Jeffcott rotor with one end fixed, such
employ a rotating coordinate system. More will be said about thés with a ball bearing. In this case the constrained shaft stiffness
approach later. The thre¢ andY displacements are matrix becomes
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In the majority of papers on this subject, tKé4 term is miss- R = \\ TRRNIN Y Wy
ing from the equations, leading to misinterpretation of the results SRR SRETH N TR WY
such as assumed fluid film bearing inertia terms. It is apparent that ool \ : \\\ N\
even the simple Jeffcott rotor, when extended to flexible supports, ol ! 10 100

can lead to difficulties due to errors in the system equations. The A Smet)?
attempt to add several mass stations by this approach leads to P
problems unless the corresponding shaft stiffness matrix is pr
erly derived by finite element techniques or the inversion of
flexibility matrix.

qﬂé. 5 Ciritical rigid rotor mass for  L/D=0.5 gas bearing vs.
&m. speed

Lund on Stability of Gas Bearings ing stiffness and damping coefficients. The corresponding equa-

The earliest works of Lund on rotor-bearing stability were corfions of motion involving the support structure and bearings are
cerned with static and dynamic characteristics of gas bearings.a§0 included. ) )
the 1960's there was a considerable research effort performed o this stability analysis Lund did not attempt to solve for the
gas-lubricated bearings, both in the United States and abroad. 1¢@decrement of the system, but only for the threshold of stability
research was broadly supported by the Office of Naval ReseatBrvhich the real componerit of the eigenvalue is zero. Lund
(ONR), the NEC, NASA Lewis Research Center, and the Wrigihalyzes three basic cases with the rigid rotor on the gas-
Patterson Air Force Laboratories. Extensive government-funditpricated bearings, the flexible rotor in gas bearings, and the rigid
gas bearing research programs were conducted at Ampex un@fed flexible rotor on elastic damped supports. The plots for sta-
the direction of Dr. William Gross, at Franklin Institute underility of a gas bearing are complicated by the compressibility of
Professor Dudley Fuller, and at Mechanical Technology, Inc. ufl€ lubricant. Instead of a Sommerfeld number to represent the
der the direction of Dr. Beno Sternlicht. Lund, who was at MTPearing, the compressibility parametaris used. For constant
during this time, made major contributions to the field of ga@mbient pressur®, is used, and film viscosity\ becomes a
bearing dynamics and stability. Dr. Sternlicht had assembled sof{g1ensionless speed parameter. o ] i
of the best engineers in the country at MTI in the 1960’s, and Figure 5 represents the stability of a rigid rotor in a gas bearing
Lund was considered to be one of his most outstanding stars. with an_L/D=_O.5. The stablll_ty is p!otted as a function of crltlc_al_
The solution of the Reynolds Equation for a gas bearing _[gass(dlmensmnles)svs. the dlmen5|or_1less speed or compress_lbll-
complicated by the compressibility of the lubricant. This make$y parameterA. The set of dotted lines represents the various
the Reynolds Equation for gas-lubricated bearings nonlinear in tR@aring operating eccentricities and the solid lines are the lines of
pressure ternP. One of Lund’s first analyses of flexible rotorconstant loading. ‘ . )
stability was in 1965 in his paper, “The Stability of an Elastic !N the stability plot of Fig. 5 for the plain gas bearing, one
Rotor in Journal Bearings With Flexible, Damped Supports.” ;:igwould assume that the vertical loading is constant. For example,
ure 4 represents the rotor model used by L{®H with a dimensionless loading aV=0.14, and a dimensionless
If journal mass is included in this model, then the order of thepeed ofA=1, the critical masM is 20. As the speed increases,
system would be 12. This would be beyond analysis capabilitiesva¢ move down along the constant load line. At a speed parameter
the time, even for Jargen. Simplifications made by Lund includexf A=20, the critical mass is only 0.01. When actual mass is
neglecting journal mass, and later support mass, in his analysigger than the critical mass, the rotor becomes unstable. Thus we
The shaft stiffness matrix for general motion in Fig. 4 should bgee that as speed increases for a given load, the gas bearing even-
4x4, Lund assumes that the motion of the two major massestiglly becomes unstable.
either in phasélst modé or out-of-phasé2nd mode. Represent-  When an instability is encountered with a gas-lubricated bear-
ing the rotor by flexibility coefficients, Lund states the approxiing, the occurrence may be quite sudden with dramatic conse-
mate equations of motion as quences. Figure 6 represents the orbit of a gas bearing grinder
— — . ) spindle below and above the threshold of stabilify. Figure 6
X1=X3= = MXy(@aat aap) — 1st mode in phase (14) shows the dramatic, large amplitude limit cycle motion that oc-
- - curred with a gas bearing rotor with only a fé&P M difference
X177 EXp=~MXy(@aa— aap) —2nd mode out of phase i, gpeed. A further increase in speed could cause bearing damage.
(15) When this effect occurs with the grinding spindle, the quality of
Equating the rotor and the bearing forces at the bearings yielti® surface finish is extremely poor. The occurrence of this whirl
a force equation involving rotor elasticity and dimensionless begthenomenon in this commercial grinder eventually caused the
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A=10 represents a critical mass of 0.2 for an eccentricity ratio of
company to discontinue its manufacture. By the 1960’s the g@s3, as shown in Fig. 5. With a flexible support and no damping,
bearing was also seeing wide application in dentist drills. Howthe critical mass is reduced by an order of magnitude to 0.02.
ever, the occurrence of self-excited whirling could lead to somEnere is no change in stability for low values of damping up to
unpleasant experiences such as the dentist removing half olGi 3. After this value of damping is exceeded, the stability in-
patient’s tooth before he realized what had happened. creases rapidly with an increase of support damping.

With even larger gas-bearing supported rotors, the occurrenceThis plot has a very practical application to the design of high
of self-excited whirling could lead to even more unpleasant bepeed gas bearing dental drills. By having the gas bearings sup-
havior. While at the Franklin Institute, we had a high speed 200 fiorted in rubber o-rings, the stability may be greatly improved.
gas bearing rotor referred to as the EPRP1 had failed before The rubber o-rings provide both the required stiffness and damp-
my arrival) We had just stepped out of the lab to announce to thieg necessary for stabilization. The limit cycle motion is also bet-
section chief that we had achieved 20,60PM operating speed. ter controlled with the flexible damper supports.

At that point the rotor seized, ripping out the foundation bolts and

falling off the concrete superstructure. Air is not much of a bound- Lund on Whirl Orbits in Sleeve Bearings. At the time Lund
ary lubricant! Self-excited whirling of gas bearings is not to b@uPlished his work on gas bearing rotors on damped flexible sup-
taken lightly. ports[1], he had not received his Ph.D. yet. In discussions with

In Lund’ lvsis of th : flexibl grgen, it was commented that his work would be worthy of a
n Lund's analysis of the gas bearing on flexible damped SU,E@.D. dissertation. He responded that since this work was already

ports, as shown in Fig. 7, he shows the dramatic effect of t blished. | for hi h h ] -
combination of support flexibility and damping on the gas beari Ished, it was necessary for him to choose another topic. His
.D. dissertation was on the limit cycle whirl orbits of sleeve

tability threshold. F le, the di ionl d ti
stabrity thresho or example, the dimensioniess spee Imebearings and was published in the Journal of Engineering for In-

dustry in 1967. The nonlinear equations were solved by a method
of averaging, whereby the whirl orbits were obtained directly. It
was found that the limit cycle whirl orbits are encountered in a
narrow speed range.

Figure 8 represents the normalized whirl orbits of a sleeve bear-
ing at the onset of oil whirl instability8]. This figure shows the
nature of the nonlinear whirl orbits at the threshold of instability.
For very light loads with low bearing eccentricity rotors, the orbits
are nearly circular. As the radial loading increases, the orbits be-
come more elliptical, as seen for the case whke.6.

There are a number of important stability contributions in this
paper. First, Lund shows that the bearing load vs. eccentricity for
variousL/D rates is best plotted using the modified Sommerfeld

o [N (3 H
:n. i ' i numberg, rather tharS.
i
2 2
Fig. 7 Stability of cylindrical gas bearing vs. support damping o= E S= 1 MoDL E
for €=0.3, L/D=0.5, K,=0.10 D 8 W C
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analysis, Lund uses a fixed Cartesian coordinate system to expre
the equations of motion. This approach will become particularly
important when we consider the multi-stage compressor with gy

For interpolation between bearing characteristics for various
L/D ratios, the Lund modified Sommerfeld number is more ap-
propriate than the conventional Sommerfeld numi&r/n his
|
|
|

roscopic effects. Lund uses the polar coordinate system to solv g ¢
for the bearing radial and tangential forces. These forces are the .:,I | _:J
transformed into normalized stiffness and damping coefficients : ! !

Kj; andC;; expressed in fixed Cartesian coordinates. ATT —%- -'— i
Although Lund does not compute the log decrement for the !
linearized bearings, he does present a stability criterion for the I M -n l
calculation of the stability threshold based on the generalizec
bearing coefficients, as follows. First, the generalized stiffiless '
is computed, followed by the normalized whirl ratid. ‘i‘ !
1

K KyoxByy T KyyBux= KyyByx— KyyBxy

s Byxt Byy

|
|
(16) i

(Kxx_ Ks)(Kyy_ Ks) - nyny

|
|
Vo= (17) _'j i

B.Byy— ByyByx il
M

The stability is given by 22 Myls Mn.!n

CMw? oKy Fig. 9 Schemati(_: diagram of a typical turbo-rotor and lumped
W =— (18) mass representation
14

The minimum value of this parameter from Fig. 5 of his paper _ o
ato=0.2 is about 6.4. For a horizontal rotor that is gravity loadednass analysis performed by Lund and presented in his 1974 land-

in which M=Wi/g, we arrive at the simple stability criterion thatmark paper on stability of flexible rotors, several important addi-
tions were included which allow the theory to be applied to

=19 virtually any single span turbo-rotor.
= 6'4\[5 (19) Figure 9 represents a schematic diagram of a multi-stage com-

) . ) . pressor on bearings. Figure 9 represents the compressor as dis-
For a 5-mil radial clearance bearing, this would place the stgrete stations interconnected by springs.

bility threshold speed around In the transfer matrix analysis of Lund, he states that it is an
extension of the Prohl-Myklestad method for the computation of
30 /386.4 " o .
NRPM=2.53x— \/——==6,720 RPM undamped critical speeds. However, the addition by Lund to in-
™ 005 clude complex motion, generalized bearings, and disk gyroscopics

Thus, it can be seen that it would be difficult to build a high-speet@sS & major addition. The process to search for the complex roots

compressor mounted in sleeve film bearings to operate owid obtain convergence is a problem of considerable difficulty
10,000R P M! compared to finding undamped critical speeds.

Lund demonstrates that the equations for a flexible rotor areVVe shall address three major features of the generalized Lund

identical to the equations for a rigid rotor with a redefinition of thd€xible rotor stability analysis that allowed him to compute com-
rotor masam terms. He shows that the flexible rotor masscan plex forward-backward rotor modes at any speed, including the

be calculated from computations of the mode log decrements. The combination of
these factors created a practical design tool which is used around
mK, the world today.
me=——— (20) . o .
Ket+my Continuum Theory and Distributed Shaft Mass. A major

He then states that all the results for a rigid rotor can be us{a?g?ture of the transfer matrix method of Prohl-Myklesfad.ql is

. . h group the shaft parameters in one massless transfer matrix,
directly to determine the results for a flexible rotor. Thus, the MO rred to now as the field matrix. and have the mass properties
flexible the rotor is, the lower its threshold speed. In the limit, hBearin s unbalance. and roscé ic moments concentrated at ’a
states that a flexible rotor will go unstable at twice the rotor natté-t 95, ' gy P

ral frequency and will whirl at the rotor natural frequency. Henc ation. This matrix is referred to as the point matrix. The combi-
q y q Y. ﬁqation of the point and field matrices forms an element transfer

atrix. Figure 10 represents the division of a shaft element by
Lund into thenth andn+1 field and point matrices.

we see from this paper that compressor design is limited wi
rigid and flexible rotors to speeds of

475 When using the transfer matrix method, the first question that
Rigid Rotors-N<—, RPM needs to be addressed is whether to use a massless beam or base
JE the beam transfer matrix on continuum mechanics. By the 1970’s,

the theory of transfer matrices by continuum mechanics was well
established, as exemplified by the comprehensive text by Pestel
. - and Leckie on “Matrix Methods in Elastic Mechanics,” published
Multi-Mass Rotor Stability by Lund in 1963[11]. In their book they present the transfer matrices for
In the previous papers discussed by Lund on gas bearing @math the massless and the distributed mass beam theory based on

plain oil-lubricated sleeve bearings, the shaft flexibility was a singontinuum mechanics. On initial inspection, it would appear that
plistic model of a singl& value to represent the shaft stiffness. Ithe continuum mechanics approach to include shaft mass would
was mentioned that for the majority of multi-stage compressotise not only preferable, but much more sophisticated and elegant.
the rotor first critical speed and associated modal mass may béR. L. Ruhl, in 1970, published an exceptional Ph.D. thesis on
used for the assumed shaft stiffness. In the more general muitie dynamics of distributed parameter rotor systems in which he

Flexible Rotors-N<2N,

Journal of Vibration and Acoustics OCTOBER 2003, Vol. 125 / 467



Xy T"not

T Pa L} Parl ¥
™ Mot
P e D i, 1 _ .,
ot ke
F\T/Fen F Fo.nen
STA‘T‘IOiN STATION Yz
h net

Fig. 11 First two computed modes for 11-station beam using

Fig. 10 Shaft element divided into point and field elements Lund transfer matrix method
showing the sign convention

Figure 12 represents a uniform rotor represented as a three-
treats both the transfer matrix and finite element technifigs ~ Section rotor. Using the Lund method of lumping, one-half of the
Ruhl was ahead of his time with the finite element approach, singgight on either side of the stations would be lumped at the sta-
the required eigenvalue solvers such @R and the complex tions.

Lanczos tracking-transformation eigensolver had not been perBy this means, the weight of w/4 would be placed at the ends.
fected. The finite element rotor dynamics solution procedure tod&is is in comparison to the Ruhl lumping which would be w/3 at
is the method of choice, but this was not a viable option in thall stations. For the case of simple supports, we have reduced the
1970's due to insufficiency of computer storage, speed, and algtiform beam to a Jeffcott rotor similar to that shown in Fig. 2.
rithms for solution techniques. The stiffness of the shaft with simple supports is given by

Ruhl, in his Ph.D. dissertation, does use the continuum ap-
proach similar to the equations of Pestel and Leckie. It turns out _ 48E|
that this is not necessary. The continuum equations themselves are L3
numerical disasters because of convergence problems with
hyperbolic functions. The accuracy of the solutions is not im-
proved by continuum mechanics and results in systems which are 96E | El
limited in the number of mass stations that one can handle due to W=\ / g:9.798w /_g (25)
convergence problems. WIK WK

Lund himself felt obligated to present the eigenvalues for @hereas. the exact solution is
uniform beam on simple supports using continuum mechanics. '

The 4th order beam equation that Lund presents is as follows Elg Elg
=2\ ——==9.870\/ —=
prs 22Y Y2 We exact™ T WL WL3

lE +pAF:5(Z)'fO+5(Z_I)'fe (22)

ee critical speed is given by

9Z? The percent of error between the exact and the lumped mass
Wheref, and f, are the bearing reactions a#Z) is the delta model is
function. The 4th order beam equation with flexible bearings ap- 0.870-9.798
plied at the ends leads to a transcendental equétifinite num- %error= ———-——X100=0.73%

ber of solutiony and hence the computer must be used for the 9.870
solution. In addition, beam representation does not include shé&ar the higher modes, the number of mass stations required to

deformation, rotary inertia, or gyroscopic moments. obtain natural frequencies to less than 1% of accuracy is given by
for-lr-r?e general solution to the fourth order beam equation is of the N stations=2XN modest 1 26)

_ : . Thus, with the 21 stations model of Ruhl, using Lund lumping,
Y(Z)=AcospZ+ B sinpZ+C coshBZ+D sinhZ (22) the first 10 modes may be computed to less than 1% of error based
For the uniform beam that Lund analyzes in the first part of hizn the Bernoulli-Euler beam assumptions. Lund, in his beam rep-
paper, the natural frequencies and mode shapes on stiff beariregentation, also included transverse shear deformation. The im-
are the classical simple support solutions.

- nmwZ 3 .
Y(Z)=Assin—/—; n=12;3 (23)  mation1 Stion 2 Stasion 3
Sectipm 2

. | | -

EI q . 3

w,=(nm)? —g, rad/sec (24) (i Lz 4—- m—q
WL i .

]
| Wi ". Wi W/ v [

Figure 11 represents the mode shapes for the first two critica & L

speeds for the uniform beam model of 50 inches in length and ¢

inches in diameter with stiff supports. For the theoretical modes, 2

the second critical will be four times the first mode. W e T T 3
The question with the Lund transfer matrix method is how = e "-'Bw.u

many stations are required to accurately calculate the 1st or th

2nd mode. According to the Ruhl thesis, the finite element methoc —— Wiz -

is much more accurate and the transfer matrix method would re

quire over 20 stations for reasonable accuracy. The problem with

the Ruhl analysis has to do with the lumping of his mass statiornsg. 12 Uniform beam a 3-station model showing Lund

All of the stations are of equal weight. method of mass lumping
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5000

portant point is that continuum mechanics has no role in modern T
rotor dynamics, although many papers are presented each yes i
using this approach. It should also be noted that in many finite |3 '?Jr‘m 50 1m0 0 3000
element programs, such 8SC/pal2[13], one may choose be-  [% — _]
tween a lumped mass formation, a coupled mass formation, or ¢ [ 00 EMEERAT 50 .
consistent mass formation. The lumped mass formation is identi- P e
cal to the Lund lumping procedure. The use of a consistent mas 0] Tepd | sa 706|000t oo
matrix results in natural frequencies that are slightly higher than 4|0 1 -
the exact values. Therefore, there is little be gained using a finite 7 ] N Ir oo -
element approach with consistent mass matrices over the Lunc 4Ty T tiu'=]ﬁjh S0 =
lumped mass model. ol 1] =
The representation of the rotor as a discrete system of lumpec T j;,.*.-i“oi m =
masses and massless beam elements, instead of as a continuum = =
a major step in the ability to analyze a multi-mass flexible rotor. 11“,?" [ o
For many years this procedure was not accepted by my adviser, a LKL [ -
well as many of the faculty in the Department of Engineering ues_ | L | —=Tgla0g 390500
Mechanics where | obtained my degrees. | spent several years o = e ug,,?-"_'m
rotor dynamic projects such as the ultra centrifuge, attempting t B
apply continuum mechanics to no avail. . luu,.-m; S0
n 7( T | la
zu’{
Method of Solution 1 - TN B
The complex roots$ for the generalized eigenvalue problem of i
Lund are complex and the roots occur in pairs of complex conju- ] 000 :BE%THE e
gates. For simple undamped critical speed analysis, the &ots
= *iw;, wherew; are the undamped critical speeds. The charac- DAMPING EXPONENT 507

teristic polynomialP(S) is given by
Fig. 13 Damped natural frequencies of a uniform beam with
P(9)=(S-S))(S-S,) ...(5-8)=0 (@7)  Ky=20,000 Ibfin ‘
For undamped critical speeds, it is very easy to have a numerical
search along thé plane for real values ofo. This is not the
situation with determining the complex rootsPfS). Lund states ues belowC,=20 Ib-sec/in, the first two bearing modes are rigid
that an eigenvalue is obtained when the boundary conditions d@dy cylindrical and conical modes. The third mode is the beam
satisfied by free-free mode.
As the bearing damping increases, the rigid body modes are
A=de(D)=0 (28) critically damped a€,, increases to 138 Ib-sec/in. The third mode

whereD is the 4<4 complex system transfer matrix that generaté@duces in frequency. At a bearing damping o,
then th station moment and shear values from the initial displace=130 Ib-sec/in, the maximum damping &f=1,100 rad/sec is
ment vector(assuming free end conditionsThe root is found obtained for mode 3. As the bearing damping is further increased,
from a Newton-Raphson iteration scheme such as the effective modal damping exponent reduces. Note that at bear-
ing damping values ofC,>500, the damping exponent ap-
dA proaches zero. This plot illustrates the concept of optimum damp-
Shew=Soia~ Ao ds (29) ing for a particular mode. Above damping values G},
° =130 Ib-secl/in, bearing “lockup” begins to occur due to exces-
The problem with this iteration scheme is that there is no way tve damping. The high bearing damping causes the rotor mode
prevent the system from converging on a previously found modshape to change from free-free to pinned. This concept of bearing
What Lund did to make his method work was to generate a moddockup is very useful for the design of squeeze film dampers for
fied characteristic determinate in which the previously found rogbmpressors and turbines.
was removed from the polynomial by

A Conclusions

A= S—S,)(S— (30) This paper deals specifically with Lund’s contributions to the
(S=S)(S-Sy) , > . . .
o ) ) T field of stability and damped eigenvalue analysis of turbomachin-
His iteration algorithm used to avoid finding the same root repeairy. In his remarkable paper on “Stability and Damped Critical
edly is Speeds of Flexible Rotors,” he presents for the first time a useful
numerical procedure for the calculation of compressor and turbine

S=S,—A/dA=dA (31) log decrements. By this procedure, it was now possible to com-
where pute the rotor modal amplification factors and stability threshold
3 of compressors for various types of bearings, and also to optimize
_(dA E 1 the design of squeeze film damper bearings for stabilization.
da= das A S _—S (32) There is insufficient space to completely discuss the many con-
o

tribution of Lund in rotor dynamics and fluid film bearinf4].

By this procedure, the eigenvalues are determined to an acte could, for example, develop another section on Lund’s treat-
racy of eight significant places and the number of iterations resent of shaft gyroscopic effects. Between his contributions to
quired for convergence is 5—-10. Figure 13 represents the damgiledd film bearings and rotor dynamics, both from a stability and
natural frequencies of a uniform beam with bearing stiffness valnbalance response standpoint, the compressor and turbine de-
ues of 20,000 Ib/in at each end and various values of dampingsigners were now given practical design tools which helped create

In Fig. 13, generated by Lund, the uniform 50-in beam is su@ new generation of high-speed, efficient turbo-rotors throughout
ported by soft bearings d€,,= 20,000 Ib/in. At low damping val- the world.
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