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Outline
n Background and introduction to the Ekofisk field problem
n Rotor configurations and shaft models
n Rotordynamic characteristics of original (Phase I) rotor
n These bearings are going to be a disaster....
n Let’s try a squeeze film damper
n What bearing might have worked?
n What about the revised (Phase IV) rotor?
n Closing comments
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Background and Introduction
n Two specific failures to predict instability in high pressure

reinjection compressors pushed the development of tools and
techniques
¨ Kaybob, 7 months to fix in field

n Chevron, Alberta, Canada
n 1971, 9 stage, reinjection, 3175 psi discharge, 11,400 RPM

¨ Ekofisk, 10 months to fix in field
n Phillips Petroleum, North Sea
n 1974, 8 Stage, 22,000 HP, 9200 psi discharge, 8426 RPM

n Have been several retrospective papers in the past few years
¨ Cloud, Pettinato, and Kocur’s 2018 Turbomachinery Symposium

paper on Ekofisk is the inspiration for this paper by E.J.
n The Cloud, et.al. paper focuses more on seal effects
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Background and Introduction
n Both failures were encountered for high discharge pressure

compressors that were really pushing the state of the art at
the time
¨ Machines went unstable due to aerodynamic (Alford) cross-

coupled stiffness forces
¨ Were not bearing induced instability

n Lund’s 1964 work had showed that plain journal bearings are
unstable

n Both compressors had narrow five-pad, load-on-pad tilting pad
bearings

n 1970’s state of the art transfer matrix codes could compute
undamped critical speeds and unbalance response
¨ But they could not adequately analyze rotordynamic stability
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Background and Introduction
n Three other helpful pieces of background information

¨ API specs at the time dictated that compressors should not
operate near critical speeds
n Compressor developers were motived to avoid operating near the

second critical speed
n This requirement influenced bearing choices

¨ Bently proximity probes were starting to be installed in critical
machinery such as these compressors, so there is some data
available

¨ Both machines looked fine during the mechanical run test at low
pressure/low power
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Ekofisk Compressor
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Elliot 25 MBHH
(2nd of two compressors in series)



Startup Vibration Waterfall Plot
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4400 CPM

(had been calculated to be
3800 cpm, with a rigid
bearing critical speed of
4200 cpm)



Phase I Rotor Modeling

n Dyrobes model based on a rotor model presented by Cloud
et., al.
¨ Includes disk gyroscopic effects (not included in earlier work?)
¨ 80.7 inch bearing span
¨ 6.7 inch main diameter
¨ L/D ratio 12.0

n High!
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1st Undamped Critical Speed
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1st Undamped Critical Speed
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Close Correspondence with
measured 4400 cpm instability
(had been calculated as 3800 cpm!)



1st Undamped Critical Shaft Strain Energy

11



1st Undamped Critical Shaft Strain Energy
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Way too high

E.J.’s rule of thumb, bearings
need to each have at least 20% of
total stain energy for mode of
interest to have much effect



2nd Undamped Critical Speed
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Plenty of bearing strain
energy, bearing damping
will be very effective



What if the Bearing were Softer?
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What if the Bearing were Softer?
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Bearing Analysis Using Dyrobes
n Phase I bearings are narrow (L/D = 0.284), 5 pad, load on

pivot tilting pad bearings
¨ 0.54 offset
¨ 0.29 – 0.53 preload (nominal preload = 0.3 used for this paper)
¨ Predicted Kyy stiffness: 1.292e6 lbf/in

16



Some Observations
n For a simple flexible rotor, it can be shown that there is an

optimum shaft to bearing stiffness ratio

Kyy_ratio = ଶ௄௬௬
௄௦

, Kyy_ratio_optimal = 1

n Using the shaft modal stiffness of 2.7e4 lbf/in

Kyy_ratio_original = ଶ௄௬௬
௄௦

= ଶ(ଽ.ହ௘ହ)
ଶ.଻௘ସ

= 7.03

Kyy_ratio_Dyrobes= ଶ௄௬௬
௄௦

= ଶ(ଵ.ଶଽ௘଺)
ଶ.଻௘ସ

= 9.56
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Some Observations
n For a flexible rotor with optimal stiffness, there is also an

optimal damping
n Assuming optimal damping and stiffness, an estimate of the

amplification factor can be made

A_optKC = 2 ( 1 + K_ratio)

n Thus, even if we had the optimal damping, the amplification
factor at the first critical is expected to be in the range of 14 to
19
¨ This suggests the rotor will be quite sensitive to aerodynamic

instability drivers
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But Wait, It Gets Worse!
n Dyrobes predicts the tilting pad bearing direct dynamic

coefficients to be
Kxx = 1.15e6 lbf/in       Cxx = 1,731 lbf-s/in
Kyy = 1.29e6 lbf/in       Cyy = 1,837 lbf-s.in

n However, we know that support and pivot stiffness effects
degrade the effective damping. E.J.’s preliminary rule of
thumb is derate by 50% for initial calculation in this
compressor
¨ He suggests the more precise approach is to include a decent

estimate of the actual bearing support stiffness
¨ How good does his rule of thumb do?
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But Wait, It Gets Worse!
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No adjustment
N = 4563 cpm
Log. Dec. = 0.25

First mode at 8500 rpm

50% Derate
N = 4486 cpm
Log. Dec. = 0.15

Measured Instability 4400 cpm



Rotor Stability
n An approximate rotor stability limit for a symmetric, flexible

rotor is given by (I think this assumes optimum damping)

n This is well below the desired 100,000 to 200,000 lbf/in
¨ Cloud et al. give the API Level 1 cross coupling as 207,000 lbf/in
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Rotor Stability
n This compressor will almost certainly be unstable!

¨ Even without consideration of oil ring seal effects
n Fundamental issue is that the narrow five pad LOP bearings

are too stiff
¨ They were probably selected to push the second critical speed

up to well above the operating speed range
¨ Causes the rotor to be very sensitive to self-excited whirling

forces
¨ This characteristic is also sometimes seen in more modern

compressors if tilting pad bearings with large offset are used
n A machine with stiff bearings relative to the shaft stiffness is almost

always undesirable unless the machine is running below the first
critical speed
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Time Transient Response
n Modern rotordynamic tools such as Dyrobes can perform a

time transient response with the full bearing calculation
performed at every time step
¨ These tools were not available in the 1970’s
¨ Will show the instability
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Solution 1 – Squeeze Film Damper
n Paper has considerable detail
n Can use optimal support stiffness (half shaft modal stiffness)

for an initial estimate of target damper stiffness
¨ Too high damper stiffness reduces the amount of acceptable

aerodynamic cross-coupling
n Can run parametric study to determine the range of damping

that works and the maximum amount of aerodynamic cross-
coupling that can be applied and the system remain stable
¨ Not enough damping -> the amount of cross-coupled stiffness

that can be applied drops
¨ Too much damping -> damper “lock-up” and is not effective
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Solution 1 – Squeeze Film Damper
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All are much higher
than the original limit of
less than 20,000 lbf



Solution 1 – Squeeze Film Damper
n Sizing and Dimensions

¨ Dyrobes has a calculation tool that can be used
n Central circumferential groove

¨ Be very careful about central grooves, some equations assume
the damper has a central circumferential groove. If it is modeled,
but not present in the hardware, there is a high risk of lockup
n E.J. believes this was a problem with one of the Kaybob fixes

n O-Rings
¨ O-ring end seal stiffnesses must be included in parallel with the

damper coefficients if o-rings are used to seal the ends of the
damper

¨ Be aware of the potential for shaft weight to crush the o-ring
n Centered dampers are preferred
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Solution 1 – Squeeze Film Damper
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Solution 2 – Softer Bearing, 4 Pad LBP
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Longer bearing
(was 1.5 inch)



Solution 2 – Softer Bearing, 4 Pad LBP
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Solution 2 – Softer Bearing, 4 Pad LBP
n But wait ... what about the second critical speed?
n The softer bearing has enough damping that the second

mode is an overdamped, rigid body conical mode
¨ Does not get excited

n Next critical speed is well above operating speed
n The early 1970’s tools would have had a hard time verifying

that the second critical speed was not a concern
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Solution 3 – Shorter, Larger Diameter Rotor
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L/D = 8.4

L/D = 12



Solution 3 – Clock Bearing to be LBP
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Also went to center (50%) pivot and
increased clearance which reduces
preload

Unloaded top
pad – flutter risk

Arguably, this is actually a 4
pad LBP bearing, since the
top pad is not doing much



Solution 3 – Clock Bearing to be LBP
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Stable with
100,000 lbf/in
cross-coupling



Discussion and Conclusions
n Design practices and codes of the time drove the Ekofisk

design towards a long (flexible) shaft and narrow, very stiff
bearings

n This is generally not a desirable combination
¨ Modal strain energy is all in the shaft
¨ Bearing damping is not vey effective in reducing amplification

factors or providing rotordynamic stability
n The Dyrobes re-analysis does a very good job matching the

observed instability frequency without considering oil seal
effects
¨ Original analysis did not match very well

34



Discussion and Conclusions
n Solutions

¨ Major rotor redesign
n Implemented in 1974
n Shorter, larger diameter rotor (stiffer)
n Switched to load between pivot bearings with more clearance

(softer)
¨ Squeeze film damper

n Carefully designed damper probably would have worked with
original rotor

¨ 4 pad load between pads bearing
n Carefully designed 4 pad bearings probably would have worked with

original rotor
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Thank-You for
Listening!
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