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Lund’s Contribution to Rotor
Stability: The Indispensable
and Fundamental Basis of
Modern Compressor Design
In the early design of compressors and turbines, it was of importance to locate the
critical speeds so as to insure that a turbo rotor would not be operating at a crit
speed. As compressor and turbine design became more sophisticated, a more d
analysis of the rotor damped critical speeds and rotor log decrements was necessary
compressors and turbines operating at higher speeds, under high power levels, a
multiples of the first critical speed, the problem of stability or self-excited whirling is
paramount importance. The onset of self-excited motion may lead to large amplitud
motion with possible destructions of the rotor or the inability of the compressor to ope
at peak power levels. Encountering this phenomenon with a compressor on an off-
oil platform can mean millions of dollars of lost production. Self-excited whirling can
caused by fluid-film bearings, seals, Alford-type cross-coupling forces, or internal
friction, to name a few of the excitation mechanisms. The problem of computing
approximate values of the rotor log decrement under full speed and loading condi
requires the solution of a complex eigenvalue problem. The computation of the
complex roots is an order of magnitude more difficult than the problem of undam
critical speed calculations. J. W. Lund presented the first practical numerical proce
for computing turbo-rotor log decrements. The mathematical transfer matrix method
neered by Lund has allowed industry to develop and stabilize a vast array of rota
machinery leading to the savings to industry of millions of dollars. Without the proced
of Lund, for example, it would not have been possible to resolve stability prob
encountered with both the hydrogen and oxygen space shuttle pumps. This
briefly presents some of the attributes of the Lund stability procedure and its un
characteristics. @DOI: 10.1115/1.1605978#
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Introduction
This paper is written in tribute to Jørgen W. Lund, who may

looked upon as the father of modern rotor dynamics. Over
years, I have kept a collection of Lund’s various papers. Lund
presented significant papers on gas bearings, multi-lobed fl
film and tilting-pad bearings, unbalance response, rotor-bea
stability and balancing, and transient rotor response. In this pa
I wish to discuss the significant contributions that Lund has m
towards the predictions of stability of turbo-machinery. Practi
computer programs based on the theories and numerical met
presented by Lund in rotor bearing dynamics have literally re
lutionized the design of modern turbo-rotors.

It may be difficult for current designers to appreciate the c
tributions made by Lund in the field of rotor-bearing stabili
Now, there exist numerous commercial programs available
stability analysis based upon both the transfer matrix and the fi
element approaches. The API Code now requires that lateral,
sional, and damped eigenvalues be computed for new compre
designs.

There are two papers in particular that I wish to comment
and discuss in detail. The first paper is ‘‘Stability and Damp
Critical Speeds of a Flexible Rotor in Fluid-Film Bearings,’’ 197
@1# and the other is his bearing paper with K. K. Thompson on
Calculation Method and Data for the Dynamic Coefficients
Oil-Lubricated Journal Bearings,’’ 1978@2#. The first paper sets
forth the practical solution for the stability or damped eigenva

Contributed by the Technical Committee on Vibration and Sound for publica
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analysis of turbo-rotors for the first time using a digital comput
Using the Lund procedure, it was now possible to compute ro
stability for eight- and eleven-stage compressors with multi
fluid-film bearings, seals, and aerodynamic Alford-type cro
coupling effects.

In order to accurately compute the stability characteristics o
compressor or turbine, one must know the stiffness and dam
coefficients for the fluid-film bearings. Next to Osborne Reynol
original paper, ‘‘On The Theory of Lubrication and Its Applicatio
to Mr. Tower’s Experiments,’’ published in 1886 in Phil. Tran
Society of London@3#, I consider Lund’s paper with K. K. Th-
ompson to be one of the most comprehensive papers written
fluid-film bearings. The reason for this is twofold: First, a nume
cal procedure is presented for the analysis of load and dyna
coefficients of finite width fluid-film bearings; and second, exte
sive bearing data is presented on the axial and various multi-lo
bearings for various aspect ratios based upon interpolation of
Lund data. I should not fail to mention the significant publicatio
by Lund on tilting-pad bearings, as well@4#. His contribution in
tilting-pad bearings will be addressed in more detail by Dr. Jo
Nicholas @5#. Any serious student of rotor dynamics should n
only study these papers in detail, but should review the der
tions of the governing equations for stability and bearing analy

Introduction to Stability and Computation Problems. In
order to better illustrate the contribution by Lund to stabili
analysis of turbo-machinery, we will examine several simple s
tems and their governing equations of motion. Some of the dion
culties and complications involved with the solution of damped
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eigenvalues will be pointed out. It will later be presented how
transfer matrix method of Lund avoids many of these difficulti

Single-Mass System. The simplest damped eigenvalue pro
lem starts with the single-mass, single degree-of-freedom sys
shown in Fig. 1. This is the classical mechanical system, as sh
in every elementary vibrations text

M
d2X

dt2
1C

dX

dt
1KX50 (1)

Assume a solution of the form

X~ t !5Aelt

This results in

~Ml21Cl1K !A50 (2)

Dividing by M, we obtain

l212jvcl1vc
250 (3)

here

j5
C

Cc
, Cc52Mvc

vc5AK

M

Equation~3! is referred to as the characteristic equation for
system. From the examination of the coefficients of the charac
istic polynomial, we may gather a great deal of insight into t
nature of the stability problem. We will also understand so
methods which are not appropriate for stability analysis.

Equation~3! is second order and may be factored into its ro
as follows:

~l2l1!~l2l2!50 (4)

The simple solution to the 2nd order characteristic polynom
of Eq. ~3! is the classical solution where the complex eigenva
is:

l1,25p6 ivd , p52jvc

Where

p5real part5
2C

2M
52jvc

vd5damped natural frequency5vcA12j2

Fig. 1 Single-degree-of-freedom system
Journal of Vibration and Acoustics
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The amplitude

X~ t !5ept@A cosvdt1B sinvdt#

For a system ofn degrees-of-freedom, the size of the characte
tic polynomial would be 2n, as follows

~l2l1!~l2l2! . . . ~l2l2n21!~l2l2n!50 (5)

For the case of Eq.~4!, we obtain

l22~l11l2!l1l1l250 (6)

For Eq.~5!, we would obtain

l2n2~l11l21 . . . l2n!l2n211 . . . 1 p
r 51

2n

l r50 (7)

The coefficients( r 51
2n l r and p r 51

2n l r are called the invariants o
the characteristic polynomial. We now observe an interesting
ture of the characteristic polynomial. The first coefficient, or
variant, is the sum of the eigenvalues, and the last invarian
equal to the product of all the eigenvalues. By examining
invariant coefficients of the characteristic polynomial governi
the stability problem, we are struck by two apparent facts. Fi
for a system ofn degrees-of-freedom, the characteristic polyn
mial will be of order 2n, and that the last coefficient, or invarian
will be a product of 2n eigenvalues. From a practical standpoin
this means that without proper scaling, any rotor system bey
10th order~which is a very small rotor model! will begin to en-
counter numerical roundoff errors. With proper scaling, one c
extend the system to order 20.

Thus, we see that for a simple linear system the motion is sta
or damped out when the real rootp is negative, is at the threshol
of stability when p50, and is unstable whenp.0. Near the
threshold of stability, the value of the real componentp is small in
comparison to the damped natural frequencyvd . Thus, accurate
computations of the stability threshold can be a difficult numeri
problem for a large multi-mass system.

In stability, we do not refer to the magnitude of the real rootp,
but rather to the log decrement defined by

lnS X~ t !

X~ t1t! D5
2pj

A12j2
5d (8)

For low values of the damping ratioj, the amplification factor at
the critical speed is given by

Ac5
1

2j
'

p

d
(9)

Thus, a stable machine with a log decrement of 0.1 would g
a critical speed amplification factor of over 30. Accurate calcu
tion of the rotor log decrement is important not only from a s
bility standpoint, but also to insure that the rotor critical spe
amplification factors are reasonable.

Single-Mass Flexible Rotor. Figure 2 is the classical single
mass Jeffcott rotor on simple supports. The center line,C, is
whirling about the origin,o. For steady-state motion two degree
of-freedom are required to express the motion.

It would appear to be natural to express the equation of mo
in polar coordinates, with the radial motiond representing the
elastic deflection of the rotor andf the precession rate. Thi
seems particularly desirable when including plain journal be
ings. The use of polar coordinates is not a desirable approac
it leads to nonlinear dynamical equations of motion.

One of the earliest papers on rotor dynamics was W. A. Rank
‘‘On the Centrifugal Force of Rotating Shafts,’’ in 1869. Rankin
used a rotating coordinate system similar to Fig. 2 and arrive
the following equation of motion for the radial direction, as show
in Ref. @3#.
OCTOBER 2003, Vol. 125 Õ 463
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C

M
ḋ1~vc

22f2!d5ev2 cosb (10)

Thus, he arrived at the conclusion that when the rotor speef
was below the critical speedvc , the rotor was stable, in ‘‘indif-
ferent’’ equilibrium at the critical speed, and was unstable ab
the critical speed. The problem lies in the neglect of the Corio
terms of the second equation of motion. Papers are still be
presented today in which the author attempts to solve the dyn
ics problem in rotating coordinates. This problem was correc
solved by Jeffcott in 1919 when he used a fixed Cartesian c
dinate system. Lund makes use of the fixed Cartesian coordi
system in his general flexible rotor stability analysis. With the t
degree-of-freedom Jeffcott rotor on simple supports, the situa
of self-excited whirl motion may be caused by the internal sh
dampingCr or the aerodynamic cross-couplingf acting at the
turbine wheel. Assuming there is external dampingC acting at the
disk, the two coupled equations of motion are given by

MẌ1~C1Ci !Ẋ1KX1~Q1vCi !Y50 (11)

MŸ1~C1Ci !Ẏ1KY2~Q1vCi !X50 (12)

The two equations form a 4th order characteristic polynom
At the time I was analyzing the Jeffcott rotor for my thesis r
search, I could determine the stability boundary by the use of
Routh Hurwitz criterion and could even integrate the equation
motion with an analog computer, but I could not determine the
decrement of even this simplest of systems. It was not possib
compute the log decrement until Lund presented his stab
method.

Extended Jeffcott Rotor. The single-mass Jeffcott rotor a
shown in Fig. 2 does not simulate a realistic rotor since it h
pinned bearings. The second major contribution Lund made to
ability to compute compressor or turbine log decrements was
publication of various papers on gas bearings, as well as
lubricated bearings. Reference@2# by Lund on fixed-lobed bear
ings is of particular significance, as already mentioned, and
bearing coefficients listed forL/D ratios of 0.5 and 1.0.

Figure 3 represents the extended Jeffcott rotor on flexible s
ports. This model may be effectively applied to first mode stabi
log decrement studies by assuming the center massM to be the
rotor multi-station modal mass and using the modal compre
stiffness asK. The Lund bearing coefficients may then be used
rapidly determine the stability characteristics for various bear
types.

The equations of motion are expressed in fixedX, Y Cartesian
coordinates. For a multi-mass rotor it is not feasible or desirabl
employ a rotating coordinate system. More will be said about
approach later. The threeX andY displacements are

Fig. 2 Single-mass rotor
464 Õ Vol. 125, OCTOBER 2003
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$X%T5$X1X2X3%
T

and

$Y%T5$Y1Y2Y3%
T

The six equations of motion are of the form

FM

M
G H Ẍ

ŸJ 1FCxx Cxy

Cyx Cyy
G H Ẋ

ẎJ
1FKs

Ks
G HX

YJ 1FKxx Kxy

Kyx Kyy
G HX

YJ 50 (13)

Each item in Eq.~13! represents a 333 matrix. The matrixKs is
of particular interest, as this represents the effective finite elem
stiffness matrix of the shaft and is given by

@Ks#5U K

4
2

K

2

K

4

2
K

2
K 2

K

2

K

4
2

K

2

K

4

U
whereK5shaft stiffness548EI/L3 for a simple shaft. As a finite
element three-point stiffness matrix, the matrix must be posit
definite, and singular to represent a free-free shaft. The 12th o
characteristic polynomial for this system may be generated by
Leverrier’s algorithm, as given in Ref.@6#. This method of stabil-
ity analysis is not practical for a large multi-mass compressor
the shaft nth order stiffness matrix would have to be obtain
from structural analysis, and numerical difficulties in the ro
solving procedures would limit its utility.

It is of interest to note that a number of papers have b
generated on the extended Jeffcott rotor with one end fixed, s
as with a ball bearing. In this case the constrained shaft stiffn
matrix becomes

Fig. 3 Extended Jeffcott rotor on flexible supports
Transactions of the ASME
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In the majority of papers on this subject, theK/4 term is miss-
ing from the equations, leading to misinterpretation of the res
such as assumed fluid film bearing inertia terms. It is apparent
even the simple Jeffcott rotor, when extended to flexible suppo
can lead to difficulties due to errors in the system equations.
attempt to add several mass stations by this approach lead
problems unless the corresponding shaft stiffness matrix is p
erly derived by finite element techniques or the inversion o
flexibility matrix.

Lund on Stability of Gas Bearings
The earliest works of Lund on rotor-bearing stability were co

cerned with static and dynamic characteristics of gas bearing
the 1960’s there was a considerable research effort performe
gas-lubricated bearings, both in the United States and abroad
research was broadly supported by the Office of Naval Rese
~ONR!, the NEC, NASA Lewis Research Center, and the Wrig
Patterson Air Force Laboratories. Extensive government-fun
gas bearing research programs were conducted at Ampex u
the direction of Dr. William Gross, at Franklin Institute und
Professor Dudley Fuller, and at Mechanical Technology, Inc.
der the direction of Dr. Beno Sternlicht. Lund, who was at M
during this time, made major contributions to the field of g
bearing dynamics and stability. Dr. Sternlicht had assembled s
of the best engineers in the country at MTI in the 1960’s, a
Lund was considered to be one of his most outstanding stars

The solution of the Reynolds Equation for a gas bearing
complicated by the compressibility of the lubricant. This mak
the Reynolds Equation for gas-lubricated bearings nonlinear in
pressure termP. One of Lund’s first analyses of flexible roto
stability was in 1965 in his paper, ‘‘The Stability of an Elast
Rotor in Journal Bearings With Flexible, Damped Supports.’’ F
ure 4 represents the rotor model used by Lund@6#.

If journal mass is included in this model, then the order of t
system would be 12. This would be beyond analysis capabilitie
the time, even for Jørgen. Simplifications made by Lund includ
neglecting journal mass, and later support mass, in his anal
The shaft stiffness matrix for general motion in Fig. 4 should
434, Lund assumes that the motion of the two major masse
either in phase~1st mode! or out-of-phase~2nd mode!. Represent-
ing the rotor by flexibility coefficients, Lund states the appro
mate equations of motion as

X12X252MẌ1~aaa1aab!21st mode in phase (14

X12jX252MẌ1~aaa2aab!22nd mode out of phase
(15)

Equating the rotor and the bearing forces at the bearings yi
a force equation involving rotor elasticity and dimensionless be

Fig. 4 Lund 2-mass rotor on damped supports
Journal of Vibration and Acoustics
lts
that
rts,
he
s to
op-
a

n-
. In
on

The
rch
ht
ed

nder
r
n-
I

as
me

nd
.

is
es
the
r
c
g-

he
s at
ed
sis.

be
s is

i-

lds
ar-

ing stiffness and damping coefficients. The corresponding eq
tions of motion involving the support structure and bearings
also included.

In this stability analysis Lund did not attempt to solve for th
log decrement of the system, but only for the threshold of stabi
in which the real componentP of the eigenvaluel is zero. Lund
analyzes three basic cases with the rigid rotor on the g
lubricated bearings, the flexible rotor in gas bearings, and the r
and flexible rotor on elastic damped supports. The plots for
bility of a gas bearing are complicated by the compressibility
the lubricant. Instead of a Sommerfeld number to represent
bearing, the compressibility parameterL is used. For constan
ambient pressurePa is used, and film viscosityL becomes a
dimensionless speed parameter.

Figure 5 represents the stability of a rigid rotor in a gas bear
with anL/D50.5. The stability is plotted as a function of critica
mass~dimensionless! vs. the dimensionless speed or compressib
ity parameterL. The set of dotted lines represents the vario
bearing operating eccentricities and the solid lines are the line
constant loading.

In the stability plot of Fig. 5 for the plain gas bearing, on
would assume that the vertical loading is constant. For exam
with a dimensionless loading ofW̄50.14, and a dimensionles
speed ofL51, the critical massM is 20. As the speed increase
we move down along the constant load line. At a speed param
of L520, the critical mass is only 0.01. When actual mass
larger than the critical mass, the rotor becomes unstable. Thu
see that as speed increases for a given load, the gas bearing
tually becomes unstable.

When an instability is encountered with a gas-lubricated be
ing, the occurrence may be quite sudden with dramatic con
quences. Figure 6 represents the orbit of a gas bearing gri
spindle below and above the threshold of stability@7#. Figure 6
shows the dramatic, large amplitude limit cycle motion that o
curred with a gas bearing rotor with only a fewRPM difference
in speed. A further increase in speed could cause bearing dam
When this effect occurs with the grinding spindle, the quality
the surface finish is extremely poor. The occurrence of this w
phenomenon in this commercial grinder eventually caused

Fig. 5 Critical rigid rotor mass for L ÕDÄ0.5 gas bearing vs.
dim. speed
OCTOBER 2003, Vol. 125 Õ 465
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company to discontinue its manufacture. By the 1960’s the
bearing was also seeing wide application in dentist drills. Ho
ever, the occurrence of self-excited whirling could lead to so
unpleasant experiences such as the dentist removing half
patient’s tooth before he realized what had happened.

With even larger gas-bearing supported rotors, the occurre
of self-excited whirling could lead to even more unpleasant
havior. While at the Franklin Institute, we had a high speed 200
gas bearing rotor referred to as the EP2.~EP1 had failed before
my arrival.! We had just stepped out of the lab to announce to
section chief that we had achieved 20,000RPM operating speed
At that point the rotor seized, ripping out the foundation bolts a
falling off the concrete superstructure. Air is not much of a boun
ary lubricant! Self-excited whirling of gas bearings is not to
taken lightly.

In Lund’s analysis of the gas bearing on flexible damped s
ports, as shown in Fig. 7, he shows the dramatic effect of
combination of support flexibility and damping on the gas bear
stability threshold. For example, the dimensionless speed tim

Fig. 6 Gas bearing rotor below and above the stability thresh-
old

Fig. 7 Stability of cylindrical gas bearing vs. support damping
for eÄ0.3, L ÕDÄ0.5, K pÄ0.10
466 Õ Vol. 125, OCTOBER 2003
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L510 represents a critical mass of 0.2 for an eccentricity ratio
0.3, as shown in Fig. 5. With a flexible support and no dampi
the critical mass is reduced by an order of magnitude to 0
There is no change in stability for low values of damping up
1023. After this value of damping is exceeded, the stability i
creases rapidly with an increase of support damping.

This plot has a very practical application to the design of h
speed gas bearing dental drills. By having the gas bearings
ported in rubber o-rings, the stability may be greatly improve
The rubber o-rings provide both the required stiffness and da
ing necessary for stabilization. The limit cycle motion is also b
ter controlled with the flexible damper supports.

Lund on Whirl Orbits in Sleeve Bearings. At the time Lund
published his work on gas bearing rotors on damped flexible s
ports @1#, he had not received his Ph.D. yet. In discussions w
Jørgen, it was commented that his work would be worthy o
Ph.D. dissertation. He responded that since this work was alre
published, it was necessary for him to choose another topic.
Ph.D. dissertation was on the limit cycle whirl orbits of slee
bearings and was published in the Journal of Engineering for
dustry in 1967. The nonlinear equations were solved by a met
of averaging, whereby the whirl orbits were obtained directly.
was found that the limit cycle whirl orbits are encountered in
narrow speed range.

Figure 8 represents the normalized whirl orbits of a sleeve b
ing at the onset of oil whirl instability@8#. This figure shows the
nature of the nonlinear whirl orbits at the threshold of instabili
For very light loads with low bearing eccentricity rotors, the orb
are nearly circular. As the radial loading increases, the orbits
come more elliptical, as seen for the case whene50.6.

There are a number of important stability contributions in th
paper. First, Lund shows that the bearing load vs. eccentricity
variousL/D rates is best plotted using the modified Sommerf
numbers, rather thanS.

s5pS L

D D 2

S5
1

8

MvDL

W S L

CD 2

Fig. 8 Normalized whirl orbits in a sleeve bearing at the onset
of instability
Transactions of the ASME
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For interpolation between bearing characteristics for vari
L/D ratios, the Lund modified Sommerfeld number is more a
propriate than the conventional Sommerfeld number,S. In his
analysis, Lund uses a fixed Cartesian coordinate system to ex
the equations of motion. This approach will become particula
important when we consider the multi-stage compressor with
roscopic effects. Lund uses the polar coordinate system to s
for the bearing radial and tangential forces. These forces are
transformed into normalized stiffness and damping coefficie
Ki j andCi j expressed in fixed Cartesian coordinates.

Although Lund does not compute the log decrement for
linearized bearings, he does present a stability criterion for
calculation of the stability threshold based on the generali
bearing coefficients, as follows. First, the generalized stiffnessKs

is computed, followed by the normalized whirl ration2.

Ks5
KxxByy1KyyBxx2KxyByx2KyxBxy

Bxx1Byy
(16)

n25
~Kxx2Ks!~Kyy2Ks!2KxyKyx

BxxByy2BxyByx
(17)

The stability is given by

CMv2

W
5

sKs

n2
(18)

The minimum value of this parameter from Fig. 5 of his pap
at s50.2 is about 6.4. For a horizontal rotor that is gravity load
in which M5W/g, we arrive at the simple stability criterion tha

v5A6.4Ag

c
(19)

For a 5-mil radial clearance bearing, this would place the s
bility threshold speed around

NsRPM52.533
30

p
A386.4

.005
56,720 RPM

Thus, it can be seen that it would be difficult to build a high-spe
compressor mounted in sleeve film bearings to operate o
10,000RPM!

Lund demonstrates that the equations for a flexible rotor
identical to the equations for a rigid rotor with a redefinition of t
rotor massm terms. He shows that the flexible rotor massmc can
be calculated from

mc5
mKc

Kc1mn2
(20)

He then states that all the results for a rigid rotor can be u
directly to determine the results for a flexible rotor. Thus, the m
flexible the rotor is, the lower its threshold speed. In the limit,
states that a flexible rotor will go unstable at twice the rotor na
ral frequency and will whirl at the rotor natural frequency. Hen
we see from this paper that compressor design is limited w
rigid and flexible rotors to speeds of

Rigid Rotors2N,
475

AC
, RPM

Flexible Rotors2N,2Nc

Multi-Mass Rotor Stability by Lund
In the previous papers discussed by Lund on gas bearing

plain oil-lubricated sleeve bearings, the shaft flexibility was a s
plistic model of a singleK value to represent the shaft stiffness.
was mentioned that for the majority of multi-stage compress
the rotor first critical speed and associated modal mass ma
used for the assumed shaft stiffness. In the more general m
Journal of Vibration and Acoustics
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mass analysis performed by Lund and presented in his 1974 l
mark paper on stability of flexible rotors, several important ad
tions were included which allow the theory to be applied
virtually any single span turbo-rotor.

Figure 9 represents a schematic diagram of a multi-stage c
pressor on bearings. Figure 9 represents the compressor as
crete stations interconnected by springs.

In the transfer matrix analysis of Lund, he states that it is
extension of the Prohl-Myklestad method for the computation
undamped critical speeds. However, the addition by Lund to
clude complex motion, generalized bearings, and disk gyrosco
was a major addition. The process to search for the complex r
and obtain convergence is a problem of considerable difficu
compared to finding undamped critical speeds.

We shall address three major features of the generalized L
flexible rotor stability analysis that allowed him to compute co
plex forward-backward rotor modes at any speed, including
computations of the mode log decrements. The combination
these factors created a practical design tool which is used aro
the world today.

Continuum Theory and Distributed Shaft Mass. A major
feature of the transfer matrix method of Prohl-Myklestad@9,10# is
to group the shaft parameters in one massless transfer ma
referred to now as the field matrix, and have the mass proper
bearings, unbalance, and gyroscopic moments concentrated
station. This matrix is referred to as the point matrix. The com
nation of the point and field matrices forms an element trans
matrix. Figure 10 represents the division of a shaft element
Lund into thenth andn11 field and point matrices.

When using the transfer matrix method, the first question t
needs to be addressed is whether to use a massless beam o
the beam transfer matrix on continuum mechanics. By the 197
the theory of transfer matrices by continuum mechanics was w
established, as exemplified by the comprehensive text by Pe
and Leckie on ‘‘Matrix Methods in Elastic Mechanics,’’ publishe
in 1963 @11#. In their book they present the transfer matrices
both the massless and the distributed mass beam theory bas
continuum mechanics. On initial inspection, it would appear t
the continuum mechanics approach to include shaft mass w
be not only preferable, but much more sophisticated and eleg

R. L. Ruhl, in 1970, published an exceptional Ph.D. thesis
the dynamics of distributed parameter rotor systems in which

Fig. 9 Schematic diagram of a typical turbo-rotor and lumped
mass representation
OCTOBER 2003, Vol. 125 Õ 467
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treats both the transfer matrix and finite element techniques@12#.
Ruhl was ahead of his time with the finite element approach, s
the required eigenvalue solvers such asQR and the complex
Lanczos tracking-transformation eigensolver had not been
fected. The finite element rotor dynamics solution procedure to
is the method of choice, but this was not a viable option in
1970’s due to insufficiency of computer storage, speed, and a
rithms for solution techniques.

Ruhl, in his Ph.D. dissertation, does use the continuum
proach similar to the equations of Pestel and Leckie. It turns
that this is not necessary. The continuum equations themselve
numerical disasters because of convergence problems with
hyperbolic functions. The accuracy of the solutions is not i
proved by continuum mechanics and results in systems which
limited in the number of mass stations that one can handle du
convergence problems.

Lund himself felt obligated to present the eigenvalues fo
uniform beam on simple supports using continuum mechan
The 4th order beam equation that Lund presents is as follows

]2

]Z2 S EI
]2Y

]Z2D 1rA
]Y2

]t2
5d~Z!• f o1d~Z2 l !• f e (21)

Where f o and f e are the bearing reactions andd(Z) is the delta
function. The 4th order beam equation with flexible bearings
plied at the ends leads to a transcendental equation~infinite num-
ber of solutions! and hence the computer must be used for
solution. In addition, beam representation does not include s
deformation, rotary inertia, or gyroscopic moments.

The general solution to the fourth order beam equation is of
form

Y~Z!5A cosbZ1b sinbZ1C coshbZ1D sinhbZ (22)

For the uniform beam that Lund analyzes in the first part of
paper, the natural frequencies and mode shapes on stiff bea
are the classical simple support solutions.

Y~Z!5An sin
npZ

L
; n51,2,3 (23)

vn5~np!2AEIg

WL3
, rad/sec (24)

Figure 11 represents the mode shapes for the first two cri
speeds for the uniform beam model of 50 inches in length an
inches in diameter with stiff supports. For the theoretical mod
the second critical will be four times the first mode.

The question with the Lund transfer matrix method is ho
many stations are required to accurately calculate the 1st or
2nd mode. According to the Ruhl thesis, the finite element met
is much more accurate and the transfer matrix method would
quire over 20 stations for reasonable accuracy. The problem
the Ruhl analysis has to do with the lumping of his mass statio
All of the stations are of equal weight.

Fig. 10 Shaft element divided into point and field elements
showing the sign convention
468 Õ Vol. 125, OCTOBER 2003
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Figure 12 represents a uniform rotor represented as a th
section rotor. Using the Lund method of lumping, one-half of t
weight on either side of the stations would be lumped at the
tions.

By this means, the weight of w/4 would be placed at the en
This is in comparison to the Ruhl lumping which would be w/3
all stations. For the case of simple supports, we have reduced
uniform beam to a Jeffcott rotor similar to that shown in Fig.
The stiffness of the shaft with simple supports is given by

K5
48EI

L3

The critical speed is given by

vc5A96EIg

WL3
59.798AEIg

WL3
(25)

Whereas, the exact solution is

vc exact5p2AEIg

WL3
59.870AEIg

WL3

The percent of error between the exact and the lumped m
model is

%error5
9.87029.798

9.870
310050.73%

For the higher modes, the number of mass stations require
obtain natural frequencies to less than 1% of accuracy is given

N stations523N modes11 (26)

Thus, with the 21 stations model of Ruhl, using Lund lumpin
the first 10 modes may be computed to less than 1% of error b
on the Bernoulli-Euler beam assumptions. Lund, in his beam r
resentation, also included transverse shear deformation. The

Fig. 11 First two computed modes for 11-station beam using
Lund transfer matrix method

Fig. 12 Uniform beam a 3-station model showing Lund
method of mass lumping
Transactions of the ASME
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portant point is that continuum mechanics has no role in mod
rotor dynamics, although many papers are presented each
using this approach. It should also be noted that in many fi
element programs, such asMSC/pal2@13#, one may choose be
tween a lumped mass formation, a coupled mass formation,
consistent mass formation. The lumped mass formation is ide
cal to the Lund lumping procedure. The use of a consistent m
matrix results in natural frequencies that are slightly higher th
the exact values. Therefore, there is little be gained using a fi
element approach with consistent mass matrices over the L
lumped mass model.

The representation of the rotor as a discrete system of lum
masses and massless beam elements, instead of as a continu
a major step in the ability to analyze a multi-mass flexible rot
For many years this procedure was not accepted by my advise
well as many of the faculty in the Department of Engineeri
Mechanics where I obtained my degrees. I spent several yea
rotor dynamic projects such as the ultra centrifuge, attemptin
apply continuum mechanics to no avail.

Method of Solution
The complex rootsS for the generalized eigenvalue problem

Lund are complex and the roots occur in pairs of complex con
gates. For simple undamped critical speed analysis, the rooSi
56 iv i , wherev i are the undamped critical speeds. The char
teristic polynomialP(S) is given by

P~S!5~S2S1!~S2S2! . . . ~S2Sn!50 (27)

For undamped critical speeds, it is very easy to have a nume
search along theS plane for real values ofv. This is not the
situation with determining the complex roots ofP(S). Lund states
that an eigenvalue is obtained when the boundary conditions
satisfied by

D5det~D !50 (28)

whereD is the 434 complex system transfer matrix that genera
then th station moment and shear values from the initial displa
ment vector~assuming free end conditions!. The root is found
from a Newton-Raphson iteration scheme such as

Snew5Sold2Do Y S dD

dsD
o

(29)

The problem with this iteration scheme is that there is no way
prevent the system from converging on a previously found mo
What Lund did to make his method work was to generate a m
fied characteristic determinate in which the previously found r
was removed from the polynomial by

D85
D

~S2S1!~S2S2!
(30)

His iteration algorithm used to avoid finding the same root repe
edly is

S5So2D/dD i5dD (31)

where

dD5S dD

dSi
D

o

2Do(
j 21

J
1

So2Sj
(32)

By this procedure, the eigenvalues are determined to an a
racy of eight significant places and the number of iterations
quired for convergence is 5–10. Figure 13 represents the dam
natural frequencies of a uniform beam with bearing stiffness v
ues of 20,000 lb/in at each end and various values of dampin

In Fig. 13, generated by Lund, the uniform 50-in beam is s
ported by soft bearings ofKb520,000 lb/in. At low damping val-
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ues belowCb520 lb-sec/in, the first two bearing modes are rig
body cylindrical and conical modes. The third mode is the be
free-free mode.

As the bearing damping increases, the rigid body modes
critically damped asCb increases to 138 lb-sec/in. The third mod
reduces in frequency. At a bearing damping ofCb
5130 lb-sec/in, the maximum damping ofP51,100 rad/sec is
obtained for mode 3. As the bearing damping is further increas
the effective modal damping exponent reduces. Note that at b
ing damping values ofCb.500, the damping exponent ap
proaches zero. This plot illustrates the concept of optimum da
ing for a particular mode. Above damping values ofCb
5130 lb-sec/in, bearing ‘‘lockup’’ begins to occur due to exce
sive damping. The high bearing damping causes the rotor m
shape to change from free-free to pinned. This concept of bea
lockup is very useful for the design of squeeze film dampers
compressors and turbines.

Conclusions
This paper deals specifically with Lund’s contributions to t

field of stability and damped eigenvalue analysis of turbomach
ery. In his remarkable paper on ‘‘Stability and Damped Critic
Speeds of Flexible Rotors,’’ he presents for the first time a use
numerical procedure for the calculation of compressor and turb
log decrements. By this procedure, it was now possible to co
pute the rotor modal amplification factors and stability thresh
of compressors for various types of bearings, and also to optim
the design of squeeze film damper bearings for stabilization.

There is insufficient space to completely discuss the many c
tribution of Lund in rotor dynamics and fluid film bearings@14#.
We could, for example, develop another section on Lund’s tre
ment of shaft gyroscopic effects. Between his contributions
fluid film bearings and rotor dynamics, both from a stability a
unbalance response standpoint, the compressor and turbine
signers were now given practical design tools which helped cre
a new generation of high-speed, efficient turbo-rotors through
the world.

Fig. 13 Damped natural frequencies of a uniform beam with
K bÄ20,000 lb Õin
OCTOBER 2003, Vol. 125 Õ 469
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Nomenclature

C 5 Bearing Damping
E 5 Young’s Modulus
I 5 Shaft Moment of Inertia

K 5 Stiffness
L 5 Shaft Length
M 5 Mass
S 5 Sommerfeld Number
X 5 Horizontal Deflection
Y 5 Vertical Deflection
a 5 Influence Coefficient
v 5 Angular Velocity
j 5 Damping Ratio
d 5 Log Decrement
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