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Introduction

Tm; STUDY of rotor dynamics has in recent years be-
come of increasing importance in the engineering design of power
systems. With the increase in performance requirements of
high-speed rotating machinery in various fields such as gas tur-
bines, process equipment, auxiliary power machinery, and space
applications, the engineer is faced with the problem of designing
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a unit capable of smooth operation under various conditions of
speed and load.

In many of these applications the design operating speed is
often well beyond the rotor first critical speed, and under these
circumstances the problem of insuring that the turbomachine will
perform with a stable low-level amplitude of vibration is often
difficult to achieve.

At the turn of the century Jeffcott [1]! developed the funda-
mentals of the dynamic response of the damped single-mass un-
balanced rotor on a massless elastic shaft mounted on rigid bear-
ing supports. The Jeffcott analysis of the single-mass model
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Nomenclature
Ao = amplification  factor at (", = bearing damping, lb-sec,/ ¢, = rotor mass eccentricity,
rigid support eritical = in. in.
CHI C. = critical damping coeffi- F, = force transmitted to foun-
i (dim) cient, Ib-sec/in. dation, 1b
4, = complex bearing ampli- C; = rotor internal damping, I, = force transmitted to bear-
tude, in. Ib-sec/in. ing housing, 1b
A, = complex support ampli- (', = absolute shaft damping, K = stiffness ratio, K;/K,
tude, in. Ib-sec/in. K, = bearing stiffness, Ib/in.
A: = complex rotor amplitude, ('; = support damping, Ib-sec, K, = rotor-shaft stiffness, 1b/in.
in. in. K; = support stifiness, Ib/in.
(" = damping ratio = ,/C, (', = effective rotor-bearing K, effective rotor-bearing

(dim)

damping, Ib-sec/in.

stiffness, b /in.
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possible and that a low level of vibration would be attained once
the rotor had exceeded the first critical speed.

As various compressor and turbine manufacturers adapted the
flexible rotor design concept in which the rotors were designed to
operate above the first critical speed, various units developed
severe operating difficulties which could not be explained by the
elementary Jeffcott model.

Under certain conditions of high-speed operation above the
first critical speed, such influences as internal rotor friction [2],
hydrodynamic bearing and seal forces [3], and aerodynamic cross-
coupling [4] can lead to a destructive nonsynchronous precessive
whirl motion being developed in the rotor system.

Newkirk and Kimball [5], in their early investigations of self-
excited instability in compressors due to internal friction, were
able to determine experimentally that the introduction of a
flexible support system could greatly extend the rotor stability
threshold speed. Smith [6] in 1933 was the first to verify New-
kirk’s findings theoretically by expanding the Jeffcott model with
internal damping to include a massless damped flexible support
system. Recent investigators such as Gunter [7], Tondl [S],
Dimentberg [9], and others [10] have shown that flexible damped
supports may improve the stability characteristies of high-speed
rotors. The problem of bearing forces transmitted has been ex-
amined by various researchers [11-14]. They have shown that a
significant reduction in the forces transmitted can be achieved by
the proper design of the bearing support system.

The present analysis was undertaken to determine the influence
of flexible supports on the synchronous unbalance response of the
single-mass Jeffcott rotor, and to optimize the support system
characteristics so as to minimize the rotor amplitude and forces
transmitted over a given speed range. Den Hartog [15] has
shown that the tuned vibration absorber will greatly reduce the
response of the forced vibrations of the two-mass system. The

following analysis parallels this approach for the case of a single-
mass rotor excited by an unbalance load.

This paper presents an analytic study of the tuned damper sup-
port system similar to that employed by Brock [16] and also
presents a generalized study performed on the digital computer to
obtain optimum support damping to produce the best response of
the rotor over a wide speed range. It is well known that a damper
support system can improve the vibration characteristics of a
rotating shaft, and various investigators have considered the
problem either from the standpoint of a continuous elastic system
or as a series of lumped masses [17-23].

Although the results presented in this paper apply specifically
to the single-mass Jeffcott model, the optimization procedure may
be readily extended to more complex multi-mass rotor-bearing
systems by employing a finite-element rotor digital computer
program similar to the procedure presented by Lund [24] or by
using the procedure as outlined by Crook and Grantham [25] on
the vibration analysis of turbine generators on damped flexible
supports.

Equations of Motion

Fig. 1 represents the single-mass Jeffcott rotor mounted in
damped elastic supports. In the Jeffcott model, the shaft is
considered as a massless elastic member and the rotor mass is
concentrated in a disk mounted at the center of the span. The
shaft is supported in linear bearings which are mounted in
damped flexible supports.

Neglecting rotor acceleration and the disk gyroscopics, the
governing equations of motion for the rotor, bearings, and sup-
port system in complex notation reduce to the following [31]:

J[ng + C.‘.Z;g + CX-Z'\. — I.QZ2
+ (K, — iwC)Z, = Mo (1)

Nomenclature
M = mass ratio, = M,;/M, 7, = complex shaft relative am- w2 = rotor  system critical
(dim) plitude speeds, rad/sec
M, = support mass, lb-sec2/in. Z, = complex support ampli- w, = rigid support critical
M, = rotor mass, Ib-sec?/in. tude ) speed, rad/sec
N. = rotor crmca.l speed, rpm Zy = co¥nplex rotor amplitude, Q, Q = speeds at which the node
P = 1stnode point on response in. . ) points P and Q occur on
plot . N Z; = complex' journal ampli- response plots
Q = rotor crosi—coup]mg stiff- tude, in. ) 4 T r——
ness, 1b/in. o rotor angular acceleration s g
< . eon? rigid support critical
@ = 2nd node on response plots rad/sec (i)
R, = rotor absolute displace- B, phase angle of support mo- .1m .
ment amplitude tion relative to rotor un- CB bearlng damping, lb-
" = kinetic energy balance, deg sec/in.
TRD = transmissibility = F B phase angle of rotor mo- CD shaft damping coefficient,
(Mye,w?) tion relative to rotor un- Ib-sec/in.
I: = potential energy balance, deg DC internal damping, lb-sec/
V = velocity, "1_/ sec B, = phase angle of bearing mo- in.
W. = support weight, Ib tion relative to rotor un- E rotor mass eccentricity, in.
X = defined as X2 balance, deg
r o g ; T FTR@WC = force transmitted at rigid
X, = .shz.iftrel.atlvgdlapld(emenl 6 = angular displacement, rad ¥ ranort ticdl
in z direction ) . supp
. . . Y defined as K /M (dim) B = G
X, = support displacement in z ; : P L rotor speed, rpm
RN £ damping ratio = ¢/ec .
direction (dim) QAC = aerodynamic  cross-cou-
X, = rotor absolute displace- . pling coefficient, 1b/in.
i o diveeti ¢ rotor absolute amplitude . :
ment in z direction liaseanslaude TRDB maximum bearing force
X,; = journal relative displace- B p ht f% ’t'g transmitted (dim)
: T moment of mertia )
meny 1nx.dlre(t1.0n : . : TRDS maximum support force
Y, = shaft relative displace- X = optimum amplitude for : :
& . ) . e transmitted (dim)
ment in y direction tuned system — o - _—
Y, = support displacement in y 1 defined as 2% or 2,2 when #E Iomt{“g o Hnaanee tO0a
direction calculating required per mll unbalance ec-
Y, = rotor absolute displace- damping at point P or @ eonbrietty;lb
ment in y direction respectively W = rotor speed, rad/sec
.Y; = journal relative displace- ® rotor angular velocity, WC = rigid support critical speed,
ment in y direction rad/sec rad/sec
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Fig. 2 Dimensionless critical speeds vs. support stiffness ratio for
various support housing mass ratios

The amplification factor at the rotor critical speed is given by

K, 250,000

A = = : =
wCs 1000 X 25

The amplification factor of 10 represents a very lightly damped
rotor system and indicates that the rotor amplitude at the critical
speed will be 10 times the rotor unbalance eccentricity e,

Rotor Response on Damped Flexible Supports

Solution of equation (6) for the case of synchronous precession
for the shaft relative deflection Z, yields

Ky(K, + K,) + (0C;)2 + z'waKs:l (13)

(Ky + K,)? + (wCy)?

Z, = (z._,—zl)[

Hence, in terms of the general coefficients s and K,

Ii'g + lw(Cg e CS)]

Zs = (Zg i Zl) [ I{

(14)

s

The simultaneous equations for the absolute shaft and support
housing motion reduce to the following:

[K, + Ko — Myw? + iw(Cy + C; — C)1A,
+ [—iw(C: — C,) — Ki)d4, = 0

ColA,
+ [Kg = J[gwg + 'I‘O)Cg]Ag = J[;z(’uw2 (16)

(15)
[—K; — iw(C, —

If the damping terms are neglected, then the natural frequen-
cies of the system may be determined by the expansion of the de-
terminant of coefficients. The resulting frequency equation may

be expressed as follows:
1 1+K 1+ K 1\* K7
5 = — = =+ et e £2 - 1
O \/ i [( o T 2> JI:' 1
w, = V Ko/ M,

2 2M

Fig. 2 represents the dimensionless critical speeds versus the
dimensionless support stiffness factor K for various values of sup-
port to rotor mass ratios. Note that the incorporation of the
flexible support with the rotor-bearing system causes two critical
speeds to occur, one which is higher and one which is lower than
the original rotor eritical on rigid supports.
~ To solve for the complex support and rotor amplitudes 4; and

4

where

A, equations (15) and (16) may be expressed as follows:

la;; + ib;]4; = Fy; ji=12; 1=1,2 (18)

Multiplying equation (18) by the complex inverse matrix of co-
efficients and expanding yields

Fy ap + ibl'.’.j
(19)

where
A d, + id;
d, (Ky — Myw?) (K, — Myw?) — KoMyw? — C,Cow?
— w?C(C: — C,)
d; = Ciw(Ks — Mxw?) + Cow(K; — Myw? — Maw?)
+ Csw(Kz + ﬂ[2w2)

I

1

Expanding equation (19)

oz Frasn — Foays + 1(F1byy — Fabya)
B dr + Il‘dt

A, (20)

In this case only an external unbalance excitation force F, is
acting on the shaft and no external exciting force F, is assumed to
be present on the support system. For example, an excitation
force F; may be transmitted to the rotor system through the
support structure by vibrations of auxiliary or adjacent equip-
ment.

_ &[alz(lr + biad; + i(bad, — ayod;))
d?+ dz

Assume 4, is of the form
Ay = Ay — Ay (22)
The complex support amplitude Z; after some complex algebraic
manipulation is given by
Zy = Ayt = Rii@t—hD (23)
where
S d‘i
R, = '\/Axrz + A3 By = tan~! (7

If the shaft damping coefficient C, is considered small in com-
parison to the effective damping coefficient C, then the system
displacements and phase angles are given as follows:

K2? 1+ (wCy)?
e ”\/*W

(24)

and the phase angle of the support motion relative to the rotating
unbalance load is given by

(25)

od; — d,
B = tan—1! [K“ g = 6y r:l

Kgd,. + ngd,»
since the complex rotor support motion Z; is given by
Zy = Xy + 1Y) = Ryei@t=A)

Then, for example, the horizontal and vertical components of
the support motion are given by

X Ky* + (wCs)? [cos (wt — By)
= Me,w? 4/ —————— { . 26
{Yl} e ‘/ d*+d;? sin (wt — B, (26)
In a similar fashion, the complex rotor amplitude Z. is given by

2 ay + by

d, + 1id;
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Schematic diagram of single-mass rotor on damped elastic

CZ; — (K, — iwC)Z, = 0 (2)
MZ, + C\Z, + KiZ, — CZ, — (K, — iwC)Z, = 0 (3)

CZ, + K Z; —

where

Z, = Zy — Z; — Z, = relative shaft deflection

If the internal damping C; and the aerodynamic cross-coupling
term Q are excluded from the above equations then the system
will be stable [26].

After the initial transient motion has damped out, it may be as-
sumed that the system steady-state motion is circular synchronous
precession. In this case the displacements are related to the
velocity and acceleration vectors as follows:

Z; = Aot
7. = iwZ, 4)
Zi = (wZ; = —wZ;

where 4 is in general complex.

The differential equations of motion may be reduced to a set of
algebraic equations for the determination of the rotor steady-state
motion.

(K, — Mxw? + iCw)ds — KA;
—K A, + (K, + K, + iwCA; + KA, =0 (6)
—KA,+ KA; + (K, + K, — Mw? + iwC)A; = 0 (7)

— KA1 = My, w?® (D)

Rotor Amplification Factor

Consider the steady-state orbit of the flexible rotor on rigid
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supports. The rotor amplitude is a function of both the rotor and
bearing stiffness and damping characteristics. Assuming A4, is
zero, the relative journal bearing complex amplitude from equa-
tion (6)is given by

A; = A2 S
1T K+ K+ @Oy B
Solving equation (5) for the rotor amplitude yields
(K, — Mxw? — y
As = My w? - - i = iCel 9)
(K, — 11>w2) + (wC)?
where
K. — KK (K, + K,) + K S(Cy)?
) (K, + K3)? + (0Cy)?
K.2C
c sCp

* = K T K+ @ O

The rotor displacement vector Z. may be expressed in terms of
the absolute displacement R and the phase angle ¢ as follows:

Zy = Racl@t—¢) (10)

where
M 20,0*
V (Ks — Maw?)? + (w0C5)?

w(?-»
= tan~!| ——
¢ . [A = J[.ng]

The above results are similar to the rotor amplitude and phase
angle results for the single-mass flexible rotor on rigid supports as
shown by Thomson [27].

The rotor undamped or natural critical speed is given by

\/11, J(K S K )1[,

For the case of a lightly damped rotor system on rigid supports
the maximum rotor amplitude will occur at approximately the
rotor critical speed and the dimensionless rotor amplitude or
amplification factor at the critical speed is given by
R, | K,

wCC-z

R, =

(11)

(12)

€y lw=we

Example 1. Consider a 97-b disk centered on a uniform mass-
less elastic shaft as shown in Fig. 1. Assume that the bearing
stiffness K,/2 is 500,000 1b/in. and that the effective shaft stiff-
ness K, at the disk station is 333,000 lb/in. Assuming light
damping, the total stiffness K. is given by

K.K, 1 X 0.333 X 10

K. = S 250,000 Ib /in.
K.+ K, (1+0333)10°

The rotor critical speed is

o= Nir =V

or N, = 9550 rpm.

If the rotor damping C, is assumed to be 15 Ib-sec/in. and the
bearing damping coefficient C, /2 is 80 Ib-sec/in., then the effective
system damping coefficient C is approximately given by

K. 2C,

C~Cot &, + Kt

50. ()0()
J,,A, = 1000 rad/sec
0.25

(0.333)2 X 10> X 160
(1.333)% X 102

= 25 lb-sec/in.

= 15
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Fig. 4 Absolute rotor motion with a tuned support system for various
values of support damping. K =M = 1,A = 10
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Fig. 5 Phase angle of absolute rotor motion relative to unbalance for
various values of support damping

As the support damping approaches infinity, the rotor amplitude
will asymptotically approach 10.

Fig. 4 represents the absolute dimensionless rotor motion for
various values of support damping ratio and is similar to Fig. 3.
It should be noted that the damping coefficient of 10 also appears
to be close to the optimum damping for the absolute motion as
well as the relative motion.

It is of interest to note that the various damping lines all in-
tersect at a common point 7 in the plot of absolute as well as
relative rotor motion. If the rotor amplification factor A is 100
(implying light rotor damping) then there will be two common
points of intersection P and @ on the response plots (see Fig. 10)
similar to that shown by Den Hartog for the damped vibration
absorber [15]. The intersection points P and @ will occur at
speeds respectively below and above the rigid support critical
speed. The rotor amplitude may be minimized for the case of the
absolute rotor motion by selecting the damping such that the
slope of the response curve is zero at point P, and zero at point Q
to minimize the rotor relative motion.

Fig. 5 represents the phase angle between the rotating un-
balance vector and the absolute rotor displacement vector for
various damping coefficients. The phase angle for the single-
mass rotor on rigid supports (Jeffcott model) increases with
speed from 0 to 90 deg at the critical speed and asymptotically

b
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Fig. 7 Phase angle of support motion relative to rotor unbalance for
various values of support damping

approaches 180 deg as the rotor speed greatly exceeds the critical
speed. The phase angles of the rotor on damped flexible sup-
ports has a considerably different behavior from that of the rigid
support rotor. For light values of support damping (C =
0.01), the phase angle increases rapidly to 180 deg as the system
passes through the first critical speed and drops to almost 60 deg
as it passes through the second critical speed. As the speed
greatly exceeds the highest critical speed, the phase angle again
approaches 180 deg. The phase angle of 180 deg indicates that
the rotor mass center lies along the rotor spin axis. As the sup-
port damping coefficient is increased beyond 5 for the case of the
tuned system, the reduction in phase angle above the first critical
speed is suppressed. This phenomena of phase angle reversal
above the first critical speed has been observed experimentally
[30].

Fig. 6 represents the support amplitude versus speed for
various damping values and indicates that with very light sup-
port damping there will be large support resonances. As the
damping is increased beyond C = 10 the resonances are sup-
pressed and the amplitude is only slightly greater than 1. For
C' = 50 there is only a small peak observed in the support system
which occurs at a speed corresponding to the rigid support eritical
speed. The addition of high damping (C > 50) freezes the sup-
port and limits its motion drastically.
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After some manipulation, equation (27) reduces to the following:

Z~z=

N - S R (e C2)ol® oo
e af + d? ‘

(28)
where

(K; + Ky — Myw?)d; — (Cy, + Cowd,
, = tan~1 s 24
= <(K1 T K. — Mwd, + (C, + (,'._,)wd,.) (29

The relative journal displacement is given by

Zj = Zg e Z1 — Zx (30)
Where the relative shaft deflection is
Zy, — Z
Z. = (*—,Q K, — Ky — iwCs] (31)
K,
Solving for the journal displacement
Z; = R}_ei(wt—ﬁj)
where
R; = Mye,w?
‘/ (K, = M+ o] | T(K, = K\t (e
d2?+ dz K; K,
(32)

and the phase angle 3, between the journal amplitude and rotat-
ing unbalance force is given by

A (K — M)d; — wCid, + tan-1 wCs
? (Ky — Mw?)d; + wCd; K, — K.

(33)

Forces Transmitted

The magnitude of the resultant forces transmitted through the
bearings and the support are of considerable interest to the de-
signer from a standpoint of bearing life and system isolation. It
is desirable to minimize the forces transmitted through the sup-
porting structure and foundation so that other machines or piping
systems are not excited. The magnitude of the force transmitted
through the bearings is given by

F, = B, VK + @C,) (34)

and the force transmitted through the support system is given by

Fy =R '\/K12 + (wCy)? (35)
An indication of the effectiveness of the support system in at-
tenuating the forces transmitted to the foundation is the support
dynamic transmissibility factor 7RD which will be defined as the
ratio of the magnitude of the transmitted support force to the
rotating unbalance load. If the dynamic transmissibility is less
than 1, then the support system possesses good attenuation
characteristics. Analysis has shown that if the support housing
impedance characteristics, which are determined by the housing
mass, stiffness, and damping, are mismatched to the rotor-bearing
system then under certain speed conditions the dynamic trans-
missibility may exceed 1.
The dynamic transmissibility for the support is defined as

7 ‘/[A + @C)I[K:2 + (Cw)?]

TRD = =
¢ Mae00? 42+ dg2

(36)
If it is assumed that the rotor is operating well above any of the
system critical speeds then the dynamic transmissibility is ap-

proximately given by
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Fig. 3 Dimensionless relative rotor ampliiude vs. speed ratio for various
values of support damping for a tuned support system, K = M = 1
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The above expression leads to the well-known conclusion that to
minimize the forces transmitted through the support for super-
critical speed operation in the Jeffcott model, the support damp-
ing should be zero and the support stiffness should be as light as
possible [28]. This is a highly undesirable design practice for
several reasons since large rotor amplitudes and forces transmitted
may be encountered when passing through the rotor critical
speeds, and also the rotor system would be extremely shock-
sensitive and particularly susceptible to self-excited whirl in-
stability under such conditions.

A compromise support damping coefficient should be selected
to either minimize the rotor amplitudes or the forces trans-
mitted over the operating speed range and also be sufficient to
insure adequate rotor stability.

Analysis of System Unhalance Response—Tuned System

Fig. 3 represents a computer-generated plot of the dimension-
less rotor relative amplitude versus the dimensionless rotor speed
for the case of K = M = 1. This relative rotor amplitude is
equivalent to the motion monitored by a proximity probe
mounted in the casing measuring the rotor motion at the center
span. This system represents a tuned condition in which the
support stiffness ratio K is equal to the support mass ratio M.
With no support damping in the system, the tuned support will
cause the relative rotor amplitude to be zero at a speed corre-
sponding to the rotor critical speed with rigid supports.  The in-
troduction of support mass and flexibility has caused two critical
speeds to appear in the system, one above and one below the
rigid support rotor eritical. Note that when the support damp-
ing is relatively low the amplitudes at the two criticals becomes
extremely high.

As the dimensionless support damping ratio € increases from
0.01 to 10 the rotor amplitudes at the system critical speeds de-
crease while the amplitude increases at a speed corresponding to
the rigid support critical speed (w/w, = 1). Note that in this
case the damping value of 10 appears to be close to an optimum
value for the minimization of the resonance amplitudes. If the
support damping is further increased from 10 to 50, Fig. 3 indi-
cates that there will be only one critical speed present in the
system which will correspond to the rigid support critical.  Al-
though the damping of C = 50 is over 5 times the optimum value,
the maximum amplitude is only /5 the rigid support value of 10.

]



_4MY — 3MAAM + 32 4 M(I2M2 + 13M + S) — M(1 + 2M)?

£ 39
£ —12My2 + S(1 + 2M )y — (1 + 2}M) (39)
where g . FREQUENCY RATIO _—— —
w, K= 1.00
§=0/C.=C/C: X (1/24) = ¢, 5 M= 1.00 ]
2K, &1 E= 1.00 ]
v R =100.11 -
¥ = Q2or Q2depending on whether the value calculated is for
point P or @ respectively ;g_ 1
and e | ]
I Og ]
ge_ V1+2M 5] ]
Yl Vitem 2 ]
8] ]
V1+aM -1 g8 ;
For example, when M = 1 and for the first node, P,
8
v V'3 Somo o500 300 350 %0w
== ——F+ = 0.634
1443
and
£ = 0.447
Hence
G | = 0.688 for point P
Cc lopt

In a similar fashion

G

= 0.559
Cc opt

for point Q

Example 2. As an example of the application of the tuned sup-
port design criteria consider the rotor of Example 1 mounted in
flexibly supported bearing housings which weigh 48.5 1b and have
a stiffness of 125,000 Ib/in. The total support weight W, and

stiffness K, are given by
W, =2X48.5 = 971b
K, = 2 X 125,000 = 250,000 Ib /in.

Hence

Il

M = M,/M, = 1.0

K K}/Kg = 10

The critical damping coefficient C, is given by

2K, 500,000 Ib /in.

Thus the support damping coefficients required to make the
slope of the rotor amplitude curve zero at points P and Q are re-
spectively given as follows

al, 344 Ib-sec/in.
Cil, = 0.559 X C, = 279.5 lb-sec/in.

0.688 X C,

I

These calculations are valid only for the case of zero damping
on the rotor and in the bearings (i.e., A = ) and only for the
tuned system (i.e., K = M). For a more realistic solution, a
value of A = 10 was chosen and numerous cases were then pro-
grammed on a digital computer to arrive at a value of optimum
amplitude and required damping. This approach is discussed in
the next section of this paper but the results for the tuned system
are very nearly the same as the results arrived at analytically for
the case of A = = and are presented in Fig. 11.

ﬂun xfsno 2:(!17 215[!)
FREQUENCY RRTIO  (H/HC)

Fig. 10 Amplitude of motion vs. speed with light rotor damping (A =
100) for various values of support damping, K = M = 1
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g and maximum rotor amplitude vs.

The results shown in Fig. 11 are approximately correct for
systems having moderate to light damping on the rotor (i.e.,
10 £ A < =). Note that the smaller the mass ratio M, the
lower will be the peak response and also the lower will be the re-
quired support damping. For example, if the mass ratio is 0.1,
then the maximum dimensionless amplitude will be only 1.1 and
the required damping ratio will be 5 as compared to a value of
13.6 for an M ratio of 1. Fig. 12 is a response plot for the tuned
system K = M = 0.1 which illustrates the validity of the results
plotted in Fig. 11. The response curve for a damping ratio of 5
passes almost horizontal through the node point and has the low
amplitude ratio as indicated by Fig. 11.

Example 3. Consider a rotor system similar to Example 2 in
which the rotor rigid support amplification factor A = 10.

For a tuned support system the dimensionless support damping
coefficient is obtained from Fig. 11 for M = 1 as follows:

C=0/C =136

where C5 is given as 25 Ib-sec/in. (Ilxample 1).
Therefore,

Transactions of the ASME
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Fig. 8 Dimensionless force transmitted to bearings vs. speed ratio for
various values of support damping

Fig. 7 represents the support phase angles versus speed ratio
for various values of support damping. The phase angle for
light damping (C = 0.01) is zero at low speeds and goes to 180 deg
as it passes through the first critical and then shifts to 330 deg
upon passing through the second ecritical speed. If the rotor
damping is light (4 = 100) the support phase angle will approach
360 deg after passing through the second critical speed. Note
that the various damping lines intersect at three points. The
first node point represents the first system critical speed, the
second node point represents the rigid support critical speed, and
the third node point represents the second critical speed on
flexible supports. In the discussion of the single-mass flexible
rotor presented in vibration texts [27] the phase change is only
shown from 0 to 180 deg. In more complex systems with flexible
supports, the phase change may vary between 0 and 360 deg.
For example in multi-mass systems the authors have observed
phase changes of n times 180 deg where n represents the number
of system critical speeds. The measurement of rotor and support
phase angles have been neglected and limited data has been re-
ported in the literature. This is an extremely useful variable
which when incorporated with displacement measurements can be
used in balancing flexible rotors or impedance calculations of the
support system.

Fig. S represents the dimensionless bearing forces trans-
mitted for the tuned system. The dimensionless force trans-
mitted is obtained by dividing by the transmitted force corre-
sponding to the value at the critical speed of the original rotor on
rigid supports. Because of the light shaft damping the force
transmitted curves are similar in appearance to the displacement
curves. Note that for the support damping coefficient of C' = 10
the forces transmitted to the bearings at the rigid support critical
are only 10 percent of the value transmitted for the rotor bearing
system on rigid supports.

Fig. 9 represents the force transmitted through the bearing
supports to the foundation or base for various values of support-
ing damping. With a very lightly damped support system (C' =
0.01) the support amplitude and force transmitted will be par-
ticularly high at the first critical speed where the bearing and sup-
port motions are in phase. At the second critical speed, the
support amplitude is lower than the amplitude attained at the
first critical speed. This is because the bearings and support
motions are out of phase which enables the bearing damping to
help attenuate the support motion. It is of interest to note from
Fig. 8, for the tuned rotor system, the bearing force transmitted
at (w/w,) = 1 with an undamped support system is 0. Fig. 9
shows that the corresponding force transmitted through the sup-
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port at w/w, = 1 has been reduced to only 10 percent of the rigid
support value.

The force transmitted for an undamped support system at a
speed ratio of four is approximately 10 percent of the rigid sup-
port value. This condition would be desirable f it were possible
to accelerate through the criticals, thereby avoiding the large
steady-state amplitudes and forces developed.

The near optimum damping of 10 increases the support forces
transmitted in the supercritical speed region to 30 percent of the
rigid support value and the overdamped support system (C' = 50)
has increased to nearly 80 percent. Hence, the support damping
introduced to suppress the system resonances will cause the
forces transmitted to increase in the supercritical speed region.

If the system is designed to operate over the entire speed range
shown, then the near-optimum value of damping (i.e., C = 10) for
suppressing the rotor absolute amplitude also produces the most
desirable attenuation of forces to the system support structure.

Optimum Damping for Tuned System

From the observation of the computer-generated displacement
and force transmitted plots it is apparent that there exists an
optimum damping to either minimize the rotor amplitudes or the
forces transmitted over the entire speed range.

For example, to minimize the absolute rotor motion as shown
in Fig. 4 or the relative rotor motion shown in Fig. 3, the method
of [16] may be used in which the damping is chosen so that the
slope of the amplitude curve is zero at points P and @ respec-
tively. In the tuned system where K/M = 1 for light rotor
damping (4 = 100), the rotor amplitudes at points P and @ are
independent of the support damping as shown in Fig. 10 and can
be shown to be equal to

X: = m/fepg = V1+ 2M (38)

Therefore with the tuned system illustrated with a mass ratio
of M = 1, the maximum amplitude at P or @ will be 1.732 times
the rotor unbalance eccentricity. The optimum damping may
be selected so that the tangent to the amplitude curve at either
point P or @ has a zero slope. By selecting the optimum damp-
ing in this fashion it is seen that the maximum amplitude in the
system will not exceed the value given by equation (38). Thusit
is readily apparent that to minimize the rotor response over a
given speed range, the support mass should be kept as light as
possible.

After considerable algebraic manipulation [28] the optimum
damping coefficient for both points P and @ is given by the
following expression:



ROTOR MAXIMUM AMPLITUDE VS DAMPING RATIO
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Fig. 15 Rotor maximum amplitude vs. damping ratio for various values
of stiffness ratios for a high mass ratio support, M = 2, A = 10

It is also of interest to note that if a high support stiffness
(K = 2)is used in conjunction with a low value of support damp-
ing (C < 2) then the rotor response will be worse than the original
rotor response on rigid supports (4 = 10).

Fig. 15 represents the maximum rotor response versus support
damping for a high support mass ratio system (M = 2). It is
obvious from the comparison of Figs. 14 and 15 that the high
mass ratio support system is less desirable. The minimum rotor
amplitude that can be achieved is z./¢, = 2 with a tuned support
where K = M = 2 and a support damping coefficient of ¢' = 20.
(Also see Fig. 11 on the tuned system.) As the support stiffness
ratio is reduced, the rotor response curve increases in the opti-
mum damping region.

If it is not possible to incorporate a high value of support
damping into the system (C' = 20), then the rotor amplitude can
still be reduced to 40 percent of the original rotor response by a
low support damping value of C' = 1 and a reduced support stiff-
ness ratio of K = 0.7. For low values of support damping, if the
support stiffness increases beyond K = 0.7, the rotor response
rapidly increases.

A series of plots similar to Figs. 14 and 15 was produced for
various mass ratios in order to determine the optimum rotor re-
sponse for off-tunel support conditions. Fig. 16 represents the
rotor maximum amplitude versus the support mass ratio for
various values of support stiffness with optimum damping.

For the case of A = 10, Fig. 16 illustrates that the lowest
amplitude can be achieved with a low mass ratio support system.
With a high mass ratio support system such as M = 5, the rotor
amplitude X can be reduced from 10 to 2.8 by means of a tuned
support stiffness of K = 5.0 and optimum damping. Note that
as the support stiffness becomes very light, the maximum rotor
amplitude increases to 7.5.

At alow value of support mass (M = 0.1), the rotor amplitude
increases as the support stiffness increases. The optimum damp-
ing required with the tuned support is given by the following ap-
proximate relationship:

13T X K,

o X Mo-437

(40)

W,

Transient Analysis

The previous discussion has been concerned only with the
steady-state response of the rotor due to unbalance and has not
considered the rotor initial transient motion. As discussed pre-
viously, the damped flexible support system is important, not
only from the standpoint of reduction of synchronous unbalance
response, but also in the control of self-excited vibrations such as
caused by internal friction, aerodynamic excitation, etc. There-
fore, to investigate the general rotor motion and also to provide a
check on the steady-state analysis, the rotor equations of motion
were integrated forward in time on the digital computer using a

10
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Fig. 16 Rotor maximum amplitude for various values of stiffness and
mass ratio with optimum support damping
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Fig. 17 Dimensionless transient tion of an unbalanced rotor for 12
cycles on overdamped supports, K = M = 0.1,C = 44

modified 4th-order Runge-Kutta integration procedure. This
procedure is of importance particularly if the analysis is extended
from a linear bearing or support system to include a nonlinear
hydrodynamic damper bearing as presented in [13].

The dimensionless rotor and support transient orbits were
automatically computer-plotted with the following dimensionless
parameters:

X = I/('uy Y = .7//()1:

Fig. 17 represents the initial transient orbit of a 96.6-1b rotor
of Example 1 with a in highly damped support (C = 43) for the
first 12 cycles of shaft motion. The support mass ratio and the
support stiffness ratio are both approximately the same (0.10)
which represents a tuned system. Because of the excessive sup-
port damping, the maximum force transmitted to the support is
2.16 times the unbalance force while the force transmitted to the
bearings is reduced by about 40 percent. The magnifications
of the force to the support would be hi:* 'y undesirable for applica-
tions such as aircraft jet engines. For example, various investiga-
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Fig. 12 Rotor amplitude vs. speed for a low mass ratio tuned support
system for various values of support damping, K = M = 0.1, A = 10

C; = 13.6 X €. = 340 lb-sec/in.

Note that this value is approximately the same as the value given
in Example 2 for the required damping at point P corresponding
to Ao

This indicates that each support must have 170 lb-sec/in.
damping to achieve the optimum response of about 1.7 times the
unbalance level of the rotor.

Next cons’der a tuned support with a mass and stiffness ratio of
0.10 (see Fig. 12). Corresponding support weight and stiffness
are given as follows

W, = 9.71b/n.

K, 25,000 Ib /in.

The required damping is thus found from F g. 11 to be

C =350
or

C, =5 X 25 = 125 lb-sec/in.

N}

Thus only 62.5 lb-sec/in. damp ng per support is required to ob-
tain an optimum response o 1.1 times the unbalance level of the
rotor. This value of 1.1is n omparison to a max mum response
of 10 times the unbalance level for the rigidly mounted rotor-
bearing system.

Optimization of Support Damping for Off- Tuned Conditions

In general it is not possible or necessarily desirable to have a
tuned support system. The support to rotor mass ratio is
usue'lly dictated by design considerations and can be varied only
within certain ranges. Fig. 11 shows that for best reduction of
rot-r amplitude, the support mass should remain as light as
possible. However, it will be shown that even with high mass
ratio support systems the rotor amplitudes can be attenuated by
a factor of 5 by proper selection of the stiffness and damping
coefficients.

To evaluate the optimum damping for off-tuned conditions
the computer program was run for various support mass and
stiffness ratios and each of these for various damping coefficients.
For example, Fig. 13 represents the amplitudes at the rotor first
and second critical speed for various mass ratios with a dimen-
sionless stiffness ratio of K = 1 as the mass ratio and damping are
varied. The solid lines represent the amplitude at the second
critical speed and dotted lines represent the amplitude at the first
critical speed. With moderate support damping ratios it is ob-
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Fig. 13 Rotor amplitude at critical speeds vs. mass ratio for various
damping ratios, A = 10.0,K = 1.0

ROTOR MAXIMUM AMPLITUDE VS DAMPING RATIO
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Fig. 14 Rotor maximum amplitude vs. damping ratio for various values
of stiffness ratios for a low mass ratio support, M = 0.01, A = 10

served that as the mass ratio increases the amplitude at the
first critical reduces while the amplitude at the second critical
increases. The optimum damping was selected as the intersec-
tion of the amplitudes at the first and second critical for a par-
ticular value of damping. For example, the lowest optimum
amplitude point on the plot is given by a damping ratio of 10 and
produces an amplitude ratio of about 1.5. Several plots similar
to Fig. 13 were produced and the results were then cross-plotted
to obtain plots of amplitude versus damping ratio.

Fig. 14 represents the maximum rotor amplitude versus support
damping ratio for various values of dimensionless support stiff-
ness for a rotor bearing system with a low support mass ratio of
0.01. Fig. 14 shows that for this particular case, the lowest
amplitude is achieved by a low support stiffness ratio of K = 0.01
which is of the same order as the mass ratio. With this low sup-
port stiffness, there is a wide range of support damping (i.e.
C = 1 — 6) that can be used to achieve the low level of rotor
response.

Thus, under proper design conditions the support damping
may be allowed to vary by a considerable amount without im-
pairing the rotor performance. As the support stiffness ratio
increases, the maximum rotor amplitude response also increases
and the required support damping must be larger. For example,
if the support stiffness ratio increases from 0.01 to 2.0, the opti-
mum damping required increases by a factor of 15 from approxi-
mately 2 to 30.

Note also that for high stiffness ratio support systems, the per-
missible range of the support damping coefficient is very narrow,
and that either a reduction or an increase of damping beyond the
optimum value will result in a rapid gain in rotor response.
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ped flexible

tors have observed that such a situation occurs with the hydrody-
namic squeeze film bearing when operating at excessive eccen-
tricity ratios [29].

Fig. 18 represents the transient orbit for the same rotor system
except that the support damping has been reduced by a factor of
100 from C; = 1000 lb-sec/in. to 10 lb-sec/in. In this case, the
maximum force transmitted through the support is less than 9
percent of the rotating unbalance force and the bearing force
transmitted is 16 percent. This orbit is analogous to a sud-
denly applied unbalance such as a blade loss in an engine.
Although the forces transmitted have been greatly reduced with
the low stiffness and damping support system, the rotor has de-
veloped a large initial transient motion of over 10 times the un-
balance eccentricity and this transient motion is not readily
damped out.

In Fig. 19, the rotor transient motion is depicted with an opti-
mum damping coefficient of C' = 5.5 for minimum rotor response
as determined from the steady-state analysis. The transient re-
sponse is rapidly suppressed after seven cycles of shaft motion to
produce a small stable synchronous orbit. The transmitted
forces to the bearings and support are nearly balanced to achieve
approximately a 75 percent attenuation of the unbalance load.

Summary and Conclusions

The equations of motion for a single-mass rotor-bearing system
on damped flexible supports have been derived and studied con-
sidering both a steady-state and transient-type analysis. Design
charts for both tuned and off-tuned support conditions have been
presented.

The analysis may be summarized by the following general
statements:

1 The eritical speed response of the single-mass Jeffcott model
rotor may be completely eliminated by means of a low mass ratio
flexible support with optimum damping. In this case the rotor
steady-state amplitude of motion over the entire speed range will
only be slightly more than the rotor unbalance ecrentricity.

2 The support mass ratio should be kept as light as possible
to achieve minimum rotor amplitude.

3 The rotor amplitude may be considerably attenuated even
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Fig. 19 Dimensionless rotor motion with optimum steady-state damping

showing the steady-state orbit after 7 cycles of running speed, K = M =
0.1,C =55

for high mass ratio support systems by tuning the support stiff-
ness such that K = M and incorporating optimum damping for
the tuned conditions.

4 With a low mass ratio support system, the required value of
optimum damping is not critical and can vary by a factor of 10
without appreciably effecting rotor performance. As the mass
ratio increases, the required value of optimum damping increases
rapidly and the permissible range of variation of support damping
diminishes.

5 The off-tuned support (K = M) can be designed to produce
a considerable improvement in system response in comparison to
the rotor on rigid supports. If insufficient damping is incor-
porated in the support then the resulting rotor steady-state
amplitude may be larger than the original rotor response for sup-
port stiffness values K > 1.

6 If there is excessive support damping (C > 20) with a low
mass ratio support (M = 0.1), then the forces transmitted
through the support may exceed the unbalance forces (TRD’s
> 1.0).

7 Although the steady-state analysis shows that the rotor
amplitude will be small for an underdamped (C < 0.50) low mass
ratio support system, the orbital analysis shows that a large
initial transient motion can be generated due to the suddenly
applied unbalance force and that this motion is not readily
attenuated.

8 The optimum damping based on minimization of the rotor
steady-state amplitude for both tuned and off-tuned conditions
produces a satisfactory transient response from the standpoint
of rapid reduction of the initial transient motion, improved sys-
tem stability and reduction of the forces transmitted.
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