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ABSTRACT 

One of the foremost concerns facing pump users today is that of 
rotordynamics. As pump speeds have increased to provide 
improved efficiencies and lighter packages, rotordynamics has 
assumed a significantly greater role in determining pump 
reliability. Pump rotordynamic problems often manifest 
themselves as shaft fatigue failures and wear/failures of bearings, 
seals, and impellers. 

The aim of this paper is to provide users with a basic 
understanding of rotordynamics and a practical design procedure 
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that can be used to ensure that their pumping systems will not 
encounter major difficulties in the field. Since pumps are 
inherently hydraulic devices, their rotordynamic behavior is 
considerably different from that of their pneumatic turbomachinery 
counterparts like compressors and turbines. Accordingly, the paper 
concentrates on these differences and how to handle them in tl1e 
design process. 

The paper begins with a review of the fundamentals of 
rotordynamics and the types of analyses that should be employed 
in the design process. Guidelines are provided for modelling and 
for performing rotordynamic staples such as undamped critical 
speed, unbalance response, and damped natural frequency/stability 
analysis. The generation of a critical speed map and the 
tremendous amount of information that can be gleaned from it is 
also described in detail. 

Attention is then turned to the factors that render the 
rotordynamic analysis of pumps significantly different from that of 
pneumatic turbomachinery. First and foremost is the fact that the 
mass of fluid contained in hydraulic machines is significant 
compared with that of the rotor. The "wet" critical speeds of a 
pump are usually considerably different from their "dry" 
counterparts. 

A major factor in this difference is that locations of close
clearance annular fits, such as at seals, balance pistons, wear rings, 
and impellers, generate significant fluid-structure interaction 
forces that must be incorporated into the model as dynamic 
stiffness, damping, and mass coefficients. The presence of these 
additional supports can generate rotor instabilities and introduce 
e1Tors into the calculation of journal bearing dynamic coefficients. 
Additionally, the liquid mass entrained within impellers can 
produce a "hydraulic unbalance" which is often larger than the 
mechanical unbalance and, thus, must be accounted for in response 
calculations. Finally, rotors immersed in liquid experience a fluid 
coupling with their casings that is not accounted for in 
conventional calculations. 

The unique problems often associated with ve1tical pumps are 
then explored in detail. Since the "casing" for many vertical pumps 
is a cantilevered flexible column, rotor-casing interactions must be 
accounted for by a means such as multilevel modelling. In 
addition, due to the absence of a gravity load, vertical pump 
bearings are usually lightly loaded, rendering them especially 
susceptible to instability problems. Finally, the use of process 
fluids to lubricate journal bearings often requires nonstandard 
means for determination of the dynamic coefficients. 

The paper concludes with a generic step-by-step procedure that 
users can utilize to analyze any pumping machine they might 
encounter. 

INTRODUCTION 

Rotordynamics is a subject that should be of concern to all pump 
users. The word users, utilized throughout this work, refers to all 
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engineers, including designers, analysts, managers, and operators, 
involved in the design, manufacture, and/or operation of pumping 
systems. Pump rotordynamic problems often manifest themselves 
as shaft fatigue failures, wear/failures of bearings, seals, and 
impellers, and failures of supporting casings and piping. A 
thorough rotordynamic analysis should be included as an integral 
part of the pump design process. A thorough analysis procedure 
that can be practically implemented by pump users is the primary 
subject of this paper. 

Although it is felt that all types of engineers who work with 
pumping systems can gain a flavor for the subject from the 
information presented herein, the paper is primarily directed 
toward mechanical engineers. Specifically, it is meant to aid those 
mechanical engineers responsible for the design and analysis of 
pumping systems. It is the opinion of the authors that most pump 
rotordynamic problems experienced in the field can be prevented 
by taking prudent action during the design process. 

Although many pump users are intimately familiar with the 
fundamentals of lateral rotordynamics, the authors are acquainted 
with some who are not. For their benefit, a brief review of the 
basics is in order. 

For purposes of illustration, the classical Jeffcott (1919) rotor, 
depicted in Figure l, will be examined. It is easily seen that this 
rotor consists of a massive disk centrally mounted on a flexible 
shaft, which is assumed to be massless. The shaft is supported at 
both ends by bearings that are, for the time being, assumed to be 
perfectly rigid. 

Axis of 
Rotation 
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Figure 1. Jejfcott Rotor. 
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If the disk's center of gravity, represented by point G in Figure 
I, coincides with the geometric center of the disk, point 0, the 
shaft can be rotated without experiencing any vibration. However, 
if point G is eccentric by any amount, e, the resulting unbalanced 
condition generates a centrifugal force that causes the shaft to bend 
outwards and increase the eccentricity until this force is exactly 
balanced by the restoring elastic force in the shaft. Point O is 
displaced away from the axis of rotation by an amount, r, and the 
bent shaft whirls in a circular orbit about the axis of rotation at the 
shaft's rotational speed. 

This phenomenon is known as forward synchronous whirling. 
The motion is referred to as synchronous because the whirling 
frequency is identical to the shaft's rotational frequency. The 
adjective forward is used because the whirling occurs in the 
direction of rotation. Nonsynchronous and backward whirling are 
also possible and will be discussed later in the paper. For all 
practical purposes, whenever any unbalance exists in a rotating 
system, such as that of Figure 1, it generates forward synchronous 
whirling. 

This whirling motion is also often referred to as lateral vibration. 
Lateral vibration refers to the case in which the nonrotating system 
of Figure 1 is displaced radially away from the equilibrium 
position and released. If there were no damping present, the shaft's 
stiffness would cause the shaft to flex to the equilibrium position 

and continue past until the shaft was deflected by an equal amount 
in the opposite direction. Oscillations would continue indefinitely 
with the system continually exchanging the potential energy of the 
shaft for kinetic energy in the disk. The behavior of the shaft in this 
situation is similar to that of a beam on elastic supports. 

This motion is known as undamped free lateral vibration and is 
fully analogous to vibration of the well-known linear mass-spring 
system. Regardless of the initial conditions existing prior to 
vibration, the system always oscillates at a specific frequency, 
known as the undamped natural frequency. The natural frequency 
is a function of the disk's mass and the shaft's bending stiffness and 
is a characteristic of the system. 

In the strictest sense, synchronous whirling is different from 
lateral vibration since, during whirling, there are no fluctuations 
between tension and compression in the shaft's fibers. However, to 
an observer looking at the system from a direction perpendicular to 
the axis of rotation, the two phenomena look identical. In fact, the 
coordinate displacements of a whirling rotor are described by 
simple harmonic motion equations identical to those of a vibrating 
beam. Additionally, the whirling natural frequency can often be 
estimated quite accurately by merely calculating the lateral natural 
frequency of the corresponding beam system. 

It has been shown in many elementary vibration textbooks that 
the whirl radius, r, is given by the following expression: 

where: 

= whirl radius (in) 
e == initial eccentricity (in) 
w = shaft rotational speed (rad/sec) 
w11 = natural frequency (rad/sec) 

The system natural frequency, w11 , is given by the following: 

where: 

w11 == natural frequency of Jeffcott rotor (rad/sec) 
k = bending stiffness of shaft (lbf/in) 
M mass of disk (lbf-sec2/in) 

(1) 

(2) 

It is seen from Equation (l) that the whirling amplitude is 
heavily dependent on the ratio of the rotational frequency, w, to the 
system's natural frequency, wn- These response characteristics are 
plotted in Figure 2. The ordinate on this figure is the ratio of whirl 
radius, r, to eccentricity, e, which is referred to as the dynamic 
magnifier. 

3 

2 

0 
<tl 

.E 
-1 <tl 

·2

): 1.414 

0.707 I 

I 
I 
I 

� 

V 
{ -3 

0 2 3 4 5 6 

Figure 2. Undamped Response of Jeffcott Rotor. 
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Examination of Figure 2 reveals some interesting trends that are 
applicable to most rotating systems. When the rotational frequency 
is equal to the natural frequency, the whirl radius and dynamic 
magnifier are theoretically infinite. This condition is known as 
resonance and represents a potential problem for the system. 
Although the actual response in practice will be noninfinite due to 
the presence of damping in the system, huge amplifications can 
still occur. This can lead to potential rub-induced failures at close
clearance locations such as bearings, seals, and impellers, large 
bearing loads, and large shaft stresses. A major element of lateral 
rotordynamic analysis is identification of all resonance points and 
determination of the system's ability to withstand them. 

Additionally, it is seen from Figure 2 that the dynamic magnifier 
is positive whenever the rotational frequency is less than the 
natural frequency. Physically, this means that the displacement, r, 
is in the same direction as the initial eccentricity, e, and the center 
of gravity, G, remains outboard of the disk center, 0. Additionally, 
it is observed that at frequency ratios less than .707, the dynamic 
magnifier is less than 1.0, reflecting the fact that the whirl radius is 
less than the eccentricity. 

The most eye-opening (at least to the authors) trend illustrated in 
Figure 2 is the negative dynamic magnifier that occurs at all 
frequencies above the natural frequency. The sign change means 
that the disk center of gravity moves inboard of the disk geometric 
center, counter to intuition. Furthermore, at operating speeds that 
are much higher than the natural frequency, the dynamic magnifier 
asymptotically approaches - 1.0, which c01Tesponds to the case 
where the center of gravity lies on the axis of rotation and the disk 
whirls m·ouncl it. 

Equation (2) is only valid for the assumed rigid bearing case. In 
reality, the bearings will introduce additional flexibility into the 
system, which will lower the natural frequency from the value 
provided by Equation (2). The natural frequency for the flexible 
bearing case can be obtained by treating the bearing pair and shaft 
as springs in series and using the equivalent stiffness in Equation 
(2). The essence of lateral rotorclynamics analysis is evaluating the 
interaction of the rotor and bearings, along with other relevant 
components such as casings, seals, etc. Jn this way, a lateral 
rotorclynamics analysis is a marriage of many different technologies; 
i.e., rotor design, bearing analysis, seal technology, etc.

It is, therefore, seen that lateral rotordynamic analysis is quite
complex, in general. This is especially true for pumps, since their
rotorclynamic behavior depends on several factors that do not come
into play in the analysis of other turbomachinery such as turbines
and compressors. The primary source of this added complexity is
that, unlike their pneumatic turbomachinery counterparts, the mass
of the hydraulic fluid in pumps is significant compared with that of
the rotor. Consequently, the "wet" critical speeds that a pump
experiences in service are normally tremendously different from
the "dry" values calculated using conventional techniques.
Additionally, the response and stability characteristics of a given
machine are tremendously different for the wet and dry conditions.

Among the factors that drive these discrepancies are significant 
interaction forces at close-clearance annular fits in seals, impellers, 
etc., hydraulic unbalance forces clue to liquid flow passage 
asymmetties in impellers, dynamic interactions between the rotor 
and surrounding Ii quid, and dynamic effects clue to casing 
flexibility. In order to obtain an accurate evaluation of pump 
rotordynamie behavior, some, if not all, of these effects must be 
accounted for in the analysis. The primary thrust of this paper is to 
educate users about these phenomena and provide methods for 
accounting for them during analysis. 

Topics Not Covered 

Although this paper is intended to be comprehensive, there are 
some subjects within the field of pump rotorclynamics that are not 
addressed. The amount of information related to this topic is far too 
voluminous to cover in a single tutorial. The authors have 

attempted to limit the covered material to areas that a practical 
mechanical engineer needs to know in order to perform a complete 
lateral rotorclynamic analysis on a pump drive train. The following 
subjects are either partially or totally neglected in this work: 

• Torsional vibration-Torsional vibration, like lateral vibration,
should be evaluated during the pump design process. The authors
have recently published a comprehensive tutorial that covers this
topic. The topic will not be covered herein, and the interested
reader is encouraged to consult Corbo and Malanoski (1996).

• Rotordynamic analysis methods-There are a multitude of
computer programs available to the user for calculating undamped
and damped critical speeds, unbalance response, and stability. The
solution algorithms used in these programs such as transfer
matrices, finite elements, etc., are of secondary importance to the
user and are not cliscussecl. It is assumed that the user has access to
the computer codes needed to implement the analysis procedure
advocated herein.

• Calculation r�f bearing stiffness and damping coefj-icients
Although the effects of flexibility at the bearings are clesc1ibecl
fully, no actual procedure is provided for determining bearing
stiffness and clamping coefficients. It is the authors' experience that
most pump users are familiar with the procedures needed to
determine the dynamic coefficients of fluid-film and rolling
element bearings. Adcliti.onally, similar to the above item, there is
a plethora of computer programs available for determining these
coefficients.

• Transient analyses-Although there are some special occasions
in whi.ch a time-transient analysis of a pumping system is required,
it is the authors' experience that this is more the exception than the
rule. In the design procedure advocated herein, all the required
m1alyscs are of the steady-state vRriety. Methods for performing
transient analyses are not provided.

• Bearing misaligmnent-lt is well documented that good bearing
alignment is critical in multiple-span, solidly coupled rotors. In
these machines, there are typically a large number of bearings that,
if misaligned, can introduce shaft bowing, lightly loaded or
unloaded bearings, and a large assortment of other rotordynamic
nightmares. These potential problems should be addressed in the
hardware design, not the rotorclynamic analysis, process. The
procedure provided herein assumes that proper design precautions
have been taken to ensure good bearing alignment.

• Pump hydraulic design-It is well known that poor hydraulic
design of impellers, inlets, volutes, diffusers, etc., can lead to large
hydraulic excitation forces and accompanying rotordynamic
problems. The techniques required to ensure proper hydraulic
design of these components would require several additional
tutorials. It is assumed that the user has a means for properly
designing the hydraulic elements in the system.

• Mechanical contacting seals-Although mechanical contacting
seals such as packings and face seals are occasionally employed to
seal pump shafts, their impact on pump rotorclynamic behavior is
usually small compared with that of noncontacting seals such as
wear rings, interstage labyrinths, and balance pistons. The
discussion herein is limited to seals of the noncontacting type.

• Thrust bearing dynamic coic:fficients-Although the authors are
familiar with cases where angled thmst bearings have generated
significant radial rotordynamic coefficients, those occurrences are
rare enough to warrant omission herein.

• Measurement and monitoring of lateral vibration-This paper is
primarily concerned with the design and analysis process, so
measuring and monitoring procedures are not addressed.
Aclclitionally, like many of the other topics on this list, the subject
of vibration sensors and monitoring strategies is worthy of a paper
all its own.
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UNDAMPED CRITICAL SPEED ANALYSIS 

The first step in any lateral rotordynamic analysis is 
determination of the system's undamped critical speeds and mode 
shapes. To accomplish this, a lumped parameter model, consisting 
of disk and shaft elements, is usually generated. The disks 
represent the system's significant masses, while the shaft elements 
behave as flexing springs. A schematic representation of a three 
disk, four shaft model is presented in Figure 3. The system's 
bearings are shown schematically as springs and are represented in 
the model by equivalent horizontal and vertical stiffness and 
damping coefficients. 

Bearing 2 

Bearing 1 

Figure 3. Three Disk Model. 

For a lumped system such as that of Figure 3, the number of 
lateral natural frequencies that can be calculated is equal to the 
number of disks in the model plus two. 

Each system natural frequency has an associated mode shape 
that describes the shape the shaft deflects into during free 
vibration. A representative mode shape is shown in Figure 4. The 
abscissa values represent the axial positions of the disk elements 
while the ordinates correspond to the lateral deflections occuning 
at each disk. Since the mode shape corresponds to the undamped 
condition, it is meaningless to refer to absolute displacements, they 
are theoretically infinite. Instead, the mode shape reveals the 
relative relationships of the displacements at the various disks with 
respect to each other. These curves are arbitrarily normalized such 
that the system's maximum displacement is equal to J .0. Mode 
shapes are often referred to as normal to reflect the fact that they 
are all orthogonal to each other. 

1.0----.-------------------,,----,

-1.0'---_,________________ ___. _ __, 

Axial Length 

Figure 4. Representative Mode Shape. 

Impact of Varying Parameters 

Although oversimplified, Equation (2) provides visibility into 
the influences that impact natural frequencies. It is seen that this 
equation is in exactly the same form as the natural frequency 
equation for a simple linear mass-spring system and that shaft 
bending stiffness is analogous to linear spring rate. Additionally, the 
equation indicates that increasing shaft stiffness increases natural 
frequency, while increasing disk mass has the opposite effect. 

These trends can be extrapolated to the multiple disk and shaft 
systems used to represent real pumps. In general, increasing shaft 
stiffness tends to raise natural frequencies. The amount of the 
increase varies with the mode being investigated and can be 
determined from inspection of the cognizant mode shape. The 
natural frequencies are very sensitive to changes in stiffness in 
shaft elements experiencing significant deflections, which are 
indicated by large slopes in the mode shapes. On the other hand, 
shaft elements exhibiting shallow slopes in the mode shape have 
little influence on that mode. 

Natural frequencies can also be changed by increasing or 
decreasing the masses of the disk elements. Again, the mode shape 
should be used to determine the effect of doing so. If the disk 
demonstrates a significant amplitude in the mode shape, then 
alteration of its mass can have a profound effect on the natural 
frequency. Conversely, a disk located near a node can have its mass 
altered by orders of magnitude and have no impact on that 
particular mode. 

Bearings 

In addition to shaft stiffness, natural frequencies are also 
dependent on bearing stiffnesses. In all rotordynamic analyses to 
be described herein, bearings are described by the eight 
conventional stiffness and damping coefficients. The tribologist's 
conventional nomenclature is employed such that the first 
subscript indicates the direction of the force, while the second 
corresponds to the direction of displacement, velocity, etc. While 
fluid-film journal bearings are represented by all eight coefficients, 
rolling element bearings only have direct stiffnesses, kx, and kyy·

The dynamic coefficients for both t1nid-film and rolling element 
bearings can be calculated using computer programs designed for 
that purpose. For instance, most computer algorithms for fluid-film 
bearings are based on a numerical solution of the Reynolds 
lubrication equation. Since the coefficients of fluid-film bearings 
are heavily load dependent, the load must be input for each 
bearing. These input loads should represent the static case and can 
be calculated using static beam analysis on the rotor model 
supported at the bearings with all relevant static loads, such as 
those due to gravity, gear meshes, impeller radial thrust, etc., 
applied to the system. It will be shown later that the load
supporting ability of annular seals can complicate the 
determination of these static bearing loads. 

In undamped natural frequency analyses, the direct stiffnesses, 
kxx and ky , are the only coefficients employed. In general,
increasing bearing stiffness increases all natural frequencies, 
which will be clearly seen in the subsequent discussion on critical 
speed maps. As with shaft stiffness, the impact of changing bearing 
stiffness on a given natural frequency is dependent on the 
amplitude at that bearing in the mode shape. The mode is sensitive 
to changes in bearing stiffness only if the mode shape displays a 
significant amplitude at the bearing location. 

Although it is not considered in undamped analysis, the mode 
shape, likewise, provides an indication of the effectiveness of the 
bearing's damping on the system. Again, the damping is effective 
only if the rotor exhibits significant motion at the bearing. Since in 
many practical systems, the only significant source of damping is 
the fluid-film journal bearings, this is an important concept and 
will be discussed more fully under the Information Provided by
Critical Speed Map subheading. 



PUMP ROTORDYNAMICS MADE SIMPLE 171 

Pedestal Flexibility 

The authors are acquainted with some engineers who always 
naively assume that their bearings are rigidly connected to ground 
when performing rotordynamic analysis. This policy implicitly 
assumes that the only flexibility present at a bearing support 
location is that due to the active bearing element, such as the fluid 
film, and that the entire bearing supporting structure is rigid. This 
is an oversimplification since all bearing support structures contain 
some inherent flexibility, particularly in the horizontal direction, 
and can lead to en-oneous results when high bearing stiffnesses are 
employed. 

The authors advocate that the effects of bearing pedestal 
flexibility be included in all rotordynamic models. Most 
rotordynamics computer programs permit the input of horizontal 
and vertical stiffnesses at all pedestals. These programs treat the 
pedestal and bearing stiffnesses as springs in series. The overall 
effect of including pedestal flexibility is to reduce the support 
stiffness seen by the rotor. Additionally, since motion at the 
bearings is now divided between the bearing and pedestal, the 
effectiveness of bearing damping can be dramatically reduced 
when pedestal flexibility is included in the model. Nicholas, et al. 
(1986), provide a good discussion of this topic. 

The effects of pedestal flexibility are of particular importance 
when rolling element bearings are emp.loyed, since they usually 
have high stiffness values. For instance, Nagy and Chen (1984) 
state that the stiffness of ball bearings is seldom less than about 
500,000 lb/in. Since Wachel, et al. (] 995), give typical pedestal 
stiffness values of from l 00,000 to five million lb/in, figures that 
are in agreement with the authors' experience, it is easily seen that 
pedestal flexibility can greatly diminish the effective stiffness that 
a rolling element bearing provides. Leader ( 1984) agrees, stating 
that the effective stiffness at a bearing location can seldom be 
greater than two to three million lb/in. 

The pedestal's stiffnesses are calculated using conventional 
strength of materials formulae or finite element analysis. As will be 
seen later, there are some cases in which modelling pedestal 
flexibility is not sufficient for evaluating the impact of casing 
flexibility on the rotating machine. In such cases, a more 
sophisticated multilevel model that fully accounts for casing 
dynamics must be employed. 

Gyroscopic Effects 

All the above statements regarding the effects of varying various 
parameters are valid for both the lateral vibration of a beam on 
flexible supports and the whirling of a shaft. As was stated earlier, 
lateral beam models often provide a good approximation for the 
natural frequencies of whirling shafts. The primary reason that the 
two systems are different is the presence of gyroscopic effects. 

Gyroscopic effects occur when an impeller's whirling does not 
lie in a single plane, which occurs whenever the rotor has a 
nonzero slope in the mode shape at the impeller location. When 
this occurs, the centrifugal forces acting on various material 
particles within the disk act to either increase or decrease the 
bending of the shaft, depending on the length-to-diameter ratio of 
the impeller. These forces act to either raise or lower the shaft's 
effective stiffness, resulting in a corresponding increase or 
decrease in natural frequency. 

Rieger and Crofoot ( 1977) provide a good basic explanation of 
gyroscopic effects. They also show that the net gyroscopic effect of 
any disk can be quantified via its effective moment of inertia, 
which can be calculated as follows: 

where: 
Ieff = effective moment of inertia of disk (lbm-in2/sec2) 

IP = disk polar moment of inertia (lbm-in2) 

(3) 

It = disk transverse moment of inertia (lbm-in2) 

w = shaft speed (rad/sec) 
1J = whirl frequency (rad/sec) 
The sign of Ieff reveals whether the disk's gyroscopic effect acts to 
increase or decrease the shaft's natural frequency. If Ieff is negative, 
the net effect is stiffening and the natural frequency is raised. If Ieff 
is positive, the opposite result occurs. 

For the case of synchronous whirling, substitution of 1J = w into 
Equation (3) reveals that the effective inertia is merely the 
difference between It and IP. Disks having polar moments of inertia 
that are greater than their transverse inertias have a stiffening effect 
on the system. This is true for thin disks having small length-to
diarneter ratios. Since most practical pump impellers can be 
modelled as thin disks, this leads to the common misperception 
that gyroscopic effects always increase the rotor's natural 
frequencies. 

However, for long disks having large length-to-diameter ratios, 
sometimes referred to as "sticks," the transverse inertia can exceed 
the polar value. Consequently, the gyroscopic effects of these disks 
act to decrease natural frequencies. Using standard formulae for 
the polar and transverse moments of inertia of solid circular 
cylinders, it can be shown that the threshold length-to-diameter 
ratio is .87. At ratios below this value, gyroscopic effects are 
stiffening, while the converse also holds true. 

As w;s briefly mentioned before, the gyroscopic effect of a 
given disk is strongly dependent on the slope .it exhibits in the 
mode shape. Disks in highly sloped regions, such as overhung 
impellers, generate large gyroscopic effects. Conversely, the 
gyroscopic effects of disks in shallow regions are insignificant. 
Gyroscopic effects in overhung impeller designs are almost always 
much larger than those for straddle-mounted impellers. Disks like 
the Jeffcott rotor of Figure I that have zero slope during whirling, 
generate no gyroscopic effect. 

It should be noted that the entire preceding discussion applies to 
forward precession only. In backwards whirling, the effects are 
opposite. This will be clearly seen in the upcoming discussion of 
damped natural frequencies. 

Modelling 

The first task to be accomplished in the analysis procedure is 
conversion of the actual hardware drawings into a lumped 
parameter mathematical model. First, all significant masses in the 
system should be identified as disks. These include impellers, 
motor rotors, gears, and coupling hubs. 

The choice of the number of disks to include is usually a 
compromise. If every single mass that exists in the assembly were 
represented, the modelling and solution time would likely be 
prohibitive. On the other hand, if complex pump assemblies were 
modelled as Jeffcott rotors, the loss of accuracy would normally be 
unacceptable. 

Another consideration is that the number of natural frequencies 
that can be calculated is limited by the number of disks in the 
model. The analyst must ensure that enough disks are included 
such that all natural frequencies that could reasonably be expected 
to be excited within the machine's operating speed range are 
determined. 

For each disk element in the model, the analyst must provide 
values for concentrated mass, polar mass moment of inertia, and 
transverse mass moment of inertia. The requirement for mass input 
is obvious from the previous discussion of the Jeffcott rotor while 
the moments of inertia are needed to evaluate gyroscopic effects. 
For the most common disk configuration, a hollow circular 
cylinder, the moments of inertia are given by the following: 

2 2 7 I1 = (1/12) • m • (3 • r0 
+ 3 • ri + L-) 

(4) 

(5)
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where: 

IP = polar mass moment of inertia (lbm-in2)
It = transverse mass moment of inertia (lbm-in2) 
m = mass of disk element (lbm) 
r0 disk element outside radius (in) 
ri = disk element inside radius (in) 
L = disk element length (in) 

For disks of other configurations, any engineering mechanics 
textbook can be consulted to obtain the appropriate equations. 

Once the disk elements are identified, the rotor should be 
divided into shaft elements. The junction points between shaft 
elements are known as "stations" and should be located to 
correspond to disk element locations, appreciable changes in shaft 
cross section, bearings, seals, etc. For each shaft element, the 
outside and inside diameters, length, and material properties must 
be specified. Some computer codes allow for separate inputs of 
mass and stiffness diameters to account for cases where the two are 
different. 

Since the model is the foundation upon which the entire analysis 
procedure is based, it is imperative that it represent the actual 
machine accurately. General guidelines for generating good 
models are as follows: 

• Disk elements are usually axially located at the center of gravity
of the impeller that they represent.

• In general, the ratio of the length to lhe diameter of a shaft
element should not exceed l .0. ff a portion of the shaft has an
aspect ratio that exceeds this limit, it should be divided into two or
more shaft elements. (This also allows for a smoother mode shape
plot.)

• 1n general, the accuracy of the solution improves as more
stations are added to the model. Modelling and computer time also
increase. The ideal number of stations is the minimum amount
required to reach the point where adding more stations has little
impact on the results.

• Additionally, the number of rotor stations should be at least four
times lhc number of natural frequencies to be calculated. For
example, if it is desired to determine the fi:rst five natural
frequencies, the model should contain at least 20 stations.

• In shaft regions having abrupt changes in cross-section, the
actual stiffness of the larger diameter shaft is somewhat Jess than
that calculated using its actual diameter. To account for this, the
effective stiffness diameter should be assumed to grow or shrink
along 45 degree lines as is illustrated in Figure 5. The diameters
that bisect the 45 degree lines should be utilized as the effective
stiffness diameters. The material outside the limits set by the inner
and outer stiffness diameters should be accounted for by applying
concentrated masses and inertias at the appropriate stations.

• Impellers and hubs that are shrunk fit to the shaft tend to
increase the shaft's effective stiffness. This is sometimes accounted
for by adding a judicious portion of the hub's moment of inertia to
that of the shaft. There are many authors including Falco, et al.
(1986), who have reported that they have obtained accurate results
by merely ignoring the stiffening effect of the shrink fit. This is the
approach favored by the authors. The reader interested in
accounting for this stiffening effect should see Kalmens (1964).

• Unless a disk element is extremely long, its transverse moment
of inertia can be approximated by merely taking one-half of its
polar moment of inertia.

• Since flexible couplings isolate the vibratory behavior of the
shafts being joined from each other, they should be assumed to
divide the system into two independent systems from a lateral
rotordynamics standpoint. Consequently, long pump drive trains,
as are commonly found in vertical pumps, may often be divided
into several segments that are analyzed independently. If the

Figure 5. 45 Degree Rule. 
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couplings are not flexible enough to prevent the transmission of 
shear forces and moments from one shaft to the next, the entire 
assembly must be analyzed. 

• Similarly, shafts linked by gear meshes should be analyzed
separately.

• If couplings are retained in the model, they should be modeiled
as a shaft element between two disks whose masses are each equal
to one-half of the coupling's total mass. The coupling shaft element
should be a solid circular equivalent element that is totally
unrelated to the coupling's physical dimensions. The diameter and
length for this element should be sized to yield the lateral and
angular stiffnesses of the coupling, which are usually specified by
the coupling manufacturer.

• Utilization of some solution algorithms requires that shaft elements 
be assumed mass.less. If this is the case, it is usually sufficient to apply 
one-half of the actual shaft mass to each of the disks at either end of
the shaft element. If the mass of a shaft element turns out to be of a
comparable magnitude to those of the major disks in the system, a
more accurate representation is called for. In this case, it is best to 
divide the shaft element into a number of disk and shaft elements, 
with each disk representing a portion of the shaft's mass. 

• If a pump is being analyzed for the "wet" condition representing
normal liquid-pumping operation, the mass of the entrained liquid
should be included in the mass of disk elements representing
pumping impellers.

Generation of Critical Speed Maps 

Once the mathematical model is complete, the next step in the 
analysis procedure is calculation of the system's undamped natural 
frequencies and mode shapes. It is the authors' experience that most 
users have no trouble calculating their systems' natural frequencies 
once a model has been generated, since there are a tremendous 
number of computer programs available for doing this. Most of these 
codes employ either transfer matrix methods based on the pionee1ing 
work of Prohl (1945) and Myklestad (1944) or finite element 
methods. As stated earlier, no discussion of computer algorithms for 
calculating undamped natural frequencies will be provided. Instead, 
the discussion will concentrate on the key steps that must be 
followed once the computer results have been generated. 
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The best way to present the results of the natural frequency 
calculations is in the fonn of a critical speed map, which is a key 
element in any lateral rotordynamic analysis because of the 
visibility it provides. As is shown in Figure 6, a critical speed map 
is merely a log-log plot of the system's undamped natural 
frequencies in rpm as functions of bearing stiffness. The bearing 
horizontal and vertical direct stiffnesses, kxx and kYY' which are
almost always different for fluid-film journal bearings, are also 
plotted as a function of speed. The points at which the bearing 
stiffness curves intersect the natural frequency curves represent 
potential resonance points with the corresponding speeds being 
denoted as critical speeds. If the conventional assumption that the 
bearings are loaded vertically is employed, the vertical stiffness of 
fluid-film journal bearings is often an order of magnitude greater 
than the horizontal stiffness, as is illustrated in Figure 6. 
Consequently, systems for which this is true will have two distinct 
critical speeds for each mode: one horizontal and one vertical. 

105 
Natural Frequencies 

Kyy (vertical} 

102'-------.L..-------'--------' 
104 105 106 107

Bearing Stiffness (lb/in.) 

Figure 6. Representative Critical Speed Map. 

Many engineers etToneously believe that natural frequencies and 
critical speeds are the same thing. Natural frequencies are the 
frequencies that a system will freely vibrate at if perturbed from 
static equilibrium. Since bearing stiffnesses are usually speed 
dependent and gyroscopic effects are usually present to some 
extent, a system's natural frequencies are nonnally dependent on 
its operating speed. If the operating speed changes, all the natural 
frequencies are likely to change with it. It is technically incorrect 
to speak of a machine's first natural frequency since a given 
machine has more than one, depending on what speed is being 
referred to. 

On the other hand, it is perfectly acceptable to speak of a 
machine's first critical speed. This is because a machine has only 
one first critical speed (unless it is anisotropic, in which case it has 
two). As stated above, the first critical speed is the speed at which 
the first natural frequency curve intersects the bearing stitfoess 
curve. Physically, it is the value of the running speed that yields the 
bearing stiffnesses required to make the natural frequency equal to 
the nmning speed. Accordingly, a machine has a finite number of 
critical speeds and a virtually infinite number of natural 
frequencies. 

The simplest method for generating a critical speed map is to 
make multiple undamped natural frequency runs for vaiious values 
of bearing stiffness. Since undamped critical speed analysis 
assumes circular orbits, only one stiffness is input at each bearing 
location, even if the bearings are anisotropic. It is conventional to 
vary the bearing stiffness from the relatively soft value of 104 lb/in 
to a value of 107 lb/in, which represents a relatively rigid bearing. 
For each run, the stiffnesses at all bearings in the system are 
usually assumed to be equal to the specified value. The bearing 

stiffness versus speed curves are obtained using methods described 
previously and are superimposed over the natural frequency curves 
on the critical speed map. 

When generating the natural frequency curves, the calculated 
natural frequencies should be grouped together sequentially. That 
is, all the lowest natural frequencies should be plotted as a single 
curve, then all the second lowest, and so on. A given curve on the 
critical speed map does not necessarily represent a single vibration 
mode. It is not at all uncommon for two modes to cross such that 
the mode having the lower natural frequency at low support 
stiffnesses· has the higher one for the rigid bearing case. This 
situation often occurs when two adjacent modes have considerably 
different sensitivities to variations in bearing stiffness. 

Generation of the critical speed map is very simple when all the 
bearings are identical and have the same stiffness versus speed 
characteristics. The stiffnesses at all bearings are then assumed 
equal to the abscissa value, and the natural frequency program is 
run. However, the user is faced with a dilemma in cases where the 
bearings are radically different from one another. In such cases, the 
assumption that all bearings have the saine stiffness is often far 
from realistic. 

The authors have seen this problem handled in various ways. 
Some analysts plot the stiffness versus speed curve for each 
individual bearing on the critical speed map. This option is 
considered undesirable since it results in a plethora of critical 
speeds and a messy critical speed map. Other engineers designate 
one bearing, usually one whose stiffnesses are near the middle of 
the range spanned, as representative and plot the stiffness curves 
for that bearing only. The authors have successfully used this 
approach on occasion. In both of these methods, the assumption of 
equal stiffnesses at all bearings is retained when calculating the 
natural frequencies. 

The approach preferred by the authors is quite different. The 
authors have found that, in cases where the bearing stiffnesses 
differ greatly, the ratios between the stiffnesses are often nearly 
constant over the entire speed range. For instance, if the ratio of 
stiffnesses between bearings A and Bis 2.0 at low speed, it is likely 
to remain at about 2.0 over the entire speed range. If this is the 
case, the critical speed map can be plotted as a function of the 
stiffness at bearing A, and the stiffnesses of all other bearings can 
be maintained at their ratios to that of hearing A during the natural 
frequency calculations. This method violates the conventional 
treatment of keeping all bearing stiffnesses equal while generating 
the critical speed map, but the authors feel that their favored 
procedure provides a much more accurate picture of the system's 
true behavior. 

The reader may wonder how the fixed ratios are determined 
when the bearings' horizontal and vertical stiffnesses are vastly 
different, as is often the case with fluid-film bearings. The authors 
recommend handling this dilemma by taking the average of the 
horizontal and vertical stiffoesses at each speed and calculating the 
ratios based on these average values. 

Once the critical speed map has been prepared, undamped 
critical speeds and their accompanying mode shapes can be 
determined. As mentioned previously, the intersections between 
the natural frequency curves and the bearing stiffness curves 
provide approximate locations for critical speeds. For each 
intersection point, the analyst should note the speed and then 
determine the actual stiffnesses of the beaifogs at this speed. Then, 
using these actual stiffnesses, the undamped natural frequency 
program should be rerun to determine the actual critical speed and 
mode shape. As long as the resulting critical speed is close enough 
to the assumed value to validate the bearing stiffnesses utilized in 
the analysis, the results can be used with confidence. 

Rigid Bady and Bending Modes 

The critical speed map of Figure 6 is typical of those for most 
rotating systems. It can be seen from this figure that the behavior 
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of the lowest two modes is significantly different from that of the 
remaining modes, indicating that the first two modes are 
fundamentally different from the others. The first two modes are 
known as "rigid body modes," while the remaining modes are 
referred to as "bending modes." 

The rigid body modes are so named since the rotor behaves as a 
rigid body at low values of bearing stiffness. In the low stiffness 
region, the natural frequency for the first mode of a two-bearing 
system can be simply obtained from the following equation: 

where: 
w0 = first natural frequency (rad/sec)
k = stiffness of each bearing (assumed equal) (]bf/in) 
M = total mass of rotor (lbf-sec2/in) 

(6) 

The mode shape for this mode for a straddle-mounted rotor is 
primarily a horizontal line, representing a cylindrical orbit in 
which all points move together. Conversely, in the second mode, 
the rotor support points move out of phase with each other and 
there is a node near mid-span, indicating motion following an 
hourglass pattern. In both modes, the rotor exhibits virtually no 
bending, consistent with the nomenclature. Contrary to their 
nomenclature, at higher values of support stiffness, both rigid body 
modes can display significant bending. 

As is seen from Equation 6, both 1igid body modes disappear 
when the bearing stiffness is set equal to zero. As the stiffness is 
increased from zero, both modes rise as straight lines with steep, 
constant slopes on the critical speed map. In this low bearing 
stiffness region, the rigid body mode natural fre4uencies are 
primarily dependent on bearing stiffness. As the bearing stiffness 
increases to very large values, the rigid body modes level off and 
asymptotically approach horizontal lines, as is illustrated in Figure 6. 

The third mode is known as the "first bending mode." Unlike the 
rigid body modes, this and all higher modes do not disappem· when 
bearing stiffoess equals zero. At low beaii ng stiffnesses, these 
modes are relatively insensitive to changes in bearing stiffness, as 
is evidenced by their shallow slopes. At higher bearing stiffnesses, 
their slopes increase substantially. The bending modes are so 
named because their mode shapes contain some bending at all 
values of support stiffness. 

!njc)rmation Provided by Critical Speed Map 

Once plotted, the critical speed map provides a plethora of 
valuable information to the astute engineer. The approximate 
locations of all critical speeds and their proximity to the operating 
speed range are indicated. Secondly, the sensitivity of each mode to 
changes in bearing stiffness is indicated by the slope of the 
appropriate natural frequency curve. This information is important, 
since it indicates the system's sensitivity to bearing tolerances and 
changes in bearing load and also reveals the feasibility of escaping 
resonance problems by altering bearing design. Finally, it indicates 
which of the three major operating regimes the system is running in. 

This last point obviously requires elaboration. On any critical 
speed map, there are three distinct regions of operation that all 
display markedly different characteristics. The three regimes are 
rigid rotor, rigid bearing, and intermediate. 

The rigid rotor region generally occurs at bearing stiffnesses 
below 105 lb/in. In this regime, the rotor appears rigid compared 
with the bearings and the critical speeds are totally insensitive to 
changes in rotor stiffness. This is the region in which both rigid body 
modes appear as steeply sloped lines on the critical speed map, 
reflecting the large influence of bearing stiffness. This large 
influence implies that bearing tolerances can have a profound impact 
on the machine's rotordynamic behavior, which probably should be 
evaluated during the analysis process. Typical mode shapes for the 
first three modes for a straddle-mounted rotor in this regime are 

provided in Figure 7. It is easily seen that the large bearing 
flexibility results in significant displacements at the bearings. 
Accordingly, in this regime, the system is usually well damped. 

Mode 

I 

I I 

1 t 
I I 

s - i------------�-
1 I 
I I 
l-------l 

Bearing 1 Bearing 2 

I 

I 

2nd 
1 - i------
1 ,,,,,,.
l/

Bearing 1 

I 

3rd I 

---.4--
v 

Bearing 1 

Bearing 2 

I 

I 

--,-
'-l 

Bearing 2 

Figure 7. Typical Mode Shapes in Rigid Rotor Reiime. 

At the other extreme is the rigid bearing region that exists at 
bearing stiffnesses exceeding lQ6 lb/in. In this region, the bearings 
are rigid compared with the rotor, rendering the rigid body mode 
natural frequencies insensitive to changes in bearing stiffness. In 
order to alter these natural frequencies, modification of rotor 
stiffness is required. Figure 8 provides typical mode shapes for this 
regime. The rigid body modes now experience some bending. 

In general, operation within the rigid bearing regime should be 
avoided, for two reasons. As is shown in Figure 8, rotor 
displacements at the bearings are usually very small, causing their 
damping to be very ineffective. Consequently, unless there are any 
other significant sources of damping in the system, the rotor is 
likely to be lightly damped and, thus, susceptible to response and 
stability problems. Secondly, the insensitivity of the critical speeds 
to changes in beating stiffness eliminates a potential rectification 
strategy for resonance problems, should they arise. 

In between these two extremes is the intermediate region. In this 
region, both the rotor and bearing stiffnesses impact the critical 
speeds, and the bearing damping is moderately effective. This is 
the regime in which most practical rotors operate. 

Determination of Analysis Needed 

Perhaps most importantly, the critical speed map can be used to 
determine what, if any, further analyses must be performed to 
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Figure 8. Typical Mode Shapes in Rigid Bearing Regime. 

verify the system's integrity. Nagy (1990) provides a good 
summary of the procedure used at the authors' company for 
performing rotordynamic analysis of gas processing 
turbomachinery such as compressors and turbines. 

If the first critical speed lies well above the maximum operating 
speed, the analysis is complete, and the machine can be 
sanctioned. This represents the ideal "rigid shaft" case in wl1ich 
the machine is never required to operate at or traverse a critical 
speed. In order to ensure safety, the margin between the maximum 
operating speed and first critical speed should be calculated using 
the following: 

where: 

MAR = 

N, = 

Nmax = 

margin (percent) 
first critic al speed (rpm) 
maximum operating speed (rpm) 

(7) 

Once the margin is determined, the question arises as to how 
much margin is required to declare the system to be safe. To a 
certain extent, this is a matter of judgment. Obviously, one percent 
is insufficient, since this is less than the accuracy of the analysis. 
On the other hand, few analysts would be concerned if a 50 percent 
margin were demonstrated. A survey of the available literature 
reveals a general consensus that the allowable margin should be 
between 15 and 20 percent, depending on the amount of 
conservatism used in the analysis. This is consistent with the 
authors' experience and is recommended. 

The second rule given by Nagy (1990) is that the severity of all 
critical speeds that lie within the operating speed range should be 
evaluated via an unbalance response analysis. This also applies to 
those critical speeds lying above the operating speed range which 
fail to meet the design margin criteria spelled out above. 

Additionally, since the rotor will have to pass through them during 
startups and shutdowns, all critical speeds lying below the 
operating speed range should also be subjected to an unbalance 
response analysis. The mechanics of performing these analyses 
will be described later in the paper. 

The third and last rule is if the first critical speed is less than one
half of the maximum running speed, a damped natural 
frequency/stability analysis should be executed. The threshold is 
set at one-half running speed because the mechanism that is most 
likely to generate instabilities in pneumatic turbomachinery is oil 
whirl in fluid-film journal bearings and this phenomenon occurs at 
slightly less than one-half of running speed. It will be subsequently 
seen that this rule is too lenient for pumps and must be amended. 

Results Verification 

After the natural frequencies and mode shapes have been 
determined and the critical speed map has been generated, many 
would consider the undamped analysis to be complete. The authors 
recommend taking one more step, because computer solutions and 
analysts have been known to occasionally generate en-ors. The 
authors advocate that an independent hand calculation of one or 
more natural frequencies be performed to provide a sanity check 
for the computer analysis. 

The first sanity check that should be perfonned is examination 
of the critical speed map. All natural frequencies should 
monotonically increase as bearing stiffoess is increased. In 
addition, the curves should behave in the general manner described 
for rigid body and bending modes; i.e., the rigid body modes 
should start at zero, etc. If anything suspicious turns up, the 
analysis should be reviewed more closely. 

If the critical speed map looks legitimate, hand calculations 
should then be made. There are several hand calculations that can 
be used to determine the viability of a computer analysis. In 
general, they involve the two extreme points for each natural 
frequency curve on the critical speed map. That is, the zero bearing 
stiffness case and/or the rigid bearing case are checked. 

A parameter that is often helpful in this process is the first 
natural frequency of a uniform rotor on rigid bearings. Using 
conventional equations for a simply supported beam, the following 
expression is obtained: 

(8) 

where: 

Wt = first natural frequency of uniform rotor on rigid bearings 
(rad/sec) 

E = 

I = 

M = 

L = 

rotor elastic modulus (psi) 
rotor area moment of ine1tia (in4) 
total rotor mass (lbf-sec2/in) 
rotor length (in) 

Most computer codes provide the user with the value of the 
rotor's mass, M. The user only needs to make an estimate of 
representative values for I and L to use Equation (8). Since Ehrich 
(1992) states that w1 provides an excellent approximation for the 
first natural frequency of a Jeffcott rotor, the rigid bearing value of 
the first natural frequency of any straddle-mounted machine should 
be somewhat close to the value obtained from Equation (8). 

For a uniform rotor, several other natural frequencies are related 
to w1 as follows: 

• Second rigid bearing natural frequency: 4.0 • w 1 

• Third rigid bearing natural frequency: 9.0 • w 1 

• Fourth rigid bearing natural frequency: 16.0 • w1

The above ratios can be used to check the computer results as
follows. Since the rigid bearing case is the stiffest case possible, 
the ratios between its critical speeds and w1 are the largest that can 
be achieved. Since all real systems have finite bearing stiffnesses, 
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their ratios must be less than those tabulated above. For instance, 
the ratio of the second critical speed to w1 must be less than 4.0. 
Per Wachel (1986), a representative value is between 2.0 and 3.0. 

Leader ( 1984) also points out a consistent relationship between 
the first two natural frequencies for uniform shafts and actual 
straddle-mounted machines. The first natural frequency for the 
actual machine at a given support stiffness is always lower than 
that for the uniform rotor obtained from beam equations. 
Conversely, the real rotor's second natural frequency is always 
higher than that of the uniform shaft. These two relationships hold 
true at all values of support stiffness. 

Analogous to wt, the first natural frequency of a uniform rotor 
on zero stiffness bearings is also useful. This quantity can be 
obtained from the equation for the first free-free mode of a unifonn 
beam, as follows: 

w0 == 2.27 · 1r2 • (E · I I (M · L3J)-5 (9) 

where: 

Wo == first natural frequency of uniform rotor on zero stiffness 
bearings (rad/sec) 

E 
I 
M 

L 

== 

== 
== 

rotor elastic modulus (psi) 
rotor area moment of inertia (in4) 
total rotor mass (lbf-sec2/in) 
rotor length (in) 

The natural frequency for the first bending mode at zero bearing 
stiffness can be compared with the value obtained from the above. 
Furthermore, the uniform beam natural frequency at zero bearing 
stiffoess for the second bending mode is equal to 2.75 times the 
value obtained from Equation (9). 

The rigid body modes at low support stiffness values can also be 
checked. The first rigid body mode natural frequency should be 
merely the value obtained from Equation (2) when the sum of the 
bearing stiffnesses is inpnt for k. At very low stiffness values, the 
ratio of the second rigid body natural frequency to the first shou lei 
be about I. 73. Additionally, the slopes of the linear portions of the 
two rigid body curves on the critical speed map should be equal to 
the square root of the total support stiffness. 

Additionally, the modal mass method of Leader (1984) can also 
be used for checking the first critical speed. For a straddle-mounted 
design, the modal mass is defined as the mass of the Jeffcott rotor 
disk of Figure l needed to yield the same first critical speed as that 
of the actual machine. Since the distributed mass of an actual rotor 
is less effective than the concentrated mass of the Jeffcott rotor, the 
modal mass is always somewhat less than the total rotor mass. The 
modal mass ratio, which is defined as the ratio of the modal mass 
to the total mass of the rotor, is always less than 1.0. 

The modal mass ratio is strongly dependent on a parameter that 
Leader (1984) calls the stiffness ratio. He defines this quantity as 
follows: 

SR == 2 • kbrg / k,haft 

where: 

SR stiffness ratio 
kbro == stiffness of each bearing (assumed equal) (lbf/in)
ksh:ft 

== shaft stiffness (!bf/in) 

As the bearings get soft and the stiffness ratio approaches zero, 
the rotor starts behaving like a rigid body on elastic supports and 
the modal mass ratio approaches 1.0. Conversely, as the bearings 
become very stiff and the stiffness ratio becomes quite large, the 
modal mass ratio approaches 0.5. Leader (1984) proceeds to say 
that most of the turbomachines he has worked on have had modal 
mass ratios at the first critical speed between .55 and .65, with a 
representative value of .60. 

The above ratios can be put to use by multiplying them by the 
actual rotor's mass and then calculating the first natural frequency 

of a Jeffcott rotor having that mass. The results should be in the 
same ballpark as the computer-generated results. 

Leader ( 1984) also suggests use of the stiffness ratio calcnlatecl 
from the above equation for a general check of the sanity of the 
design. He points out that the stiffness ratio is a good general 
indicator of the system's vulnerability to response and instability 
problems, with lower values being better. He further states that 
most well-behaved machines have stiffness ratios in the range from 
4.0 to 8.0 and that assemblies possessing stiffness ratios greater 
than J 0.0 should be handled with extra caution. 

UNBALANCE RESPONSE ANALYSIS 

Although the undamped analysis and critical speed map are 
extremely useful in classifying the system's overall vibratory 
behavior, a truer test of a design is its response to realistic 
unbalance loadings. Although the undamped analysis can identify 
that a critical speed exists within the operating range, it cannot 
predict whether or not such a condition is a problem. The 
unbalance response analysis accomplishes this by calculating the 
actual synchronous vibratory amplitudes at critical locations such 
as bearings, seals, and impellers and the dynamic loadings on 
bearings and supports. 

After the undamped analysis is completed, there are usually 
resonant points uncovered by the critical speed map that must be 
checked. As stated before, the theoretical dynamic magnifier at 
resonance is infinite when there is no clamping in the system. Since 
there is always a certain amount of damping present, the dynamic 
magnifier will actually be finite. The purpose of an unbalance 
response analysis is to estimate the actual dynamic magnifier and 
the machine's ability to withstand a resonant condition with 
realistic unbalance forces and clamping applied. 

An unbalance response analysis consists of the determination of 
the damped response of the system to synchronous excitation from 
strategically placed unbalance forces. For each resonant point 
determined by the undamped analysis, appropriate unbalance loads 
are applied to the system. The lumped parameter model employed 
in the undamped analysis is again used except all eight stiffness 
and clamping coefficients are input at the bearings. 

As is the case for undamped analysis, there are a multitude of 
codes available to the user for unbahmce response analysis. 
Although there are several different procedures employed today, 
the first widely accepted method was that described in the trail
blazing work of Lund and Orcutt ( 1967). The specifics of the 
calculation procedures are omitted for the sake of brevity. 

The first task involved in response analysis is selection of the 
magnitudes and locations of the unbalances to be applied. Since 
the actual unbalance distribution existing in a rotor is usually 
unknown, unbalances are usually applied to the disk elements that 
would yield the worst-case response. These locations are 
determined by inspection of the mode shape for the mode being 
excited. As is the case with mass and clamping, unbalance loads 
impact the system only if they are located in regions demonstrating 
significant amplitudes in the mode shape. To be conservative, 
unbalance loads are normally applied to the disk elements located 
closest to the maximum amplitude points in the mode shape. 

For instance, Figure 9 represents a typical first mode shape for a 
straddle-mounted rotor. The natural point to place an unbalance 
load is seen to be at the disk closest to mid-span. On the other hand, 
a typical second mode shape for the same system is illustrated in 
Figure 10. It is easily seen that a mid-span unbalance load would 
have no effect on this mode since it would be located in proximity 
to a node. Instead, this mode should be excited by two unbalance 
loads, one at either end of the shaft and 180 degrees out of phase 
with each other to simulate the worst case. This loading is often 
referred to as end-couple unbalance. 

In general, if the maximum amplitude position does not contain 
a disk element, it is unrealistic to apply an unbalance load there 
since it represents a bare shaft. Instead the unbalance load should 
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Figure /0. Typical Second Mode Shape.

be applied to disk elements in the vicinity that correspond to 
components that are likely to contain unbalance such as wheels, 
coupling hubs, etc. 

The magnitude of unbalance to apply is usually dependent on 
the type of machine, the specification it is designed to, and its 
maximum operating speed. FI01jancic and Frei ( 1993) cite 
specification ISO 1940, which gives the following equation for 
allowable unbalance: 

UNB = .6299 · M · G / w 

where: 

UNB = maximum allowable unbalance (oz-in) 
M = total mass of rotor (lbm) 
G = empirical coefficient dependent on machine type 
w maximum rotor speed (rad/sec) 

(11) 

Flo1jancic and Frei ( 1993) proceed to specify a value of 6.3 for 
G for "general turbomachinery." In this category, they include fans, 
flywheels, and pump impellers. Furthermore, they state that 
"sophisticated turbomachinery," which includes gas and steam 
turbines, turbocompressors, and high-speed pumps, must be 
balanced more precisely, to a G value of 2.5. 

In contrast, the general specification for pumps, API 610, 
specifies the following maximum allowable unbalance: 

(l 2) 

where: 

UNB maximum allowable unbalance (oz-in) 
W total weight of rotor (lb) 
N = maximum rotor speed (rpm) 

Equation (12) represents a more precise state of balance, since it 
yields an unbalance equivalent to that obtained by using Equation 
(11) with G set equal to 0. 7.

Many authors have noted that in practical machines, the total
unbalance force is often approximately 10 percent of the rotor's 
total weight. This guideline can be used for assemblies where the 
actual unbalance is not known. 

S.ince couplings are not balanced as precisely as turbomachinery 
assemblies, the unbalance in a coupling should be calculated by 
multiplying lhe result of Equation ( 12) by a factor of l 0. 

When applying unbalance to the model. the maximum 
unbalance obtained from the above equations should be judiciously 
distributed among the disk elements to yield the worst practical 
case. If mid-span unbalance is being applied to the model, the 
entire unbalance can be applied to the disk nearest the maximum 
amplitude point in the mode shape. Conversely, if end-couple 
unbalance is being used, the total unbalance should be split into 
two, and the half unbalances should be applied to disks nem· the 
shaft endpoints. 

Once the unbalance magnitudes and locations have been 
defined, it is customary to rnn unbalance response over a range of 
speeds spanning the undamped critical speed to find the location of 
the peak response. Separate unbalance response calculations are 
executed for each speed of interest. and the rotor amplitudes at one 
or more specified locations, usually the bearings, are noted. These 
dynamic amplitudes are then plotted as a function of speed to 
obtain curves similar to those shown in Figure 11. 
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Figure 11. Representative Unbalance Response Plot. 

It is seen from the plot of Figure 11 that the peak response 
occurs at 4000 rpm. This represents another type of "critical speed" 
for the machine and will usually be different from the undamped 
critical speed for that mode. Any given mode has several "critical 
speeds" that are usually different: the undamped critical speed, the 
damped critical speed, and the unbalance response peak. Of these, 
the unbalance response peak is the most important for synchronous 
vibrations because it represents the speed at which the vibrations 
will be maximized. 

The reason for the discrepancy between the unbalance response 
peak and the undamped critical speed is the inclusion of bearing 
damping and cross-coupling stiffness terms in the analysis that 
determines the former. These terms tend to raise the critical speed; 
therefore, the unbalance response peak will normally appear at a 
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higher speed than the undamped critical speed. The difference 
tends to be proportional to the amount of damping present such 
that higher damping yields greater discrepancies. 

In addition to the plot shown in Figure 11, a plot of phase angle 
versus speed is also often constructed. The phase angle plot is often 
useful for determining the resonant speed for well-damped 
systems. In such systems, the peak amplitude location is often 
vague or nonexistent. The simplest way to determine the resonant 
speed for such systems is to find the speed where the phase angle 
undergoes a 180 degree change. 

The results of an unbalance response calculation at a given 
speed consist of the displacements and phase angles at all points in 
the system and the dynamic loads occurring at all bearings and 
supports. If the system is completely isotropic, all points on the 
rotor whirl in circular orbits. In the far more common anisotropic 
case, which usually arises due to the large direct stiffness 
anisotropy inherent in journal bearings, the orbits are elliptical. For 
this case, the motion of each point on the shaft can be 
parametlically desclibed by the following relations: 

where: 

u (t) = Au • cos (w • t + <p
0

) 

V (t) = Av • COS (w • t + <rv) 

u(t) = rotor motion in x-direction (in) 
v(t) = rotor motion in y-direction (in) 
Au = x-direction amplitude (in) 
w = rotational speed (rad/sec) 

= time (sec) 
<ru = x-direction phase angle (radians) 
Av = y-direction amplitude (in) 
<rv = y-direction phase angle (radians) 

(13) 

(14) 

In order to fully specify the elliptical motion at a point, the x and 
y-direction amplitudes and phase angles defined above must be
specified. Alternatively, the motion can be described by specifying
the ellipse's semimajor and semiminor axis radii, the angular
orientation of the major axis, and the phase angle with respect to
the unbalance force.

It is seen from the above that the hotizontal and vertical motions 
of any point on the rotor behave in a sinusoidal fashion. The 
resulting loads at the bearings and other supports also exhibit a 
sinusoidal variation with time. For this reason, mean and cyclic 
dynamic loads at all supports are usually given in the computer 
output. 

The phase angle result given for each point on the shaft yields 
the phase relationship between that point's motion and the 
unbalance force. If the phase angle is positive, which is normally 
the case, the orbit lags behind the unbalance force by the specified 
number of degrees. As mentioned previously, phase angles are 
sometimes useful for determining resonant speeds in well-damped 
assemblies since, at resonance, the phase angle undergoes a sudden 
change of 180 degrees. 

In addition to the above information, the unbalance response 
analysis also provides the user with a deflected shape plot for the 
rotor. Deflected shape plots are similar to mode shape plots in that 
they reveal the shape that the rotor takes during synchronous 
vibration. Unlike mode shape plots, deflected shape plots are three
dimensional and the rotor axis often does not lie in a single plane 
but, rather, is skewed in space. In fact, due to the twisting action 
usually present, it is not at all uncommon for deflected shape plots 
to not contain a single node anywhere in the system. The deflected 
shape plot is also frequently very different from the undamped 
mode shape plot for the same mode. 

Another useful parameter that can be obtained from unbalance 
response analysis is the amplification factor for the mode in 
question. This quantity is determined from the unbalance response 
versus speed plot and is a measure of the system's sensitivity to 

unbalance loads, with high values denoting high sensitivities. A 
system exhibiting a sharp peak at resonance, by definition, has a 
large amplification factor, while a more highly damped system will 
have a much smaller factor. 

The amplification factor is defined by the following equation: 

AF=Ncr / (N1 - Nz) 

where: 

= amplification factor 
= speed at peak response (rpm) 
= speeds at .707 of max amplitude (rpm) 

In order to calculate the amplification factor for a given 
machine, the response curve should be used to obtain Ncr and the 
amplitude at Ncr· This amplitude should then be multiplied by .707, 
which is one-half the square root of 2, to determine the amplitude 
at speeds N I and N2. The response curve should then be used to
find the two speeds, one greater than and the other less than Ncr, at 
which the response is equal to this amplitude. These speeds are N 1 
and N2, respectively, and are known as the half-power points since 
their vibration energy is one-half of that at the resonant speed, Ncr· 
Since unbalance response is usually calculated at multiple 
locations, a machine has more than one amplification factor. At a 
minimum, amplification factors are usually calculated at both main 
bearings. 

Once the peak location and amplification factor have been 
identified, the analyst should look at the results at the peak speed, 
Ncr, to judge the acceptability of the machine. The displacements 
at all regions having close-clearance fits, such as bem·ings, seals, 
and impellers, should be checked to ensure that rubbing cannot 
occur. As a general rule, the authors consider any dynamic 
amplitudes that exceed one-half of the minimum operating 
clearance to be unacceptable. Additionally, if applicable, the 
displacements should be compared with the allowable values 
provided in the governing specification. ln the absence of same, 
Bulanowski and Silvaggio ( 1986) provide the following guideline 
for the maximum allowable displacement: 

opp = (12,000 / N),5 

where: 

Opp = peak-to-peak amplitude (mils) 
N = shaft rotational speed (rpm) 

(16) 

Additionally, the dynamic loads applied to bearings and 
supports should be noted and their ability to withstand them 
evaluated. Finally, the calculated amplification factors should be 
compared with allowable values stated in the governing 
specification. If there is no relevant specification, the following 
guidelines provided by Allaire ( l 986) are sometimes useful: 

• AF > 8.0 Unacceptable 

• 8.0 > AF > 5.0 Acceptable

• 5.0 >AF> 2.5 Good

• 2.5 > AF Very well damped

Amplification factors .less than 2.5 are not a concern and often
are so well damped that a peak does not even appear in the 
response plot. On the other hand, assemblies in the unacceptable 
category should be redesigned. Machines that are in the good and 
acceptable ranges require judgment and may require 
demonstration of adequate margin between the peak speed and the 
operating range, depending on the circumstances. 

The authors have seen machines that have been extremely 
unresponsive to unbalance, exhibiting minute displacements and 
dynamic loads at all speeds, including resonance. However, the 
amplification factor, which is the ratio of two very small numbers, 



PUMP ROTORDYNAMICS MADE SIMPLE 179 

has exceeded 2.5 for a resonance within the operating speed range, 
resulting in a theoretical violation of the governing specification. 
Nevertheless, using engineering judgment, the authors have 
approved these machines and been subsequently proven correct by 
their trouble-free operation. Judgment must always be applied 
when using amplification factors as the basis for evaluating the 
acceptability of potential configurations. 

Once an unbalance response analysis has been run for all 
potential resonant speeds, the synchronous vibration portion of the 
analysis procedure is complete. The next step is the evaluation of 
subsynchronous vibrations via damped natural frequency/stability 
analysis. 

DAMPED NATURAL FREQUENCY/STABILITY ANALYSIS 

Damped Natural Frequencies 

As was briefly touched upon earlier, there are three distinct 
definitions of critical speeds. In addition to undamped critical speeds 
and unbalance response peak speeds, there is also a parameter known 
as the damped critical speed. Damped critical speeds correspond to 
damped natural frequencies, which are the frequencies at which an 
assembly can perform damped free vibrations. 

Damped natural frequency analysis is performed using the same 
lumped parameter model as is used for undamped and unbalance 
response analysis. Like unbalance response, all eight dynamic 
coefficients are input for the bearings. Additionally, since damped 
natural frequencies are a function of running speed, that parameter 
is also input to the model. 

The first widely used algorithm for calculating damped natural 
frequencies was the damped eigenvalue method of Lund (1973 ). 
This landmark paper is considered by the authors and a large 
percentage of their acquaintances as one of the most relevant 
works ever published in the field of rotordynamics. It is not an 
exaggeration to assert that this paper revolutionized the manner in 
which most engineers performed rotordynamic analyses. 

Using Lund's procedure (1973), damped natural frequencies are 
obtained from ,m eigenvalue analysis of the system running at a 
specified speed. Since the analysis considers clamping, the 
resulting eigenvalues are complex. The imaginary portion of the 
eigenvalue is the damped natural frequency. Analogous to an 
undamped mode shape, a deflected shape corresponding to each 
damped natural frequency can also be obtained from the analysis. 
Like the unbalance response deflected shapes, these plots are 
usmtlly three dimensional. 

Since damped natural frequencies are a function of operating 
speed, primarily due to the speed dependence of bearing stiffness 
and damping coefficients, there is a difference between damped 
natural frequencies and damped critical speeds. The synchronous 
damped critical speeds are determined from a Campbell diagram, 
similar to the one depicted in Figure I 2. In the Campbell diagram, 
the damped natural frequencies, which usually increase with 
.increasing running speed, are plotted as a function of running 
speed. The synchronous excitation line, which is a 45 degree 
positively sloped line, is then also plotted. The points where the 
excitation line intersects the damped natural frequency curves are 
the synchronous damped critical speeds. 

The Campbell diagram of Figure 12 is the abridged version that 
is usually employed for practical engineering work. A more 
complete Campbell diagram is shown in Figure 13. It is easily seen 
that at all speeds above zero, some modes have two damped natural 
frequency lines: one positively sloped and the other negatively 
sloped. The positively sloped line corresponds to forward 
precession and is the one shown in Figure 12. The negatively 
sloped line represents backward precession and is present because, 
in actuality, all modes have two damped natural frequencies. The 
lines diverge above zero speed due to the previo,1sly mentioned 
fact that gyroscopic effects usually raise the natural frequencies of 
forward modes and have the opposite effect on backward whirling 
modes. 
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Figure 12. Typical Campbell Diagram. 
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Figure 13. Typical Unabridged Campbell Diagram. 

The backward mode natural frequency lines have been omitted 
from Figure 12. This is done for. the sake of clarity and is 
permissible since the likelihood of backward modes being excited 
by unbalance is extremely remote. In general, backward whirling 
only occurs when there is rubbing between the rotor and a 
stationary part to trigger it. Since this represents a preexisting 
failure condition, for most practical machines, backward whirling 
modes need not be considered during the design process. 

It is a common misconception that damped critical speeds and 
the unbalance response peaks discussed earlier are one and the 
same thing. Actually, they are quite different and can often have 
significantly different values. The addition of damping and cross
coupled stiffness to a natural frequency analysis tends to reduce 
natural frequencies such that damped critical speeds are almost 
always smaller than the undamped critical speeds for the same 
mode. This deviation is in the opposite direction of that for 
unbalance response peaks. In systems having large amounts of 
damping, the unbalance response peak speeds can exceed the 
damped critical speeds by a sizable amount. 
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Rotor Instability 

In addition to synchronous whirling, the other lateral 
rotordynamic problem commonly found in turbomachinery is 
subsynchronous, self-excited vibration. Also called rotor-bearing 
instability or whipping, this phenomenon is characterized by large 
amplitude whirling of the rotor at a damped natural frequency well 
below the running speed. The vulnerability of a machine to this 
condition is evaluated by performing a stability analysis. 

Whipping is caused by tangential forces induced by some fluid 
or friction mechanism that is directly proportional to, or increases 
with, the rotor's radial deflection. This proportionality factor is the 
conventional cross-coupling stiffness coefficient. Any components 
in the system, such as fixed-pad journal bearings, which possess 
nonzero cross-coupling stiffness coefficients, are potential 
instability sources. Since instability is normally characterized by 
forward precession, cross-coupling coefficients that generate a 
tangential force in the direction of rotation when the rotor is 
displaced radially outwards tend to be destabilizing. 

Unlike synchronous vibration, which was discussed in the 
response section and is usually excited by unbalance, instability is 
a self-excited phenomenon. The energy source for whipping is the 
shaft's rotation. The triggering sources, such as journal bem-ings, 
provide a means for conversion of rotational energy into whirling 
energy. Balancing a rotor perfectly will not have any impact on its 
tendency to whip. 

The tangential excitation force generated by the cross-coupling 
is opposed by the system's damping. Instability occurs if the 
exciting tangential force exceeds the tangential damping forces, 
resulting in a positive net tangential force, and is characterized by 
whirling at a constantly increasing radius. Conversely, if the net 
tangential force is negative, the system is stable. Since the 
difference between the clamping forces and the excitation forces 
tends to decrease as the operating speed is increased, most rotors 
have an instability threshold speed where the net tangential force is 
zero. At any speed above this speed, the rotor will whirl at its first 
damped clitical speed. 

When a system operates in the unstable region, any minute 
perturbation to the system, such as a speed or load change, can 
initiate whirling. Once this occurs, the accompanying increase in 
centrifugal force causes the rotor's radial deflection to increase. 
This, in turn, generates a larger destabilizing tangential force by 
virtue of the cross-coupled stiffness. A snowballing effect occurs 
whi.ch causes the whirling amplitude to increase exponentially with 
time until some nonlinear mechanism, most likely contact at a 
bearing or seal surface, prevents any further radial growth. 

This type of vibration is unusually destructive since the 
precession speed is different from the speed of rotation. Unlike 
synchronous vibration, fibers in the rotor are continuously 
subjected to reversing stresses, making shaft fatigue a legitimate 
concern. Additionally, the growing whirl amplitudes associated 
with instability can easily result in rubbing and failures of bearings 
and seals. The analyst must ensure that subsynchronous whirling 
will not occur in a machine when it is operating in the field. 

The preceding discussion is a very brief introduction to the vast 
subject of rotor-bearing instability. For a much more in-depth 
explanation, the reader is advised to see Ehrich and Childs (] 984 ). 

Journal Bearing Instability 

Fluid-film journal bearings are probably the most notorious 
source of instabilities in rotating equipment. The source of cross
coupling and destabilizing forces in journal bearings is the 
well-known fact that the journal's radial displacement is not in the 
same direction as the external load. Consequently, in order to 
maintain equilibrium, the load produced by the pressure 
distribution in the hydrodynamic film must have both radial and 
tangential components. The tangential component tends to act in 
the rotation direction, giving rise to a destabilizing cross-coupling 
stiffness coefficient. 

Journal bearing instability is often referred to as "half-speed 
whirl" to reflect the approximate ratio of whirling speed to running 
speed associated with this instability mechanism. At low speeds, 
the journal whirls at approximately one-half of the running speed 
(actually around 45 to 48 percent) because that is the average 
velocity of the circumferential oil flow in the bearing. Since the 
whirling speed is far below the first critical speed, the 
subsynchronous whirl orbit is insignificant. 

However, once running speed reaches a value of twice the first 
damped critical speed, the whirling frequency becomes resonant 
with the first critical speed. This causes the whirl orbit to increase 
drastically and represents the initiation of instability. As running 
speed increases above the threshold speed, the whirling continues 
at the critical speed, regardless of the running speed, rendering the 
ratio of whirl speed to running speed less than one-half. 

Kanemori and Iwatsubo ( 1989) provide a good explanation for the 
instability mechanism in journal bearings. One should visualize an oil 
wedge traveling around the bearing at its average velocity of about 
one-half of the shaft's surface speed. If the rotor whirls at a frequency 
that is greater than one-half of the rotational speed, then the rotor 
whirls faster than the fluid and the fluid force attempts to slow the 
rotor whirling down via dragging. The fluid force acts as a stabilizing 
influence. On the other band, when the rotor whirls at a speed that is 
less than one-half rotational speed, the Huie! acts to accelerate the 
rotor tangentially and instability may then occur. The instability 
threshold frequency is, thus, seen to be one-half of rotating speed. 

The stability of a journal bearing is strongly dependent on its 
loading and tends to increase as its load and radial displacement 
increase. Lightly loaded bearings, which tll'e often found in vertical 
machines, are notorious instability problem sources. This condition 
also often shows up in overhung machines where the bearing at the 
overhung impeller end usually caITies most, if not all, of the rotor's 
weight. The other bearing is usually lightly loaded and is a 
potential instability source. The reader is, hence, cautioned to pay 
particular attention to stability issues when dealing with vertical or 
overhung horizontal machines. 

Although fluid-film journal bearings are one of the primary 
destabilizing sources in pneumatic turbomachinery, they are far 
from the only ones. Aerodynamic excitations at impellers and oil 
seals are also major contributors to instability problems. Other 
potential sources of instability are shaft anisotropy, friction in 
shrink fits, and shaft material hysteresis. These last mechani.sms 
are dubbed "secondary" by Lund ( 1975) who states that, in most 
practical instances, their influence is orders of magnitude weaker 
than that of journal bearings. lt will be shown later that annular 
seals and impeller/diffuser interactions can be troublesome 
instability sources in pumps that must be considered in the design 
process. 

Stability Analysis 

The vast majority of rotordynamicists evaluate the stability of a 
rotor-bearing system via a damped natural freqnency analysis. As 
stated previously, this analysis determines the system's complex 
eigenvalues. The imaginary part of the eigenvalue is the damped 
natural frequency while the real part is known as the amplitude 
growth exponent. Positive values of the growth exponent indicate 
that a freely vibrating system's amplitudes will grow with time, 
which is akin to a system with negative damping. Conversely, 
negative values correspond to decaying amplitudes and positive 
system damping. 

Although the growth exponent could be used to define stability 
margin, a more useful parameter is the logarithmic decrement. 
Physically, the logarithmic decrement is defined as the natural 
logarithm of the ratio of two successive amplitudes of a freely 
oscillating system. A negative log decrement means that the 
amplitudes grow with time, while a positive value means they die 
out. In order for a system to be stable its log decrement must be 
positive. Furthermore, the stability margin increases with the log 
decrement's magnitude. 



PUMP ROTORDYNAMICS MADE SIMPLE 181 

For lightly damped systems, the log decrement can be obtained 
from the damped natural frequency and growth exponent via the 
following equation: 

o = -2 • 'lT • A/ Wct (17) 

where: 

8 = log decrement 
A = amplitude growth exponent
wd = damped natural frequency (rad/sec) 

In general, stability analysis is performed at the maximum 
operating speed. The damped natural frequencies and associated 
logarithmic decrements are calculated for all modes at that speed. 
In order to qualify a machine as being satisfactory, the authors (and 
most references consulted) require that all modes possess log 
decrements of+ 0.30 or greater. Normally, the only mode that will 
challenge thi.s criterion is the first. If this margin is not 
demonstrated, con-ective actions, as will be discussed later, should 
be implemented. 

As the operating speed is increased, the first mode's log 
decrement decreases until it reaches zero at the threshold speed. At 
all speeds above tbe threshold, the log decrement is negative, 
indicating that the system is unstable. Alternatively, at a given 
running speed, the damping and log decrement are functions of 
whirling frequency. In general, the log decrement starts out 
negative at zero whirling frequency and increases with increasing 
whirling frequency. 

The whirling frequency at which the log decrement becomes 
zero is defined as the threshold frequency. This parameter can be 
compared with the first damped natural frequency to determine 
stability. If the first natural frequency is Jess than the threshold 
frequency, the system is unstable. The converse is also true. 
Contrary to the concept of threshold speed, low values of threshold 
frequency are desirable. For a journal bearing, the threshold 
frequency is merely a function of the eight dynamic coefficients, as 
follows: 

where: 

wcr = threshold frequency for journal bearing (rad/sec) 
k;j = bearing stiffness coefficient (lbf/in)
C;j = bearing clamping coefficient (lbf-sec/in)

If the above equations yield an imaginary threshold frequency, 
the bearing is inherently stable and is not capable of destabilizing 
the machine at any speed. The above equations ,u-e strictly valid 
only for the case of a rigid rotor. Nevertheless, they still provide a 
good measure of the relative stability of a pai1icular bearing 
design. 

Another measure of system stability is the critical mass, which 
is defined as the mass that makes the machine's first natural 
frequency equal to the threshold frequency and is, thereby, the 
maximum total rotor mass that can be tolerated by a stable system. 
If the actual rotor mass is less than the critical mass, the system 
will be stable. If not, the machine is unstable. The critical mass for 
a journal bearing can be calculated from the following: 

(20) 

where: 

Mer = critical mass (lbf-sec2/in) 
wcr = critical whirling frequency (rad/sec) 

The total system critical mass can be estimated by simply 
summing the critical masses of the individual bearings obtained 

from the above equation. It follows from the above that the 
threshold frequency and critical mass for a rotor supported on 
journal bearings are pure functions of the journal bearings' 
dynamic coefficients. 

ANNULAR SEAL EFFECTS 

All the preceding text has addressed the general field of 
rotordynamics and, hence, is applicable to all types of rotating 
equipment, including pumps. The remainder of the paper describes 
all the factors that render the rotordynamic analysis of pumps 
much more complex than that of other turbomachinery drive trains. 

Although the list of factors that are unique to pumps is 
extensive, the authors do not mean to imply that there are no 
extenuating factors in other forms of turbomachinery. For instance, 
the authors have seen many cases where high power, high pressure 
compressors and turbines have suffered instability problems 
arising from interaction effects at oil seals, gas seals, ancl/or 
impellers. Since these phenomena are outside the scope of this 
work, they will not be discussed. The reader should keep in mind 
that all forms of turbomachinery have their own unique 
idiosyncrasies that must be considered when analyzing their 
rotordynamic behavior. 

Wet and Dry Critical Speeds 

The first and foremost factor that increases the complexity of 
pump rotordynamic analysis is the large discrepancy between a 
pump's wet and dry critical speeds. At one time, it was naively 
believed that pump rotordynamic analysis could be performed in 
the same fashion as that for turbines and compressors. That is, the 
pump would be simply treated as a flexible shaft supported on 
bearings. The critical speeds obtained from this type of analysis are 
known as the "dry" critical speeds. since they represent the 
situation where the pump is running with no process liquid inside 
it. 

However, experience with pumps in the field has unequivocally 
demonstrated that the dry critical speeds are woefully inadequate 
predictors of pump rotordynamic behavior during normal "wet" 
operation. In order to accurately model this behavior, the "wet" 
critical speeds need to be calculated. The wet critical speeds are 
often considerably different (and usually higher) from the dry 
values clue to significant fluid interaction forces occurring at close 
clearance interfaces such as annular seals, impeller/diffuser 
interfaces, and submerged motor rotors. The procedure advocated 
herein requires the calculation of wet critical speeds as well as the 
dry ones. 

Lomakin Effect 

The primary driver for the discrepancy between wet and dry 
critical speeds is the large impact that fluid forces at annular seals 
have on the system. Figure 14, taken from Childs (1993), 
illustrates the three general configurations for annular seals that are 
most likely to impact rotordynamic behavior. Because of the high 
rotating speeds used in the pumps of today, most practical pumps 
utilize noncontacting seals like those in the figure rather than 
packing-type seals. The primary function of these and all other 
seals used in pumps is to minimize leakage between regions of 
different pressure within the pump. 

The neck ring seal (a.k.a. wear ring), shown in Figure 14, is 
located in the suction region of a shrouded impeller. This seal acts 
to minimize backflow from the high pressure region at the impeller 
discharge to the impeller inlet region. Conversely, the interstage 
seal, also shown in the figure, is located between adjacent impeller 
stages and prevents leakage along the shaft from one stage to the 
next in a multistage pump. Also depicted is a balance piston seal 
that is used to balance the thrust on the pump shaft and is usually 
much longer than the other seal types. 

One of the primary influences of annular seals on rotordynamic 
behavior is known as the Lomakin effect, in honor of the 
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Interstage 
Seal 

Figure 14. Annular Seal C011figurations. 

gentleman who discovered it (Lomakin, 1958). The essence of the 
Lomakin effect is that a seal develops a relatively strong radial 
restoting force when it is displa.:ed from the centered position. 
Consequently, the seal acts as a bearing having a large direct 
stiffness coefficient. Addition of these stiffnesses to the "dry" 
system tends to raise the critical speeds, often by a considerable 
amount. 

The origin of the Lomakin effect can be understood by 
examining the axial pressure distributions in a typical annular 
seal, as is illustrated in Figure 15, taken from Florjancic and 
McCloskey ( 1991 ). As the flow enters the seal, it is accelerated 
from its initial zero velocity to the nominal axial velocity and this 
is accompanied by a static pressure drop due to the Bernoulli 
effect. In addition to the Bernoulli effect, entrance effects 
associated with the development of the flow field into its fully 
developed form result in a further drop in pressure. After the 
initial pressure drop is taken, the remainder of the drop in the seal 
is due to wall frietion effects and is very nearly linear. When the 
shaft is centered, symmetry cau:;es the pressure distribution to be 
uniform around the shaft's circumference, resulting in no net 
radial load on the shaft. 

If the shaft is displaced radially upwards, as is shown in the 
figure, this uniformity is eliminated. At the bottom of the shaft, the 
increased gap raises the local Reynolds number and lowers the 
relative roughness. Referring to a standard Moody diagram, both 
these effects reduce the friction factor, thereby increasing the flow 
velocity. Similarly, the Reynolds number and relative roughness in 
the upper gap are altered in the opposite direction and the axial 
velocity is reduced. The Bernoulli and entrance pressure drops 
below the shaft are increased, resulting in a reduction in static 
pressure. Above the shaft, the situation is exactly opposite so the 
static pressure there increases. The result is a downward radial load 
tl1at attempts to recenter the shaft. 

The above discussion is over simplified since the effects of shaft 
rotation and the accompanying fluid circumferential velocity are 
neglected. The depicted pressure distributions are strictly only 
applicable to a nonrotating shaft. Nevertheless, the underlying 
principles are also valid for the rotating case. As a result, the net 
seal forces are a combination of hydrostatic forces due to the 
Lomakin effect and hydrodynamic forces due to shaft rotation. 

The radial force generated by the Lomakin effect is directly 
proportional to the axial pressure drop across the seal. Since this 
pressure drop is usually a fixed fraction of the total pressure rise of 
the pump and since the pressure rise of a centrifugal pump is 
proportional to the square of operating speed, the Lomakin force is 
approximately proportional to the square of running speed. 

p 

I 

I 

I 

---i------

1 
I 

Area Proportional 
to Resulting Force 

.__ ___ ..__ _________________ z 

Inlet Outlet 

Figure 15. Annular Seal Axial Pressure Distribution. 

This relationship has led some to treat the Lomakin effect as the 
addition of a fictional, negative mass to the system. The rationale 
for this line of thinking is that a positive rotor mass generates an 
outwards radial force that is proportional to the square of speed. 
Conversely, the Lomakin effect generates an inward pointing radial 
force that is also proportional to speed squared. Adding a seal to 
the system has the same effect as adding a negative mass. This 
mass is often referred to as the Lomakin mass, and it can be 
calculated using the following expressions from Gopalakrishnan, 
et al. ( 1982), for a plain seal: 

where: 
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Lomakin mass (lbf-sec2/in) 
shaft diameter at seal (in) 
seal axial length (in) 
friction coefficient 
entrance loss coefficient 
seal radial clearance (in) 
seal pressure drop at some reference speed, w0 (psi) 
reference speed (rad/sec) 
finite length factor 

(22) 

The significance of the Lomakin mass is that it directly subtracts 
from the actual mass of the rotor in the classical natural frequency 
equation, as follows: 

where: 

wn = natural frequency (rad/sec) 
k = stiffness (lbf/in) 

(23)
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M = rotor mass (lbf-sec2/in) 
M1om = Lomakin mass (lbf-sec2/in) 

When the Lomakin mass exceeds the actual rotor mass, the 
natural frequency becomes imaginary. Physically, this means that 
the rotor does not have a critical speed. This phenomenon, which 
has been observed in many real systems, can best be understood 
via the Campbell diagram of Figure 16. This diagram is a plot of 
the first natural frequency as a function of running speed and is 
very similar to the plots discussed in the stability section. It is seen 
from the figure that the natural frequency increases greatly as 
speed is increased, due to the quadratic stiffening occurring at the 
seals. Consequently, at any given speed, the natural frequency is 
above the synchronous frequency (depicted by the positive-sloping 
line), and the two curves never intersect. The unit does not have a 
true critical speed. 

a. 
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C: 
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Figure 16. Disappearance of Critical Speed due to lomakin Effect. 

Equation (23) can be combined with the generic equation for dry 
critical speed to obtain the following expression for the ratio of wet 
to dry critical speeds: 

where: 
Wwet = wet critical speed (rad/sec) 
wct,y = dry critical speed (rad/sec) 

(24) 

Black (1979) points out that, in addition to this valuable 
stiffening effect, the Lomakin effect also can improve the stability 
of a system. He provides the following equation for the instability 
onset speed of a rotor without damping: 

where: 
winst = instability onset speed (rad/sec) 
w0 = dry critical speed (rad/sec) 
M = total rotor mass (lbm) 
M1om = Lomakin mass (lbm) 

(25) 

The implications of the above equation are that increasing the 
Lomakin mass results in a raising of the instability speed. In fact, 

if the Lomakin mass exceeds one-fourth of the rotor mass, the 
instability speed becomes imaginary, indicating a stable system at 
all speeds. The equation implies that even if the Lomakin effect is 
absent, the instability speed for a seal can never be less than twice 
the dry critical speed. 

Although the Lomakin effect impacts all natural frequencies, it 
usually has the greatest effect on the first. The higher natural 
frequencies are generally affected to a much lesser degree. 

The reader should be cautioned that the preceding equations 
utilizing the Lomakin mass represent oversimplifications and 
should only be used for ballpark estimates. In the actual design 
procedure, the seal effects should be accounted for via the dynamic 
coefficients to be discussed next. 

Definition of Coefficients 

In the modelling of their rotordynarnic behavior, seals are 
treated similarly to journal bearings in that their effects are input to 
the model as linearized dynamic coefficients. These dynamic 
coefficients assume small motions about the centered position and 
consist of direct and cross-coupled stiffness, damping, and mass 
coefficients. Accordingly, the forces generated in an annular seal 
are modelled as follows: 

where: 
Fx = force in x-direction (]bf) 
Fy = force in y-direction (]ht) 
X = displacement in x-direction (in) 
y ::: displacement in y-direction (in) 
k = stiffness coefficient (]bf/in) 
C = damping coefficient (lbf-sec/in) 
M = mass coefficient (lbf-sec2/in) 

The nomenclature on the coefficients is exactly the same as for 
bearing dynamic coefficients. That is, the first subscript represents 
the direction of the force while the second represents the direction 
of the displacement. As with bearings, the diagonal terms such as 
kxx, kYY' etc., arc referred to as direct coefficients while the off
diagonal terms like kxy, kyx, etc., are called cross-coupling 
coefficients. 

The cross-coupled stiffness terms arise from fluid rotation in a 
manner similar to those of a journal bearing. As Childs (1993) 
explains in his noteworthy book, motion of the seal rotor in the x
direction creates converging and diverging regions in the upper 
and lower halves of the seal. Hydrodynamic effects generate an 
increase in pressure in the converging portion of the fluid film and 
a pressure reduction in the diverging region. Consequently, a net 
force is generated in the y-direction, orthogonal to the 
displacement. Additionally, as is the case in journal bearings, the 
circumferential location of the maximum film pressure is different 
from that of the minimum film. 

It has been shown by many authors that for small motions about 
the centered position, the seal coefficient matrices are skew 
symmetric; i.e., kxx equals kYY' etc. and kxy 

equals -kyx• etc. This 
allows simplification of Equation (26) to the following: 

[

-Fx

] [

K k][xl [c c][*j [

M m][x] -FY 
= 

-k K yj + -c C y + -m M y 

where: 
K direct stiffness coefficient (lbf/in) 
k = cross-coupling stiffness coefficient (lbf/in) 
C = direct damping coefficient (]bf-sec/in) 
c = cross-coupled damping coefficient (lbf-sec/in) 

(27)
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M = direct mass coefficient (lbf-sec2/in) 
m = cross-coupled mass coefficient (lbf-sec2/in) 

Wilkes, et al. (1993 ), explain that the matrices are skew 
symmetric because a Cartesian coordinate system is being used to 
model an inherently polar phenomenon. That is, if the cross
coupling coefficient is positive, an outwards radial displacement 
always produces a force that acts in the direction of rotation 
(positive 0 direction) regardless of which quadrant the rotor lies in. 
However, for counterclockwise rotation in the Cartesian system, a 
displacement in the positive x-direction yields a force in the 
positive y-direction, but a displacement in the positive y-direction 
generates a force in the negative x-direction. Thus, kxy and kyx 
must have opposite signs. 

The effects of the various seal coefficients can be observed by 
deriving expressions for the net radial and tangential seal forces 
acting on the shaft. For a rotor whirling in a circular orbit of 
amplitude, A, these forces can be shown to be: 

Fr= -A· (K + c • f! - M · [!2) 

where: 

Fr radial force (lbf) 
Ft = tangential force (lbf) 
A = whirl radius (in) 
n whirl frequency (rad/sec) 

(28) 

(29) 

The item of primary interest here is the tangential force. As was 
discussed in the stability section, any time the net tangential force 
acts in the direction of rotation, the rotor is considered to be unstable. 
Since the cross-coupled mass is almost always negligible, the 
stability of a seal is seen to be dependent on the relative magnitudes 
of the destabilizing cross-coupled stiffness and the stabilizing 
direct damping. The cross-coupled clamping has no influence on 
stability but, instead, acts as a gyroscopic stiffening term. 

During the course of their research, the authors found several 
references such as Ismail, et al. (1993), and Flo1jancic, et al. 
(1990), that stateed that the only significant coefficients are K, k, 
imd C. Although the authors agree that these are the most 
consequential terms and that the cross-coupled mass is negligible. 
they do not agree that the other terms can be ignored. Their opinion 
is shared by Childs ( 1993) who bluntly states that any analysis 
procedure that does not account for the direct mass term is 
inadequate for pump rotorclynamic calculations. 

There are several experts who state that there are cases in which 
the seal's angular stiffness and damping properties should be 
included in the model. These additional coefficients account for 
pitching and yawing of the shaft within the seal and require 
extension of the dimensions of the stiffness, damping. and mass 
coefficient matrices from 2 X 2 to 4 X 4. Use of the 2 X 2 matrices 
in Equations (26) and (27) implicitly assumes that the whirling 
shaft always remains parallel to the centerline. 

Childs (1993) states that the full 4 X 4 matrices should be 
included in the analyses for any seals that have length-to-diameter 
ratios in excess of .75. Using this criterion, almost all balance 
pistons and some long interstage seals would need to be analyzed 
using the expanded matrices. Fm1hermore, Gopalakrishnan (1997) 
agrees that long seals need to be modelled using the more 
sophisticated procedure. 

The authors agree that inclusion of the moment coefficients 
improves the accuracy of the analysis. However, with all due 
respect to the experts cited, the authors have found many instances 
where angular motions of the shaft are sufficiently restricted by the 
direct stiffness coefficients of the most outboard seals and/or 
bearings that the impact of the moment coefficients is small. In 
addition, in Figure 11 of his paper, Gopalakrishnan (1997) shows a 
case in which the coefficients calculated using the 4 X 4 matrices 

did not change much from those predicted by the simpler 
procedure. Furthermore, since inclusion of the moment 
coefficients generally increases the system's overall stiffness and 
damping, their omission from the analysis is usually conservative 
and sometimes justifiable. However, if in doubt, the full 4 X 4 
matrices should be utilized. 

Comparison with Journal Bearings 

Although seals resemble fluid-film journal bearings since both 
consist of a shaft rotating within a close-clearance annulus, there 
are, in fact, a nmnber of significant differences. These include: 

• Seals have larger radial clearances. The typical radial clearance
to radius ratio for a seal is from three to five mils per inch, which
is several times larger than the representative value of one mil per
inch for journal bearings. The larger clearances greatly reduce the
hydrodynamic forces in seals.

• Whereas the axial leakage in journal bearings has only a
secondary influence on the dynamic coefficients, the axial flow in
seals is usually predominant.

• The Reynolds equation traditionally used for bearings ignores
fluid inertia effects, which are significant in seals.

• Due to the larger clearances and the relatively large axial flow, 
seals almost always operate in the turbulent flow regime. This is in
direct contrast to bearings whose flow is usually .laminar.

• Since the load capacity of a journal bearing is due to
hydrodynamic effects, a nonrotating journal bearing has no load
capacity and no stiffness. On the other hand, the Lomakin effect
has been previously shown to be present regtmlless of whether or
not the shaft is rotating. A seal will display significant direct
stiffness even when stationary. 

• Unless a journal bearing is provided with an unusually high inlet
pressure, the tluid-film in the diverging portion usually operates in
a cavitated state. Conversely, seals are almost always noncavitatec\.

• As is seen from the description of the Lomakin effect, seals
develop significant direct stiffness in the centered position. This is
in direct contrast to plain journal bearings that have no direct
stiffness in the unloaded, centered condition.

• It is well known that journal bearings are inherently nonlinear
devices such that their dynamic coefficients are strong functions of
the journal's eccentricity. On the other hand, seal coefficients can
be treated as virtually constant at all eccentricities less than about
one-half of the seal's radial clearance.

• In journal bearings, the temperature distribution has a direct
effect on the solution. On the other hand, the fluid temperature in
seals is nearly uniform due to the large axial flowrate and high
fluid thermal conductivity. Consequently, thermal effects in seals
are almost always completely ignored. The user interested in
modelling seal thermal effects should consult Yang, et al. (1993),
and San Andres, et al. (1993).

• Although bearings theoretically have associated mass
coefficients, they are almost always negligible clue to the
insignificance of inertia forces in bearings. Seals have nonzero
direct mass terms that can significantly impact the system,
particularly in longer seals like balance pistons.

• The basis for many beating analysis algorithms is that many
bearing dimensionless parameters are known functions of the
Sommerfeld number. Unfortunately, since seal coefficients depend
on a multitude of parameters, no compm·able dimensionless
method can be used for them.

It is quite clear from the above that the typical laminar Reynolds 
equation solution for journal bearings is not satisfactory for predict
ing seal performance. However, some engineers have attempted to 
calculate seal coefficients using turbulent journal bearing algorithms. 
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Childs (1993) illustrates the folly in this approach by pointing out that 
the turbulent Reynolds equation normally omits both swirl and inertia 
terms. He proceeds to give an example in which the turbulent bearing 
theory generates stiffness and damping coefficients that are greatly in 
error. It can be concluded that, with the possible exception of seals that 
have little axial flow, traditional bearing analysis procedures are not 
adequate for analyzing seals. 

Methods.for Calculating Plain Seal Coefficients 

Although it is almost universally accepted that the seal 
coefficients must be included in any pump rotordynamic model in 
order to obtain reasonably accurate results, the determination of 
these coefficients is, by no means, an easy task. Although accurate 
coefficients can be obtained for vhtuall y any seal configuration 
using computational fluid dynamics, the time and cost expenditure 
associated with that option are rarely justifiable. Consequently, 
most practical techniques used today are based on bulk-flow 
analysis that assumes that the flow in the annular clearance can be 
represented by the average velocities in the axial and circumferen
tial directions. Stated another way, the radial variation of fluid 
properties across the film is ignored. Whereas these analyses are 
reasonably accurate for short, plain seals, such as neck rings, their 
accuracy leaves something to be desired for more elaborate 
configurations. Development of good, practical methods for 
calculating seal coefficients is an area of continuing research. 

The number of variables that impact seal coefficients is 
relatively large. Among these are geometry, radial clearance, the 
presence or absence of grooves, pressure drop, fluid properties, 
inlet swirl velocity, surface roughness, and shaft speed. The 
general effects of varying these parameters on seal coefficients will 
be explored shortly. 

Almost all the bulk-flow models utilize the concepts of axial and 
circumferential Reynolds numbers. These quantities are defined by 
the following equations: 

where: 

Re, = 2 • p • v, • h / µ 

Re0 = p • R · w • h / µ 

Re,, = axial Reynolds number 
Re0 = circumferential Reynolds number 
p = fluid density (lbf-sec2/in4) 
v, == fluid axial velocity (in/sec) 
h = seal radial clearance (in) 
µ = fluid dynamic viscosity (lbf-sec/in2) 
R = shaft radius at seal (in) 
w = shaft speed (rad/sec) 

(30) 

(31) 

Per Childs (1993), typical axial Reynolds numbers exceed 
20,000, so seal axial flow is almost always turbulent. 

Black's Method 

The pioneering efforts .in the analysis of seal rotordynamic 
coefficients were performed by Dr. Henry F. Black of Herriott
Watt University (l 973, 1979). In a series of publications, Black 
developed a bulk-flow model for short seals. His analysis used the 
following assumptions: 

• The fluid circumferential flow is treated as fully developed
turbulent Couette flow. The fluid's circumferential velocity is
assumed to be constant throughout the seal at a value of one-half
of the shaft's surface velocity (R • w ).

• The above assumption implies that the pressure-induced circum
ferential flow is negligible compared with the shear-induced flow.
This limits the solution to short seals.

• The shaft is assumed to whirl in a circular orbit at small
eccentticities about the centered position.

• The ratio of the axial to circumferential Reynolds number is
large.

• The seal entrance loss coefficient, �, is constant, independent of
Reynolds number.

• The axial Reynolds number is high enough that the friction
factor may be treated as constant.

• There is no pressure recovery at the seal exit. Although Childs
(1993) discusses pressure recovery and defines an exit recovery
coefficient, in all his subsequent examples, he assumes it to be
negligible.

Black's equations are summarized by Diewald and Nordmann 
(1989) as follows: 

(32) 

The coefficients in the above equation are given by the following: 

where: 
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µ3 = 7r • R · oP I A-
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direct stiffness coefficient (!bf/in) 
shaft speed (rad/sec) 
average fluid dwell time in seal (sec) 
seal inlet loss factor 
shaft radius at seal (in) 
pressure drop across seal (psi) 
seal friction factor 
seal length (in) 
average axial velocity through seal (in/sec) 
seal radial clearance (in) 

(33) 

(34) 

(35) 

(36) 

(37) 

(39) 

Black recommends use of the following equation to determine 
the friction factor in turbulent flow (Rez > 4200): 

A-= .079 · Rez -.25 • [l + (7 • Re0 / (8 • Re,))2]-375 (40)

where the Reynolds numbers are given by Equations (30) and (3 l). 
The user interested in the friction factor equations for the rare cases 
of laminar and transition flow should see Barrett (1984). 

Using the same nomenclature, Black ( l  973, 1979) provides the 
following expressions for the remaining dynamic coefficients: 

k = .5 • µ3 • µ1 • w • T (41) 

C = µ3 • µ1 • T (42) 

c = µ3 . µz . w • T2 (43) 

M = µ3. µ2. T2 (44) 

m = 0 (45) 

The dimensionless coefficient, µ1, is obtained from the following: 

(46)
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where K2 is given by Equation (39) and K3 is defined as: 

It is seen from Equation ( 45) that Black considered the 
cross-coupled mass term to be iJTelevant. This assumption has been 
experimentally proven valid many times since and is the approach 
taken by the authors. 

Black's initial work concentrated on short seals. It has since 
become well known that short seal solutions tend to overestimate 
the dynamic coefficients of finite length seals. To address this, in a 
later publication, Black and Cochrane (1973) presented the 
following correction factors to use for finite-length seals: 

where: 

µ0act = µ0 / (1 + .29 • (L / R)2) 

µ 1act = µ 1 / (I + .23 · (L/ R)2) 

µ2act = µ2 / ( I + .06 · (L / R)2) 

µ0act = actual value of µ0 for finite-length seal 

(48) 

(49) 

(50) 

µ0 = value of µ0 obtained from previous equations (short seal) 

lf these corrections are made, all the preceding equations can be 
used to obtain approximate coefficients for finite-length seals. 

Subsequent to Black's work, a number of more refined 
bulk-flow analysis procedures were developed. A large number of 
them were the product of the work of Dr. Dara W. Childs at Texas 
A&M University, who has succeeded the late Dr. Black as the 
world's foremost authority on seal rotordynamics. Most of the new 
procedures, including those of Dr. Childs, used a similar 
progression of steps. First, a bulk-flow analysis would be used to 
derive the system's governing equations. Then a perturbation 
procedure is employed to compose a set of zeroth-order and 
first-order equations. The zero1h-order equations describe the 
steady-state case where the shaft is perfectly centered, while the 
first-order equations simulate a small circular orbit about the 
centered position. 

A numerical procedure would then be employed to solve the 
relevant equations to determine the complete pressure distribution 
in the seal for the dynamic case (the pressure distribution is 
uniform in the static case). This pressure distribution could then be 
integrated to obtain the net radial and tangential loads acting on the 
shaft. The above procedure would be repeated at constant speed for 
various whirl velocities, and the radial and tangential forces would 
be plotted as a function of whirl velocity. A linear least-squm·es fit 
is then used to determine the rotordynamic coefficients based on 
the relations of Equations (28) and (29). 

The major improvement that these second-generation methods 
provide over Black's procedure is a more accurate calculation of 
the circumferential velocity distribution within the seal. As stated 
previously, Black's method assumes a constant circumferential 
flow velocity of one-half of the shaft's surface speed. It has been 
since shown that a more accurate prediction of seal coefficients, 
particularly the cross-coupled stiffness, can be obtained if the 
circumferential flow distribution is modelled more rigorously. 
Nevertheless, almost all of the more rigorous analyses predict 
significantly lower cross-coupling stiffness values than does 
Black's. Black's analysis eJTs on the conservative side, since it 
predicts destabilizing forces that are higher than the actual values. 

Although most of the second-generation procedures cited above 
are more rigorous than Black's theory, almost all them suffer from 
one major disadvantage-they do not provide closed-form 
equations for the seal coefficients. Accordingly, many engineers of 
the authors' acquaintance routinely utilize the much simpler Black 
procedure for calculating seal coefficients. Although this is 
perfectly acceptable when dealing with short seals having a 
preswirl (v0 / (R • w)) of about 0.5, the user should be cautioned 

that the accuracy of the Black equations diminishes as the seal 
deviates from these assumed conditions. 

One of the few second-generation methods that does provide 
closed analytical expressions for the various coefficients is given 
by Childs (1983a). Unfortunately, the authors do not have any 
experience using these formulations. Additionally, in a subsequent 
publication (1983b ), Childs points out the shortcomings of this 
procedure (and Black's). 

Furthermore, both Barrett (1984) and Nordmann and Massman 
(1984) state that if Black's conservative assumption of constant 
swirl is applied to Childs' model, the results are very similar to 
those obtained from Black's theory. Additionally, a number of 
references, including Falco, et al. (1986), McLaughlin, et al. 
(1988), Looser, et al. (1988), and Marscher (1991) report 
successful experiences using Black's method. The authors have 
also successfully used the Black equations on a number of 
occasions. There are, thus, times when the Black method can be 
employed with satisfactory results. However, if the user elects to 
use this procedure, its limitations must always be kept in mind. 

Employment of the Black method or almost any other bulk-flow 
procedure requires the input of a value for the inlet loss coefficient, t 
A survey of the literature reveals that this parameter should be in 
the neighborhood of 0.1 to 0.5. Furthermore, Kim and Childs 
(] 987) suggest that the lower value be used for smooth seals and 
the upper limit for damper seals with roughened stators. 
Fortunately, several authors have noted that the rotordynamic 
coefficients are insensitive to variations in this coefficient over the 
specified range. 

If the user elects to use a procedure other than Black's, it is 
likely that a value for the inlet swirl velocity will also be required 
as input for the computer algorithm. Although this parameter 
obviously depends on the specifics of the configuration being 
studied, Flmjancic and McCloskey ( 1991) state that the swirl ratio 
(v0 / (R • w)) at the entrance to most wear rings is about .70 to .80. 
Additionally, Childs ( I 994) states that most interstage seals that 
are downstream of diffusers have inlet swirls that are negligible. 

In addition to the bulk-flow procedures, a few methods using 
computational fluid dynamic finite difference methods have also 
been published. The method of Dietzen and Nordmann (1986) is 
fairly representative of this class of procedures. In their procedure, 
the seal's flow region is divided into a grid. At each grid point, the 
Navier-Stokes equations are solved numerically using a k-E 
turbulence model to determine the pressure distribution. The 
coefficients are then obtained in the manner described above for 
the bulk-flow procedures. 

There is no question that the CFD methods are the most accurate 
available for determining the coefficients of seals having complex 
geometries. In addition to their ability to handle any geometry 
imaginable, they also do not rely on any empirical coefficients 
such as the entrance loss or friction factors that burden all the 
bulk-flow methods. However, the large amount of modelling and 
computing time required to utilize finite difference methods 
severely limit their practicality. 

Effects of Varying Seal Parameters 

Perhaps as important as having an accurate method for 
predicting seal coefficients is having a good understanding of the 
impact that varying the relevant seal parameters has on these 
coefficients. Regardless of which algorithm is chosen for 
evaluating coefficients, the user will find that the following trends 
are generally true: 

• As the length to diameter ratio is increased, k, C, c, and M all
increase monotonically. K increases until it reaches an optimum
LID ratio, after which it decreases. In very long seals, such as
balance pistons, K can become negative. In order to avoid this
undesirable trait, some pump manufacturers break up their
extremely long seals with deep circumferential grooves to create
several shorter seals (having positive direct stiffnesses) in series.
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• As the clearance to radius ratio increases, K and C both decrease
drastically. Thus, the rotordynamic performance and stability of a
machine degrades over time as the seals wear. Because of this,
most experts advocate analyzing rotordynamic behavior for a worn
seal case, in which the clearance is conservatively set to twice the
maximum design value. Childs (l 994) states that this worn seal
case yields typical reductions in direct stiffness and damping of 50
and 40 percent, respectively.

• Assuming the seal pressure drop is proportional to speed
squared, as speed is increased, both stiffness coefficients increase
with the square of speed, as was described in the Lomakin effect
discussion. Additionally, both damping coefficients increase at an
approximately linear rate. The direct mass coefficient is relatively
insensitive to speed changes. Since k increases more rapidly with
speed than does C, the stability characteristics of a seal decrease as
speed is increased.

• Increasing the seal pressure drop al a fixed speed generates
linear increases in K, k, and C. M and c are hardly affected by these
variations.

• Due to the proportional dependence of pump and seal pressure
difference on fluid density, all coefficients are affected by fluid
density changes in the same manner as described above for
pressure drop changes.

• Per Diewald and Nordmann (1989), increasing fluid temperature
reduces viscosity and results in lower direct stiffness. This effect is
normally of secondary significance.

• The cross-coupling stiffness coefficient, k, is approximately
proponional to the average circumferential flow velocity in the
seal. This circumferential flow can be generated in two ways. First,
ii is quite common for the fluid to have a positive swirl velocity
when it enters the seal. Additionally, friction between the rotating
shaft and the fluid acts to drag the liquid until it reaches its
asymptotic swirl velocity discussed above. Thus, reducing the
swirl velocity entering the seal reduces the cross-coupled stiffness
coefficient and helps to stabilize the seal. In fact, BatTett ( J 984)
states that under the proper circumstances, the cross-coupling
stiffnes, coefficient, k, can become negative. In this case, cross
coupling stiffness would act to stabilize the system.

• Increasing the ratio of axial to circumferential Reynolds number
tends to reduce cross-coupled stiffness and stabilize the system.
This relationship exists because higher axial Reynolds numbers
correspond to higher axial velocities that reduce the time available
for the rotating shaft to accelerate the fluid in the circumferential
direction.

• There is some evidence that providing a converging taper in the
flow direction can result in a substantial increase in direct stiffness.
Fleming (1977) describes test results that reveal substantial benefits
due to tapering. On the other hand, tests by Lindsey and Childs
( 1995) show little or no increase in direct stiffness due to converging
taper and demonstrate a substantial loss of stiffness due to
divergence. A diverging taper should never be employed. since even
a minuscule divergence can markedly reduce the direct stiffness.

Circumferentially grooved seals 

Seals having circumferential grooves arc commonly used in 
pumps, because the additional axial friction introduced by the 
grooving tends to reduce the leakage compared with that of a plain 
seal. There is a large diversity of opinion regarding the best method 
to clctennine the rotorclynamic coefficients of grooved seals. The 
one tenet that almost everyone agrees on is that the popular bulk
flow methods arc far less effective at calculating coefficients for 
grooved seals than they arc for plain seals. 

Prior to exploring methods for calculating their coefficients, it is 
instructive to summarize the general characteristics that are known 
about circumferentially grooved seals: 

• Implementation of grooved seals can significantly reduce
leakage compared with plain seals. In general, this attenuation
increases as groove depth increases up to a point, beyond which,
increasing depth has scant influence on leakage. Per Black and
Cochrane (1973), this point of diminishing returns occurs when the
groove depth equals the radial clearance.

• If there is any choice in the matter, the grooves should be placed
in the stator, not the rotor, since this provides a more stable
arrangement.

• Adding grooves to a plain seal drastically reduces the Lomakin
effect and the direct stiffness. Consequently, the difference
between wet and dry critical speeds tends to be much smaller if
grooved seals are employed. This loss of stiffness is clue to tbc
grooves providing greater communication between the
diametrically opposed sides of the shaft preventing the pressure
gradients from reaching the levels exhibited in plain seals.

• Grooved seals also generally have much smaller damping
coefficients than do plain seals.

• In line with the above two items, wear has a much smaller
degrading effect on rotordynamic performance if grooved seals arc
used.

• Adding grooves also lends to reduce cross-coupled stiffness.
Since direct damping is also decreased, a universal conclusion
regarding the relative stability of grooved versus plain seals cannot
be drawn. However, both Verhoeven (l 988) and Marquette, ct al.
(1997), present test results that reveal plain seals to possess much
larger effective damping values than grooved designs. Additionally, 
Marquette, et al. ( 1997), state that, in their experience, plain seals
usually enhance stability compared with grooved seals.

• [n general. the reduction in coefficients discussed above
increases as the grooves get deeper. This effect is most pronounced
for the direct stiffness and damping terms. The cross-coupled terms
arc affected to a lesser extent.

• Unlike plain seals, where the presence of the Lomakin effect
almost always generates positive direct stiffness, it is quite
common for grooved seals to exhibit negative direct stiffnesses.

• Adding grooves tends to impact the coefficients of long seals
much more than those of short seals. For instance, Black and
Cochrane (1973) state that adding grooving to a balance piston can
easily reduce the direct stiffness by an order of magnitude.
Conversely, adding grooves to neck 1ings is unlikely to alter the
stiffness by more than a factor of two.

• Seals having very shallow grooves can be treated as plain seals.
The same is true for those having deeper grooves that only occupy
a small percentage of the seal's axial length.

• Using a three-dimensional computational fluid dynamics
analysis, Dietzen and Nordmann (1988) have shown that the
pressure losses across each land in a grooved seal arc about equal,
as would be expected. However, they also discovered that the
contributions to the rotordynamic coefficients made by each land
are quite different.

• Dietzen and Nordmann (1988) also found that despite the fact
that the groove regions contribute less to the coefficients than do
the land regions, the contributions of the grooves cannot be
ignored.

One of the complicating factors in analyzing grooved seals, 
aside from the obvious geometrical one, is the fact that the 
frictional characteristics of the grooved surface are direction 
dependent. The grooved surface behaves as a rough surface in the 
axial direction since the flow must pass over the grooves, while it 
acts like a smooth surface for the circumferential flow. 

A simple method advocated by Marenco (1988) for dealing with 
grooved seals is to treat them as a series of plain seals. The total 
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seal pressure drop can be divided by the number of lands to 
determine the pressure drop across each land. The coefficients for 
each land can then be calculated using the plain seal methods of the 
last section and added together to obtain an approximation for the 
overall seal coefficients. Unfortunately, Atkins, et al. (1985), have 
demonstrated that this relatively simple procedure underpredicts 
all coefficients to an unacceptable degree. 

Another simple method is to ignore the grooves entirely and 
treat the seal as a plain seal whose length is equal to the sum of the 
land widths. As might be expected, Atkins, et al. (1985), found this 
method to be unsatisfactory also. 

Black and Cochrane (1973) suggest converting each groove into 
an equivalent length of plain seal using the following: 

a= .875 · Re0 / Re,

where: 

Lcq = equivalent length of plain seal for groove (in)
a = Reynolds number ratio 
c1 = seal radial clearance (in) 
c2 = radial distance from shaft to bottom of groove (in) 
Lg groove length (in) 

(52) 

In calculating c2, if the groove depth exceeds four times the
radial clearance, c1, a groove depth of four times the radial
clearance should be used in the above equations. The total 
equivalent length of the seal should then be obtained by summing 
the equivalent lengths for all grooves with the actual lengths of all 
lands. The seal coefficients can then be obtained using the Black 
plain seal equations on a plain seal having the total equivalent 
length. Atkins, et al. (1985), also found this method of modelling 
grooves to be somewhat wanting. Although the authors agree that 
it is far from optimum, they have successfully used this procedure 
for grooved seals on occasion. 

A completely different approach to grooved seals is presented by 
Kilgore and Childs ( 1989), which is based on an analysis 
procedure of Nordmann, et al. (1986). This procedure used two 
different geometries for the axial and circumferential flows. The 
axial flow is simply assumed to flow in the seal's annular passage 
with the grooves ignored. For the circumferential flow, they 
converted the grooved geometry into an equivalent plain seal with 
a large radial clearance by using the following equation: 

where: 

Ceq = equivalent groove depth (in) 
C

., 
= actual groove depth (in) 

L; groove axial length (in) 
LL land axial length (in) 

(53) 

The equivalent groove depth calculated using the above relation 
accounts for the larger circumferential flow path provided by the 
grooves. The equivalent radial clearance is then obtained by adding 
the equivalent groove depth to the actual radial clearance. The seal 
coefficients are then solved for using the procedure of Nordmann, 
et al. (1986). 

By comparing the results of this model with experimental data, 
Kilgore and Childs (1989) concluded that it was the best means 
available at the time for modelling grooved seals, outside finite 
difference techniques. Unfortunately, they also found that the 
correlation between its predicted results and test data deteriorated 
badly as running speed increased. Additionally, the model's 
implementation is quite cumbersome and is not recommended for 
practical use. Furthennore, since the plain seal geometries are 
different for the two flow directions, there is no good way to use a 
plain seal algorithm, such as Black's, on the equivalent seal. 

Florjancic and McC!oskey (1991) considered a serrated seal to 
be made up of three distinct fluid regions. These regions are the 
annular space adjacent to the land, the annular space adjacent to the 
groove, and the groove itself. They modelled the axial flow within 
the groove as a single vortex. Childs ( 1993) points out that the 
single vortex assumption is only valid for grooves having depth-to
width aspect ratios of about 1.0. Nevertheless, Childs (1993) states 
that the three volume method is reasonably effective. 

Marquette and Childs (1996) improved the three-volume 
approach by changing the boundary in the groove area from the 
housing bore radius to an angled line representing the borderline 
between the diverging through flow and the v01tex flow in the 
groove. They demonstrate their model's effectiveness via 
comparison of its results to test data. Although these three-volume 
fonnulations are undeniably accurate, their major drawback is that 
they cannot be manipulated to yield closed-form expressions for 
the coefficients and must be solved numerically. As is the case for 
most seal models, their implementation is far from trivial. 

In conclustion, there are no outstanding practical methods for 
handling grooved seals. Because of the difficulty inherent in 
implementing the more recent procedures, the authors have most 
often used Black's relatively simple method, employing Equations 
(51) and (52), tempered with plenty of caution and design margin.
The less experienced user is advised to employ one of the more
sophisticated procedures, if available, and relegate the Black
method to a fallback position.

Helically Grooved Seals 

The other 1m�jor class of annular seals commonly util.ized in 
pumps is the helical or spiral grooved seal, depicted in Figure 17. 
The calculation of the coefficients for these seals is even more 
difficult than for those with circumferential grooves. Childs (I 993) 
goes as far as to say that, other than finite difference techniques, 
there are no satisfactory means for calculating the coefficients of 
these seals. Once agai.n, it is worthwhile to explore the known 
characteristics of these seals, most of which are taken from Childs, 
et al. (l 990): 

• Helical grooves have been used on the stator, the rotor, or both
at the same time. Reg,mlless of where they are located, the groove
helix. direction is always selected so as to oppose fluid rotation in
the direction of rotor rotation. By doing this, shaft rotation acts to
pump fluid in the upstream axial direction, thereby reducing the
total leakage of the seal.

• As is the case with circumferentially grooved seals, placing a
helical groove in the stator yields a more stable design than if the
groove were located in the rotor. The option where both parts are
grooved, often referred to as a screw seal, is also not as stable as
the grooved stator arrangement.

• Like circumferentially grooved seals, all rotordynamic
coefficients of helically grooved seals are much smaller than those
for a plain seal having the same design parameters.

• If the helix angle, 0, is defined as depicted in Figure 17, leakage
increases as helix angle increases, in accordance with intuition.

• As long as a reasonable helix angle is employed, helically
grooved seals leak less than plain seals. Once the helix angle
exceeds about 30 degrees, the grooved seals leak more.

• The effective net damping (C - k • w) is relatively insensitive
to helix angle changes.

• Screw seals almost always exhibit negative direct stiffness.

There is a dearth of information on the subject of determining
rotordynamic coefficients for helically grooved seals. One of the 
few methods found for handling these seals was presented by 
Iwatsubo, et al. (1986). Unlike the vast majority of calculation 
algorithms, they present closed-fonn expressions for each of the 
rotordynamic coefficients. Their expressions are derived for the 
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Figure 17. Helically Grooved Seal. 

unfavorable case where the groove is located in the rotor. There is 
nothing said about the applicability of these expressions for the 
more common scenario where the stator carries the groove. Since 
the authors have no personal experience with this procedure and 
are not acquainted with anybody who has, they are in no position 
to recommend its use at this time. 

Determination of rotordynamic coefficients for hel icaI!y 
grooved seals is a dilemma that the authors do not pretend to have 
a practical solution for. Other than finite difference techniques, the 
authors do not know of any proven procedures for handling these 
types of seals at this time. 

Instability 

Since seals have nonzero cross-coupling stiffoess coefficients, 
they, like journal bearings, are potential instigators of unstable 
whirling. Since the instability mechanism is quite similar to that of 
journal bearings, the instability threshold speed is also normally 
twice the first critical speed. 

Childs (1994) verifies the existence of half-speed whirl more 
rigorously. From Equation (29), the net tangential load acting on 
the shaft within a seal is given by: 

where: 

Ft = tangential force acting on shaft (!bf) 
A = radius of circular whirling orbit (in) 
k = cross-coupled stiffness coefficient (]bf/in) 
C direct damping coefficient (lbf-sec/in) 
D = whirl frequency (rad/sec) 

lntroducing the following two parameters: 

Dw = k /(C•w) 

f = D/w 

where: 

w = rotating speed (rad/sec) 
f = whirl speed ratio 

Equation (54) can now be rewritten in the following form: 

(54) 

(55) 

(56) 

(57) 

As discussed earlier, the system will be stable if the net 
tangential force is negative. From the above equation, this is true if 
f I Dw is greater than 1.0. This can be rearranged as follows: 

(58) 

Since the whirling frequency is equal to the critical speed, wn, the 
above expression can be reatranged to form the following equation 
for threshold speed: 

where: 

w
1
h = threshold speed (rad/sec) 

w
11 

= first critical speed (rad/sec) 

(59) 

It can be shown that, for most practical designs, the seal 
rotordynamic coefficients are related so as to make Dw around 0.5. 
Consequently, it is seen from the above equation that the threshold 
speed for seals is approximately twice the first critical speed. 
However, there m·e design routes that can be taken to significantly 
reduce Dw and raise the threshold speed. 

The parameter, nw, obtained from Equation (55), is known as 
the seal's whirl speed ratio, since it provides an approximate value 
for the ratio where the seal first becomes unstable. If a more exact 
expression for the whirl speed ratio is desired, Equations ( 18) and 

(19), which were previously given for journal bearings, can also be 
used for seals. As is the case for bearings, the whirl speed ratio of 
a seal is a pure function of its eight stiffness and damping 
coefficients. 

The above treatment is a bit of an oversimplification, since it 
neglects the role played by the seal's radial force. The radial force 
also impacts stability since a negative direct stiffness tends to 
encourage a growth in orbit radius that facilitates instability, while 
a positive value does the opposite. Since the role played by the 
radial force is dwarfed by that of the tangential force, any attempts 
to stabilize a system should be focused on reducing the net 
tangential force. 

The most straightforward means for stabilizing seals is to 
reduce or eliminate the inlet swirl to decrease the destabilizing 
cross-coupling stiffness. One of the most effective ways of 
accomplishing this is via placement of a swirl brake at the inlet 
of the seal. A typical swirl brake, depicted in Figure I 8, taken 
from Massey ( 1985), is merely a series of axial slots placed at the 
inlet to the seal. These slots greatly increase the friction 
experienced by tbe circumferential flow and reduce any inlet 
swirl that is present to nearly zero. Since balance pistons are 
more likely to cause stability problems than are wear rings or 
interstage seals, they are the seal type that is most often equipped 
with swirl brakes. 

Figure 18. Swirl Brake. 

Another method of improving stability is through the use of a 
so-called damper seal, whose development is attributable to von 
Pragenau (1982). It has been shown by many researchers that, 
regardless of the inlet swirl, the circumferential velocity will 
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asymptotically approach a predetermined value as the flow 
proceeds axially through the seal. Furthermore, if the rotor and 
stator are equally smooth, this asymptotic value is .5 • R • w, which 
is merely the average of the shaft's and stator's surface velocities. 

If the rotor and stator have different roughnesses, the asymptotic 
value is altered. If the rotor is rougher than the stator, rotor friction 
becomes dominant, and the rotor has a greater influence on the 
flow velocity than does the stator. Consequently, the asymptotic 
velocity becomes greater than the mean value stated above. This is, 
obviously, undesirable from a stability standpoint. 

On the other hand, if the stator's smface roughness exceeds that 
of the rotor, the opposite effect occurs, and the asymptotic velocity 
is less than .5 • R • w. This decreases the average swirl within the 
seal and results in a more stable design. From a theoretical 
standpoint, deliberately roughening up the stator surface should 
result in a more stable design. 

This principle has been demonstrated in tests and is the 
mechanism by which damper seals work. This principle is much 
more effective in long seals than in short ones because of the 
greater zone of influence of the stator. Although damper seals are 
inherently more stable than smooth seals; they also come with the 
disadvantage that they often are not able to match the direct 
stiffness of smooth seals. 

Childs and Kim (1985) tested several configurations to 
detennine the most effective means for providing a roughened 
stator surface. They found that using round holes in the stator 
provided the most effective damping while maintaining the direct 
stiffness c .lose to that of a smooth seal. In a fol!owup paper, Childs 
and Kim (1986) reported on experiments to determine the optimum 
hole size, pattern, spacing, etc. They found that the optimum 
damper seal had a 37 percent increase in net damping, a 46 percent 
reduction in leakage, and a 23 percent reduction in direct stiffness 
compared with smooth seals. 

Both of the preceding fixes have been found to be effective 
antidotes to instability problems. Of course, the use of swirl brakes 
is only effective if the seal has a significant prerotation. If a seal 
has a stability problem at a condition where the inlet swirl is zero, 
the damper seal approach should be pursued. 

Unloading of Bearings 

One of the side effects of the load-carrying capacity of seals that 
is not often cited in the literature is their tendency to reduce the 
loads taken by the bearings and reduce the bearing coefficients. As 
was discussed earlier, the normal procedure for calculating static 
beating loads is to apply all the static loads to the system and 
assume they are reacted out at the bearings. For instance, in the 
simple Jeffcott rotor of Figure I, the bearing coefficients would be 
calculated by assuming that each bearing carries one-half of the 
total rotor weight. 

If seals having significant direct stiffnesses are introduced into 
the system, their load capacity can result in a reduction in the loads 
taken by each bearing. Although this may have little impact on the 
coefficients of rolling element bearings, the impact on journal 
bearing coefficients can be dramatic. Since journal bearing 
coefficients increase monotonically with applied load, this load 
reduction can yield a substantial decrease in their coefficients. In 
fact, Verhoeven (1988) states that the presence of plain seals can 
reduce bearing loads to as little as five percent of their normal 
values. 

Verhoeven (1988) provides a procedure for determining bearing 
loads when seals are present. As in the conventional procedure, the 
rotor should be modelled as a beam with all static loads applied. 
The supports should be treated as linear springs located at all 
bearings and seals. An iterative procedure, necessitated by the 
nonlinear force-deflection characteristics of fluid-film bearings, is 
then used to determine the loads at all supp011s. 

Since the direct stiffnesses of seals are essentially independent 
of their loadings, their values are held constant throughout the 

procedure. Iteration is used only on the bearing stiffnesses. 
Basically, guess values are input for the bearing stiffnesses, and the 
resulting load distribution is computed. The resulting bearing loads 
are then compared with those that correspond to the assumed 
bearing stiffnesses. The bearing stiffnesses are continually varied 
until a load distribution that yields bearing loads consistent with 
those needed to generate the assumed bearing stiffnesses is found. 

The above time-consuming procedure must be repeated for each 
speed for which bearing coefficients are desired. To avoid these 
cumbersome calculations and the potential problems related to 
lightly loaded bearings, Verhoeven (1988) recommends that a 
manufacturing procedure known as "sag boring" be implemented. 
In this procedure, the seal bores are intentionally machined 
eccentric to the bearing bores in the vertical direction according to 
the rotor's deflected shape under static loading to ensure that the 
seals do not take any of the static loading. Frei, et al. ( 1990), state 
that this is standard procedure in the manufacturing of boiler feed 
pumps. If done correctly, this process results in the bearings taking 
the full brunt of the static loading and is strongly advocated by the 
authors. 

IMPELLER/DIFFUSER INTERACTIONS 

Similar to the situation in annuhir seals, fluid-structural 
interactions at the interface between a centrifugal pump impeller 
and its vo lute or diffuser can have profound effects on a system's 
rotordynarnic behavior. Like seals, their effects are usually 
accounted for via dynamic stiffness, damping, and mass 
coeffici.ents. Unlike seals, the net effect of these interactions is 
usually to lower the system's effective stiffness, critical speeds, 
and stability margin. In fact, Pare, et al. (1986 ), showed that when 
impeller forces were included in their rotordynarnic model, both 
the critical speeds and the net system clamping decreased. 

There are two primary sources of these interaction forces. The 
first is nonuniformity in the static pressures and momentum fluxes 
in the radial clearance space between the impeller tip and its 
surrounding volute or diffuser, due to asymmetries and 
eccentricities. The second is the nonuniform pressure distribution 
and swirling flow produced by leakage in the clearance between 
the impeller's front shroud and its mating casing. 

Rotordynamic Coefficients 

As with annular seals, the dynamic forces generated by an 
impeller can be modelled using conventional rotordynamic 
coefficients. The coefficient matrices have been shown to be skew 
symmetric, as is the case with seals. The impeller force equation is: 

[
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][
1 

[
C cl[xl [ M m][xl 

[
-Fo,l

-FYJ
= -k K yj 

+ 

-c C y j 
+ 

-m M Yj
+ 

-F0l60
)

where: 

y 
Fox 
Foy 
K 
k 
C 
C 
M 
m 

= dynamic force acting on shaft in x-direction (lbf) 
= dynamic force acting on shaft in y-direction (!bf)

displacement in x-direction (in) 
= displacement in y-direction (in) 
= static force acting on shaft in x-direction (]bf) 

static force acting on shaft in y-direction (!bf) 
direct stiffness coefficient (]bf/in) 
cross-coupling stiffness coefficient (lbf/in) 
direct damping coefficient (lbf-sec/in) 
cross-coupled damping coefficient (]bf-sec/in) 
direct mass coefficient (lbf-sec2/in) 
cross-coupled mass coefficient (lbf-sec2/in) 

The above equation is similar to that for annular seals with a 
couple of exceptions. First, the static loads, Fox and Foy, represent 
radial forces that are present regardless of whether or not the shaft 
is whirling. These forces are present because the circumferential 
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pressure distributions in most volutes and diffusers are not 
uniform, due to flow asymmetry. The resulting radial loads are 
sometimes beneficial, especially in the case of vertical pumps, 
since they always keep the bearings loaded. Secondly, the cross
coupled mass term, m, is retained since its magnitude is not always 
insignificant. 

As was done for seals, the net radial and tangential loads acting 
on the impeller when it is whirling in a circular orbit can be 
expressed by Equations (28) and (29). Thus, the impact that the 
various coefficients have on the system are the same as for seals. It 
should be noted from Equation (29) that positive values of m yield 
tangential forces that oppose forward whirling and are, thereby, 
stabilizing. 

General Characteristics 

Very little is known regarding the influence of vadous impeller 
geometric parameters on the impeller coefficients. However, the 
following trends are generally accepted to be true by most experts 
in the field: 

• The direct stiffness coefficient, K, is almost always negative.
Impellers are sometimes said to exert an "anti-Lomakin effect" on
the shaft, which lowers the critical speeds.

• Coefficients C, c, and M are always positive. Converse.ly, k and
m can have either sign.

• Because an impeller and volute or diffuser can be designed to be
in perfect hydraulic alignment at only one flowrate (usually best
efficiency point or BEP), the rotordynamic coefficients are strong
functions of the flow passing through the impeller. As the flow
moves away from BEP, adverse flow patterns in the flow passages
cause the impeller's destabilizing forces to get larger, especially at
low flow rates. Per Childs (1993 ), there is some evidence that
suggests that the dynamic coefficient model of Equation (60) is
inadequate for representing the forces generated at low flows.

• The static radial force on the impeller also increases markedly as
the pump moves away from BEP. Brown (l 975) cites an actual
case where the static load increased by a factor of seven when flow
was reduced from BEP to 20 percent of BEP flow. 

• The impeller coefficients and static radial force arise not only
due to interactions between the impeller and diffuser or vo.lute, as
was once believed, but also due to forces in the shroud region.
Bolleter, et al. ( 1989), and Guinzburg and Brennen (1993) have
shown that interactions across the angled gap between a shrouded
impeller and the casing can generate forces that are at least as large
as those produced at the radial impeller/diffuser gap. Additionally,
Childs (1993) states that shroud forces are comparable to impeller
forces when the shroud clearances are large and can dominate the
impeller forces when clearances are tight.

• The magnitudes of the forces generated at the shroud interface
aTe heavily dependent on the clearance between the shroud and
casing. Increasing this clearance drastically reduces the interaction
forces. Guinzburg and Brennan (1993) have shown that these
forces are approximately inversely proportional to shroud
clearance.

• By the same token, increasing the radial clearance between an
impeller and its volute or diffuser results in a substantial reduction
in the force generated at that interface.

• Jery, et al. (1985), found, via testing, that the presence or
absence of diffuser vanes and variation of their number and
location had almost no effect on the measured impeller
coefficients.

Static Radial Force 

Nelik and Jackson (1995) provide the following equation for 
estimating the static radial load at an impeller: 

where: 

FRO = 

kR = 

s = 

H = 

D2 = 
bz = 

Q = 

QBEP = 

static radial load on impeller (]bf) 
flow factor for single volute 
fluid specific gravity 
impeller head rise (ft) 
impeller outside diameter (in) 
impeller exit width, including shrouds (in) 
impeller flow (gpm) 
impeller flow at BEP (gpm) 

(61) 

(62) 

The above expressions are only applicable for single volute 
casings. If a double volute design is employed, the radial load will 
be reduced. 

Determination o
f 

Coefficients 

Unlike seals, there are no good algorithms known to the authors 
for calculating the dynamic coefficients of impellers as a function 
of impeller/diffuser geometry. Even computational fluid dynamics, 
which can always be used to determine coefficients for seals if the 
user is willing to invest sufficient time, is not always an alternative. 
The number of factors that must be accounted for in order to obtain 
an accurate calculation makes the model much more complicated 
than that required to analyze most seal configurations. The 
associated modelling time can be prohibitive. 

From a practical standpoint, the authors consider the use of 
published test data to be the best currently available method for 
determining impeller coefficients. In order to make use of the test 
data, one must use the normalized coefficients of Bolleter, et al. 
( 1987), which are defined as follows: 

K* = KI (B · w2) 

k * = k / (B . w2) 

C* =CI (B · w) 

c*=c /(B·w) 

M* =M / B 

m* = m / B 

2 B = 'IT • R2 • b2 • p 

where: 

K* = normalized direct stiffness coefficient 
K = dimensional direct stiffness coefficient (lbf/in) 

impeller outside radius (in)R2 = 
b2 

p 
w 

=
= 

= 

impeller axial width at discharge (in) 
fluid density (lbf-sec2/in4) 
rotational speed (rad/sec) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

These nondimensional coefficients are dependent on impeller 
and casing geometry, clearances at the impeller shroud and tip, 
flow Reynolds numbers, the ratio of flow to BEP flow, and several 
other parameters. Nevertheless, these coefficients are useful 
because they account for changes in speed, impeller diameter and 
width, and fluid properties. 

The procedure advocated by the authors for determining 
coefficients consists of first finding data for the test impeller that 
best matches the design under consideration, paying particular 
attention to the clearances. These data should then be conve1ied 
into dimensionless coefficients using the above equations. These 
coefficients should then be combined with the actual impeller's 
design dimensions and speeds to calculate the dimensional 
coefficients from the above equations. 
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Some of the potential sources of usable test data include 
Bolleter, et al. (1989), Jery, et al. (1985), Bolleter, et al. (1987), 
Jery, et al. (1984), Buehlmann, et al. (1988), Guinzburg, et al. 
(1994), Sivo, et al. (1993), and Uy, et al. (1997). Childs (1993) 
provides a good summary of the work done and the 
nondimensional coefficients found by many of the above 
researchers. For impellers having large clearances, he cites the 
following representative data from Jery, et al. ( 1985): 

K * = -2.5,k * = 1. l.C *=3.14, c *=7.9 I ,M*=6.51, m * = -0.58 (70) 

On the other hand, Childs (1993) provides the followina 
coefficients as being representative of close clearance design;, 
from Bolleter, et al. ( l  987): 

K * = -4.2, k * = 5. l, C .,, = 4.6, c * = 13 .5, M * = 1 l.0, m * = 4.0 (71) 

The authors are in agreement with Childs (1993) that most 
practical impellers will possess coefficients lying somewhere 
between the above two extreme cases. 

lnstahi lity 

Like the fluid interactions that occur at bearings and seals, 
impeller interactions can lead to instabilities in the system. There 
is some experimental evidence that indicates that the primary 
driver of these instabilities is the interaction occurrina in the 
shroud region. Unlike the other two destabilizing mechanf,ms, the 
whirling does not necessarily begin at one-half of rotational speed. 
Marenco (1988) states that recirculating flow in the impeller tip 
and shroud regions can create velocity and pressure fields that 
rotate at anywhere from 70 to 90 percent of running speed. These 
rotating fields can easily instigate subsynchronous whirling at 
those whirl ratios. Florjancic and McCloskey (1991) concur, 
stating that those whirl speed ratios are typical for high energy 
pumps. Finally, Massey (1985) cites a case in wbich a centrifugal 
pump whirled at 70 percent of running speed and states that typical 
whirl frequency ratios due to impeller/diffuser interaction effects 
are .70 to .80. 

It is clear from the above that subsynchronous whirling in 
pumps is not limited to whirl frequency ratios below .50. 
Furthermore, Smith, et al. ( J 996 ), report a case in which their 
pump exhibited supersynchronous whirling at 130 percent of 
running speed with the instability being attributed to the impeller. 
This experience is a real eye-opener since most rotordynamicists 
with backgrounds in gas processing turbomachinery believe that 
unstable whirl is strictly a subsynchronous phenomenon. Their 
general belief that their system will be free from instabilities if they 
can ensure that the first critical speed is above operating speed is 
apparently not always valid for pumps. 

These referenced incidents and others like them have convinced 
the authors to modify their normal procedure for designing against 
instabilities. As stated earlier, because compressors and turbines 
generally experience whirl ratios below .50, the authors perform a 
stability analysis on pneumatic turbomachinery only if the 
operating speed is more than twice the first critical speed. If this 
criterion is not met, whirl ratios of .50 or lower cannot be achieved 
and a stability analysis is not generally necessary. In light of the 
much larger whirl speed ratios that can occur in pumps, the authors 
recommend that a stability analysis be performed for all pumps, 
regardless of the relationship between the first critical speed and 
operating speed. 

In the event that good rotordynamic coefficients are not 
available for the impellers being designed, Smith, et al. (1996), 
p�ovide the following approximate equation for the cross-coupled 
stiffness at a given impeller, which is an extrapolation of their 
aerodynamic loading equation for compressors: 

k = -6300 • HP I (N · D • h) (72) 

where: 
HP = power generated by that impeller stage (hp) 
N shaft speed (rpm) 
D = impeller outside diameter (in) 
h = minimum restrictive dimension in flow path (in) 
Per Wachel, et. al (1995), the parameter, h, in the above 
formulation is usually the smaller of the impeller tip width and the 
diffuser width. 

As is the case with seals, impeller-triggered instabilities are 
primarily produced by swirling flows in the tight clearance areas. 
Swirl brakes have often been successfully used with impellers to 
resolve instability problems. These devices are typically 
implemented in the fonn of meridional slots or ribs in the casing 
adjacent to the impeller's front shroud. The effectiveness of swirl 
brakes placed in this location is a further testament to the large role 
played by the shroud interaction forces in determining the system's 
behavior. Sivo, et al. (1993), describe a case that illustrates the 
effectiveness of placing swirl brakes in the shroud region. 

FLUID IMMERSION EFFECTS 

In addition to seals and impellers, there is a third mechanism by 
which fluid-structural interactions impact pump rotordynamic 
behavior. This effect occurs in any location where the pump shaft 
is submerged in liquid. In such locations, when the shaft vibrates, 
it must move a certain mass of liquid along with it. An added mass 
effect takes place that acts to lower the natural frequency. 
Additionally, since the shaft is forced to vibrate through the liquid, 
a certain amount of damping results due to drag and squeeze film 
effects. 

These phenomena are most potent for the case of a shaft 
whirling within a long, thin liquid-filled annulus. A prominent 
example where this model is applicable is a submerged motor 
rotor. Per Black ( l  979), this configuration, at first glance, appears 
to resemble a very weak journal hearing. After all, the liquid is 
usually much less viscous than normal lubricating oils, and the 
radial clearance is normally an order of magnitude greater than that 
of journal bearings. 

Two factors make this analogy misleading. First, the Reynolds 
numbers of the flows in these annuli are normally very high, 
rendering the flows highly turbulent. This canses the fluid's 
effective viscosity to greatly exceed its actual value. Secondly, 
fluid inertia effects that are usually negligible in bearings are the 
dominant contributors to the dynamic forces generated in these 
clearance spaces. 

Annular seal models are also unsatisfactory for representing 
these configurations, since the axial flows in these annuli are 
usually very small. These configurations require a special model of 
their own. 

The added mass effect can be evaluated by considering the case 
of lateral vibration of a beam within a long, thin, liquid-filled 
annulus. It is well known that such an arrangement will 
demonstrate a lower natural frequency than the same beam 
vibrating in air, due to the attached mass effects of the liquid. Fritz 
(1970a) provides the following equation for the attached 
hydrodynamic mass: 

(73) 

where: 
mL = added hydrodynamic mass due to immersion in liquid (lbm) 
p = liquid density (lbm/in3) 
R annulns outside radius (in) 
L annulus length (in) 
h = annulus radial clearance (in) 
For such a system, the natural frequency is simply calculated by 
using the appropriate beam equation with a mass equal to the sum 
of the beam and hydrodynamic mass. 
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The above equation was derived for the case of no axial leakage, 
which implies that the seal is very long. The presence of axial 
leakage has a tendency to lower the hydrodynamic mass. For an 
extremely short annulus, Fritz (1970b) provides the following 
equation: 

m, = p • '1T • R • L3 / (12 • h) (74) 

Additionally, Fritz ( 1970b) gives the following expression for the 
intermediate case between the above two extremes where both 
tangential and axial flows are relevant: 

(75) 

where: 
m1 = hydrodynamic mass for intermediate length annulus (lbm) 
mL = hydrodynamic mass for long annulus from Equation (73) (lbm) 
D = annulus outside diameter (in) 

The above expressions are for lateral vibration, not whirling. 
Fritz (1970a) proceeds to show that for the case of a shaft whirling 
within a long, thin, liquid-filled annulus, the effects of the liquid 
are much less. More precisely, the added mass for whirling is one
quarter of that for lateral vibration, per the following: 

where: 
ma = added mass due to liquid for whirling motion (lbm) 
mh = added mass due to liquid for lateral vibration (lbm) 

(76) 

Using this, the undamped natural frequency for a submerged 
whirling rotor is: 

where: 

Wn 
k = 

M = 

ma =

undamped natural frequency (rad/sec) 
effective stiffness of system (]bf/in) 
total rotor mass (lbf-sec2/in) 
hydrodynamic mass (lbf-sec2/in) 

(77) 

Since the added mass for lateral vibration is significantly 
different from that for whirling, this is one case in which the lateral 
natural frequency of a vibrating beam gives a poor approximation 
of the whirling shaft's natural frequency. 

Black (1979) notes that in many practical machines, the 
hydraulic added mass can be as large as an order of magnitude 
greater than the rotor mass. Accordingly, fluid immersion can 
reduce the natural frequency by a factor of two. 

Since the hydrodynamic mass will exert a centrifugal force that 
is directly proportional to the shaft's radial deflection at the mass's 
location, the mass can be viewed as a linear spring having a 
negative stiffness coefficient. This is analogous to the prior 
conversion of the stiJfoess due to the Lomakin effect into an 
effective negative mass. Per Black (1979), the direct stiffness 
coefficient resulting from this phenomenon is given by: 

where: 
Kf direct stiffness due to fluid immersion (lbf/in) 
ma = hydrodynamic mass (lbf-sec2/in) 
w = rotational speed (rad/sec) 

(78) 

Chen and Ku (1990) provide a simple explanation for this 
negative spring effect. If, for instance, the rotor moves radially 
upwards within the annulus, it displaces some of the liquid, thereby 
generating a centrifugal flow.• Additionally, it creates an 

asymmetric gap distribution, with the gap being largest below the 
shaft. Per the continuity equation, the circumferential velocity 
above the shaft, where the gap is smallest, must be greater than that 
below it. Due to the Bernoulli effect, the static pressure below the 
shaft will exceed that above it. Consequently, a net upwards 
pressure load is exerted on the rotor. Since this force is in the same 
direction as the original displacement, the fluid acts like a negative 
spring. 

In addition to the negative direct stiffness, Chen and Ku (1990) 
also show that the liquid generates a positive cross-coupling 
stiffness, which is given by the following expressions: 

where: 

kr = 6 • '1T • f.Le • L , w • R 3 / h3 

f.Lc = .0053 • µ • Rei?5 

kr = cross-coupled stiffness due to fluid immersion (lbm) 
f.Le = effective turbulent viscosity (lbf-sec/in2) 
R annulus outside radius (in) 
L = annulus length (in) 
h = annulus radial clearance (in) 
µ = actual liquid viscosity (lbf-sec/in2) 
Re0 circumferential Reynolds nlllnber (per Equation (31)) 
w = rotational speed (rad/sec) 

(79) 

(80) 

1n addition to the stiffness coefficients discussed above, a fluid 
annulus also has damping and mass coefficients associated with it. 
Black (1979) shows that Equation (27) can be applied to an 
annulus and that the remaining coefficients are given by the 
following expressions: 

Cf = 4 • ma· w 

mr = 0 

where: 

(81) 

(82) 

(83) 

(84) 

Cr = direct damping coefficient clue to fluid immersion 
([bf-sec/in) 

cr = cross-coupled damping coefficient due to fluid immersion 
([bf-sec/in) 

Mr = direct mass coefficient due to fluid immersion (lbf-sec2/in) 
rnr = cross-coupled mass coefficient due to fluid immersion 

(lbf-sec2/in) 
Fritz ( 1970a) provides more rigorous expressions for the 

damping coefficients, in terms of empirical friction factors, derived 
by considering the possibility of Taylor vortices being formed 
within the annulus. For all practical purposes, however, the authors 
consider Black's expressions to be satisfactory. 

Fluid immersion effects can, therefore, be included in a model 
via dynamic coefficients in the same manner as beaiings and seals. 
The question then arises as to where on the rotor these stiffness and 
damping coefficients should be applied. To a large extent, this is a 
matter of judgment. The authors recommend dividing long annuli 
into sections, calculating the dynamic coefficients at each section, 
and applying them at the section centroid. When selecting the 
segments to use, the shaft's mode shapes should be consulted to 
ensure that the coefficients are being applied in regions of 
significant motion. 

Since liquid-filled annuli possess cross-coupling characteristics, 
they are yet another potential source of instability in the system. 
Both Black (1979) and Fritz (1970a) show that the normal unstable 
whirl speed ratio is 0.5. Annuli are similar to seals and bearings in 
this respect. 
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All the above expressions have been derived for the special case 
where a portion of the shaft is enclosed in an annulus filled with 
liquid such as a submerged motor. For the more general case where 
a rotor is submerged in a large cavity filled with fluid, such as a 
vertical pump rotor suspended in a large liquid-filled cavity, Nagy 
and Chen (1984) recommend using the amount of fluid displaced 
by the shaft as the attached mass. The added mass can be 
calculated from the following: 

madd = p . 1T • R2 • L

where: 

madd = added mass due to liquid immersion (lbm) 

p = fluid density (lbm/in3) 
R = shaft radius (in) 
L = length of shaft immersed in fluid (in) 

(85) 

Unfortunately, the authors are not aware of any methods, short 
of a full-blown fluid-structure interaction finite element analysis, 
for determining the damping in such configurations. Since the fluid 
damping effects in such situations are known to be much smaller 
than those of liquid-filled annuli, the authors recommend that the 
damping in these configurations be ignored and that the 
immersion's impact on the system be accounted for via the added 
mass effect only. 

HYDRAULIC EXCITATIONS 

The previous sections have all discussed hydraulic forces that 
act on the rotor and can be represented by rotordynamic 
coefficients. These forces are proportional to the rotor's 
displacement, velocity, and acceleration and are dependent on rotor 
motion for their generation. Since these loads are produced by 
rotor motion, they can be labeled as reaction forces. 

In addition to the reaction forces already described, pump rotors 
are also subjected to hydraulic excitation forces that are totally 
independent of rotor motion. Unlike the reaction forces, excitation 
forces are present even when the rotor is not whirling. The primary 
excitation forces of interest are hydraulic unbalance and blade
passing forces and are the only ones that will be discussed herein. 
The reader interested in a much more in-depth discussion of these 
and other hydraulic excitation forces should see Florjancic and Frei 
(1993). 

Hydraulic Unbalance 

Under the earlier heading, UNBALANCE RESPONSE 
ANALYSIS, the unbalance forces discussed arose due to 
mechanical imperfections such as eccentricities, tolerances, bowed 
shafts, etc. Such unbalance forces are said to be due to mechanical 
unbalance. Any mechanical unbalance force can usually be 
reduced or eliminated by balancing the rotating assembly more 
precisely. 

Another type of unbalance force that plays a prominent role in 
pump rotordynamics is hydraulic unbalance. Hydraulic unbalance 
arises due to small deviations from rotational symmetry in the flow 
passages within the impeller and pump casing. This asymmetry 
occurs due to geometric tolerances that can result in variations of 
flow areas and exit angles and eccentricities of the flow passages 
with respect to the rotation axis. The result of all this is a 
synchronous hydraulic force that behaves like an unbalance force. 
Although "hydraulic unbalance" loads also exist in pneumatic 
turbomachinery, the minuscule density of air renders them 
inconsequential. 

The reason why hydraulic unbalance loads can be so annoying 
is that they cannot be reduced by balancing. Trim balancing in the 
field is only capable of reducing the vibration level at the 
monitored locations, which are usually limited to bearings and 
couplings. Unbalance at the inaccessible impellers cannot be 
rectified. 

The only way hydraulic unbalance loads can be reduced is by 
implementing a more precise manufacturing procedure for the 
impellers. For a specified manufacturing method, there is a fixed 
amount of unbalance that the system will be forced to tolerate 
regardless of how well the machine is balanced. 

This problem is anything but trivial. Verhoeven ( 1988) states 
that the unbalance forces observed in practical pumps almost 
always exceed those that can be attributed to mechanical 
unbalance. The cause of this discrepancy is hydraulic unbalance 
forces, which he states are usually much larger than those due to 
mechanical unbalance. Bolleter, et al. ( 1989), second this 
statement in their paper. 

It is customary to represent hydraulic excitation forces in terms 
of a normalized force coefficient, defined as follows: 

where: 

KH = normalized hydraulic force 
F8 = actual hydraulic force (lbf) 

p = fluid density (lbf-sec2/in4) 
g = gravitational acceleration (in/sec2 ) 
H = head generated by impeller stage (in) 
D2 == impeller outside diameter (in)
82 = impeller discharge width including shrouds (in) 

(86) 

Since the orientations of the hydraulic unbalance forces at the 
individual impellers with respect to each other are totally random, 
statistical methods must be used to determine the total hydraulic 
unbalance load acting on the pump. Florjancic and Frei (1993) 
provide the following expression for this total load: 

where: 

FrnT = total hydraulic unbalance force (!bf) 
FuNB = unbalance force at an individual impeller (!bf) 
NsT = number of stages in pump 

(87) 

Florjancic and Frei ( 1993) provide a range of .020 to .050 as 
being representative for KH for a sand-cast impeller, even though 
they have seen values as high as . lO. For precision-cast impellers 
such as investment castings, they recommend a range of from .010 
to .025. Childs (1993) disagrees slightly, stating that the 
normalized force can be made as small as .005. Childs (1993) also 
notes that the precision can be improved through the utilization of 
machined impellers and uses a KH value of .0025 for them. 

Flotjancic and Frei ( 1993) note that if the mechanical unbalance 
corresponding to an ISO grade impeller having the maximum 
value of 6.3 for G in Equation (11) were converted into an 
equivalent K8 factor, it would be substantially lower than the
hydraulic unbalance values quoted above for precision-cast 
impellers. It is easily seen that in most practical pumps, hydraulic 
unbalance plays a larger role in the rotordynamic characteristics 
than does mechanical unbalance. 

Hydraulic unbalance is implemented into an unbalance response 
calculation by first selecting the appropriate value of KH for the 
impeller at hand. Equation (86) can then be used to calculate the 
radial force that arises from this unbalance. The equivalent 
unbalance to be applied to the model can then be calculated from 
the centrifugal force equation, as follows: 

UNB = 6177 • FH / w2 

where: 

UNB = unbalance to apply to model (oz-in) 
F8 radial unbalance force (!bf) 
w = rotational speed (rad/sec) 

(88)
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Vane-Passing Forces 

In addition to the reaction forces generated at the interfaces 
between impellers and diffusers or volutes, these intetiaces also 
produce hydraulic excitation forces at frequencies determined by 
the number of impeller vanes, number of casing vanes, and pump 
speed. These forces are generated due to the interaction of the 
nonuniform circumferential pressure and velocity distributions in 
the impeller and casing. The impeller pressure and velocity 
distributions are nonuniform. due to the finite vane thicknesses and 
the presence of boundary layers at the vane surfaces. 

In general, the magnitude of these forces is strongly dependent 
on geometry. As is the case with impeller rotordynamic 
coefficients, the radial clearance between the impeller and casing 
has a strong influence on these forces. F101jancic and Frei ( 1993) 
state that these loads decrease at a rate proportional to the radial 
clearance to the 0.77 power. Additionally, excitation forces can be 
diminished if the vanes are made thinner at the impeller discharge. 

The influence of these loads is also markedly dependent on the 
relative numbers of vanes on the impeller and diffuser. Some vane 
combinations create pressure pulsations that are additive when 
integrated around the circumference and others are self
compensating. Florjancic and Frei (1993) give the following rules 
for identifying vane number combinations to avoid: 

where: 

n • ZrMP - m • ZoJF * ::t: I 

n • ZrMP - m • ZmF * 0 

ZrMP = number of impeller vanes 
ZrnF = number of diffuser vanes (or volute cutwaters) 
ll, 111 = I, 2, ], ... 

(89) 

(90) 

Flo1:jancic and Frei ( 1993) comment further that the above rules 
are most important for low values of m and 11. Under no 
circumstances, should these rules be violated for values of l for 
both 111 and n. On the other hand, values of m and n greater than 
three are not even worth considering. Nelson and Dufour ( 1992) 
comment further that it is usually best to avoid designs in which m 
and n are both even numbers. 

As is the case with impeller forces represented by rotordynamic 
coefficients, vane-passing forces tend to be relatively small at BEP. 
As the flow is moved away from BEP, the forces increase, 
particularly at low tlowrates. 

Florjancic and Frei ( 1993) give a representative value of 0.025 
for KH (defined by Equation (86)) for a typical pump impeller at 
BEP. They note that multistage pump impellers are nonnally 
purposely staggered to minimize the net vane passage load acting 
on the pump shaft. The statistical relationship expressed by 
Equation (87) for hydraulic unbalance can also be used to 
determine the total vane passage load acting on the rotor. 

Florjancic and Frei ( 1993) also give the following typical vane
pass force magnitude ranges as a function of flow ratio: 

QI QBEP = .25: KH = .025 -.080 
QI QBEP = .50: KH = .015 -.060 
QI QBEP = 1.0: KH = .010 -.040 
QI QBEP = 1.25: KH = .020 -.060 

(91) 

Vane-passage forces are accounted for in the analysis procedure 
via the Campbell diagram, introduced earlier. As stated before, the 
Campbell diagram is a plot of damped natural frequencies as a 
function of running speed. In addition, positively sloped lines 
representing the excitations mising from each impeller should be 
plotted. The slope of each line is merely equal to its order number, 
which is the number of excitations applied in one complete 
revolution of the shaft. For instance, the order number of the 45 
degree line representing synchronous excitations is 1.0. 

Each impeller in the system generates vane-passage excitations 
at three distinct order numbers. The first two order numbers are the 
number of impeller vanes and the number of diffuser vanes ( or 
volute cutwaters). Additionally, a third order number is obtained 
from the following, taken from Corbo and Malanoski (1996): 

where: 

noRD 
ZJMP 
Zo1F 
CH 

order number 
number of impeller vanes 
number of diffuser vanes 
highest common factor of ZJMP and Zrnr 

(92) 

Any intersections between excitation lines and damped natural 
frequencies occurring on the Campbell diagram, within the 
operating speed range represent resonant points. 1f any resonant 
points are found, prudent design actions should be taken on the 
cognizant impeller to minimize the excitation forces and ensure the 
system will run smoothly. 

The main action that can be taken to reduce the magnitudes of 
vane-passing forces is the opening of the radial clearance between 
the impe.ller and casing. fn order to keep these forces in line, 
Marenco ( 1988) recommends keeping the ratio of radial clearance 
lo radius at 0.04 or higher. More detailed guidelines, along with 
documented case histories, are provided by Makay ( 1979), Makay 
and Nass (1982), and M<tkay and BaITett (l 984 ). In addition, 
Ncl.son and Du fonr ( 1992) provide design guidelines for 
minimizing vane-passing forces in Table 2 of their paper. Nelson 
and Dufour (1992) also note that these forces can be considerably 
diminished by sharpening the trailing edges of the impeller vanes, 
as they illustrate in Figure 8 of their paper. 

The authors are not aware of any good methods for analyzing 
the ability of a system to withstand a resonance triggered by vane
passing frequencies. However, this is not considered to be a major 
problem, since following the above design ground rules should be 
sufficient to avoid trouble. Additionally, Bolleter, et al. ( 1984), 
stale that vane-passing forces seldom influence the rotordynarnic 
behavior of pumps to any significant extent. 

CASING DYNAMIC EFFECTS 

All the rotordynamic models discussed so far have been 
conventional models in which the rotor and elements acting 
directly on the rotor (bearings, seals, etc.) rn·e the only components 
modelled. In these models, the bearings and seals, which are 
normally supported by the casing, are treated as being grounded. 
This model implicitly assumes that the casing is rigid and that its 
dynamics have no impact on those of the rotor. For a large number 
of practical turbomachines, this is a valid assumption. 

There are some pump designs, particularly vertical pumps. for 
which the above assumption is erroneous. In these configurations, 
the rotor and casing dynamics are intertwined and cannot be 
evaluated with a simple classical model. In such cases, a so-called 
"multilevel" model in which the dynamics of both the rotor and the 
casing are accounted for must be utilized. Chang and Braun (1987) 
give an example in which they modelled a vertical pump both as a 
single-level system and as a dual-level system. They found that the 
single-level model greatly overestimated the pump's stability 
margin and was inadequate. 

Figure 19 provides a schematic of a multilevel model consisting 
of two levels, a rotor and a casing. The springs connecting the two 
levels represent the rotor's supports at bearings, seals, etc. The 
reaction forces at these supports are no longer linear functions of 
the rotor's displacement, velocity, etc. Instead, these forces are 
dependent on the relative displacements, velocities, and 
accelerations between the rotor and casing at the connection 
points. The springs attached to the top of the casing level represent 
the casing's supports that are assumed anchored to ground. 
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Figure 19. Two-Level Model Schematic. 
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The rotordynamic behavior of systems, such as that depicted in 
the figure, can be determined using special multilevel computer 
programs. The input parameters for the rotor are the same as 
discussed previously. Moreover, when modelling the casing, it is 
treated as if it were a separate rotating body. The input parameters 
and modeliing ground rules are identical to those previously 
provided for rotors. 

An additional input parameter that is often included for the 
casing in response analyses is the modal damping ratio. This 
accounts for damping in the casing structure due to material 
hysteresis and friction between adjacent parts. As with a simple 
spring-mass system, the damping ratio is defined as the ratio of the 
damping coefficient to the critical damping coefficient. A survey of 
the literature reveals that most authors recommend utilization of a 
casing damping ratio between one and five percent of critical. The 
rotor does not provide any hysteretic damping during synchronous 
whirling since its fibers am not cycled between tension and 
compression. 

When an analysis is run using a multilevel model, the computer 
provides deflected shapes for both the rotor and casing, usually 
superimposed on the same plot. When inspecting these, the user 
should pay particular attention to modes in which the rotor and 
casing vibrate out of phase with each other. Sometimes referred to 
as "bearing-cruncher modes," these modes are often indicators of 
overloading, rubbing, and/or potential failures at bearings and seals. 

The authors have found that multilevel modelling is particularly 
effective when combined with test data from an actual unit. The 
test data are used to anchor the model and overcome e1Tors in the 
calculation of the stiffnesses of the supports linking the various 
levels which are the model parameters containing the most 
uncertainty. Of course, this strategy cannot be used on new 
designs, but it is highly recommended when making alterations to 
existing designs or troubleshooting units in the field. 

Determination of Need for Multilevel Model 

Although a multilevel model can be used to obtain an accurate 
picture of the rotordynamic behavior of any machine, there are 
many instances in which the additional modelling time and 
complexity associated with these models are not warranted. The 
natural question that then arises is how does an analyst know 
whether or not a multilevel model is needed for the machine under 
consideration. 

The primary criterion is the proximity of the casing's natural 
frequencies to the unit's operating speed range. Bolleter, et al. 
(1984 ), describe a case in which the shaft's vibrations are 
significantly influenced by casing dynamics only at speeds in the 
immediate vicinity of the casing's natural frequency. This 
influence occurs because the components that couple the rotor to 
the casing permit the synchronous excitations from the rotor to 
excite the casing's natural frequency. If all the casing natural 
frequencies are outside the running speed range and displaying the 

requisite margin of 15 to 20 percent, a conventional model 
ignoring casing dynamics can be employed with confidence. If one 
or more of the casing's natural frequencies are unable to 
demonstrate this margin, a multilevel model may be required. 

Prior to generating the unit's rotordynamic model, the authors 
recommend that a rough estimate of the casing's relevant natural 
frequencies be made. This calculation is often performed using 
finite element analysis which is convenient if a finite element 
model for the casing has previously been generated for other 
purposes. If not, the authors have often successfully used hand 
analysis to execute this calculation. 

Per Chen, et al. ( l 982), there are five casing vibration modes that 
should be considered: rigid-body horizontal and vertical, rocking, 
pitching, and torsional. These are depicted in Figure 20. They 
proceed to state that the pitching and torsional modes are less 
interactive with the rotor than are the other three. Looser, et al. 
(1988), agree that the torsional mode is unthreatening, but state that 
the pitching mode is "dangerous" since it is usually lightly damped. 
Accordingly, the authors recommend estimation of all relevant 
casing natural frequencies except for that for the torsional mode. 
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Figure 20. Casing Vibratory Modes. 

VERTICAL PUMP PROBLEMS 

All the factors affecting pump rotordynamics discussed so far 
apply to all types of pumps, including vertical pumps. However, 
vertical pumps often introduce unique problems that are seldom 
found in horizontal units. First, the common use of a flexible casing 
frequently necessitates implementation of a multilevel model 
similar to those just discussed. Secondly, the popular practice of 
lubricating vertical pump bearings with process fluids drives the 
analyst to use nonstandard techniques to evaluate their dynamic 
coefficients. Finally, other idiosyncrasies such as lightly loaded 
bearings and vortices at the axial inlet can lead to problems of their 
own. As a result, Nelson and Dufour (1992) state that vertical 
pumps experience more frequent failures than do horizontal units. 

Casing Flexibility 

Unlike horizontal pumps, the casing in vertical pumps is often 
not rigid compared with the rotor. In a typical design, the long 
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rotating shaft is surrounded by a stationary column that serves to 
anchor the bearings and seals. This column, in turn, is connected to 
the casing via spider connections. All three structures are usually 
suspended vertically from the pump's mounting plate, which is 
grounded to the foundation. Since they are not supported anywhere 
else, they all behave as long cantilever beams. 

A schematic of a typical vertical pump arrangement, taken from 
Darlow, et al. (1978), is shown in Figure 21. All three structures 
discussed above are, indeed, cantilevered from the mounting plate. 
Darlow, et al. (1978), analyzed this pump using a three-level 
rotordynamic model. This is quite typical of the procedure needed 
to analyze ve11ical pumps. The multilevel modelling techniques 
discussed in the last section are often needed when analyzing 
vertical pumps. 

Pump 
Impeller 

Mounting Plate 

Figure 21. 1)1pical Vertical Pump Configuration. 
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In line with the above, the vibration behavior of ve11ical pumps 
has also been shown to be dependent on the stiffness of the 
mounting plate that fastens the casing to the concrete foundation. 
Nagy and Chen (1984) advocate taking this stiffness into account 
by using conventional trunnion angular stiffness equations that can 
be found in many strength of materials texts. Smith and Woodward 
(1986) report a case where the pump's natural frequencies were 
found to be a strong function of the stiffness of the bolted 
connections between the pump, motor, and concrete foundation. 

Process Fluid-Lubricated Bearings 

The dynmnic coefficients for fluid-film journal bearings are 
usually calculated using computer algorithms based on the 
Reynolds lubrication equation which assumes laminar flow. The 
laminar flow assumption is usually valid for bearings lubricated 
with high viscosity lubricating oils, which accounts for those used 
in the vast majority of horizontal machines. Since vertical pumps 
are usually suspended below ground level, it often greatly 
simplifies the design to use the process fluid to lubricate the 
journal bearings. These process fluids, such as water, liquid metals, 
and radioactive sludge, frequently possess relatively low 
viscosities, which tends to make the journal bearing flow turbulent. 

As is true for many other types of flows, the flow regime that a 
journal bearing operates in is characterized by its Reynolds 
number, which is defined as follows: 

where: 
Re8 
D = 

w = 

h 
p 
µ = 

Re8 = '1T • D • w • h • p / µ 

bearing Reynolds number 
bearing diameter (in) 
rotational speed (rad/sec) 
bearing radial clearance (in) 
fluid density (lbf-sec2/in4) 
fluid viscosity (lbf-sec/in2) 

(93) 

At low Reynolds numbers, the flow is laminar. As the Reynolds 
number is increased from zero, it has been conclusively 
demonstrated that laminar flow first breaks down when the 
Reynolds number reaches the critical value given by the following: 

ReCR = 41.1 • (R / h)0.5 

where: 

RecR critical Reynolds number 
R = bearing radius (in) 
h = bearing radial clearance (in) 

(94) 

When the Reynolds number reaches this criti.cal value, a fairly 
orderly pattern of fluid vortices, known as Taylor vortices, form in 
the fluid annulus. This so-called superlaminar flow regime is 
analogous to the transition regime between laminar and turbulent 
flow for pipe flows. As the Reynolds number continues to increase, 
the flow becomes more random and less orderly, until it reaches a 
po.int at a Reynolds number somewhere between 1000 and 2000 
where it becomes fully turbulent. In this regime, even though the 
fluid behaves as if it is thoroughly turbulent, many researchers 
have reported that vm1ices can still be seen in the flow. 

The three bearing flow regimes can be clearly identified by 
plotting the beming's viscous power dissipation versus shaft speed 
as speed is increased from zero. At low speeds, the flow is laminar 
and the power loss follows the tradilional relationships quite 
faithfully. Entrance into the superlaminar regime is signified by a 
marked increase in the slope of the power dissipation versus speed 
curve. Another significant increase in slope marks the beginning of 
the turbulent regime. Thus, the predominant effect of turbulence in 
bearings is a major increase in viscous power dissipation. 

Many researchers have pointed out that turbulent bearing flow 
can be thought of as merely laminar flow of a fluid having a greatly 
increased viscosity. lt is this increase in effective viscosity that 
leads to the much greater power losses experienced in the turbulent 
regime. The increased viscosity also reduces the cooling flow that 
the bearing is capable of drawing into the fluid film. 
Accompanying these two phenomena are higher temperatures 
throughout the fluid film. On the positive side, the higher effective 
viscosity leads to higher pressures within the fluid film and a 
somewhat augmented load capacity. 

Wilcock ( l 978) provides the following expression for the 
effective viscosity due to turbulence: 

ILEFF = 0.0139 • Re�·657 • µ

where: 

ILEFF effective viscosity due to turbulence (lbf-secfin2) 
Re8 = bearing Reynolds number 
µ actual fluid viscosity (lbf-sec/in2) 

(95) 

Some researchers have reported moderate success using laminar 
flow solutions with the above effective viscosity to model 
turbulent flows. 

A more prudent course of action is to utilize a computer code 
that is capable of computing dynamic coefficients for journal 
bearings experiencing turbulent flows. There are many such codes 
available today. Many of these are descendants of the pioneering 
work in turbulent lubrication done by Constantinescu (1962), Ng 
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and Pan (1965), and Hirs (1973). Saibel and Macken (1974) 
provide tables summarizing much of the trail-blazing analytical 
and experimental work that has been done in this field. The user is 
cautioned that a computer code with turbulent lubrication 
capabilities should be employed when calculating coefficients for 
process fluid-lubricated bearings. 

In addition to the impact of turbulence on dynamic coefficients, 
process-fluid lubricated bearings also have the following dynamic 
characteristics: 

• They generally provide much less damping than do oil
lubricated bearings. This is more of a function of their typically
reduced viscosity than their turbulence. Allaire, et al. (1984), state
that it is common for a water-lubricated bearing to possess an order
of magnitude less damping than an oil bearing.

• They are more likely to encounter stability problems than are
traditional bearings. This is partially clue to the decreased damping
discussed above and partly due to the greater attitude angles and
film thicknesses characteristic of their turbulent flows.

Other Problems 

There are an assortment of other rotordynamic problems that 
have traditionally been associated with ve1iical pumps. One of 
these is vibration due to liquid vortices forming in the sump and 
entering the pump inlet. Corley (1980) discusses a case in which 
sump vortices generated large subsynchronous vibrations in a 
vertical pump. 

Unfortunately, the sump fluid flow analytical model needed to 
predict the presence and strength of inlet v011ices is normally 
extremely complicated and requires an exorbitant investment of 
time. Thus, the authors do not recommend including such an 
analysis in the design procedure. Instead, if the user has reason to 
believe that vortices could be a source of problems, the authors 
recommend that precautions be taken to minimize this possibility. 
Per Corley ( 1980), these precautions include placing baffles within 
the sump, extending the pump inlet such that it is in close 
proximity to the sump bottom, and installing a cone beneath the 
pump inlet. 

Another problem unique to vertical pumps can occur when 
several pumps are suspended from the same mounting plate. In this 
�ituation, the individual pumps may dynamically interact and 
shake the casings and other stationary structures. This 
phenomenon can usually be identified by the amplitudes 
periodically increasing and decreasing in a beating pattern caused 
by the vibrations of the various pumps being alternately in phase 
and out of phase. The best remedy for this problem is to allocate a 
separate mounting plate for each vertical pump in the system. 

Another common vibration problem found in vertical pumps is 
journal-beaiing-induced instability. This occurs because, unlike in 
horizontal machines, vertical pump bearings are not gravity 
loaded. Consequently, these bearings are lightly loaded and much 
more prone to instability than those in horizontal pumps. 

METHODS FOR ELIMINATING PROBLEMS 

At this point, the reader may be thinking that since the authors 
have emphasized the increased complexity of pump rotordynamic 
analysis compared with that of other turbomachines, that the 
authors feel that pumps experience more rotordynamic problems in 
the field than do other turbomachines. On the contrary, it has been 
the authors' experience that, in general, pumps suffer fewer 
rotordynamic problems than do compressors and turbines. The 
authors believe that this is primarily due to the increased stiffness 
and damping provided by annular seals in pumps. 

The authors are, by no means, alone in holding these beliefs. Nelson 
(1987) states that wet critical speeds cannot usually be seen in the field 
due to the large damping provided by the seals. Pace, et al. (1986), 
concur with this, stating that even when the seals are in the worn 
condition, they still provide enough damping to suppress the critical 

speeds. Frei, et al. ( 1990), also agree, stating that the phase angle shift 
is often the only indicator of resonance in a multistage pump. 

There are other sources that indicate that instability problems in 
pumps are also less common than in compressors and turbines. 
Gopalakrishnan and Husmann ( 1982) state that due to the large 
amount of damping usually found in centrifugal pumps, self
excited vibrations are rarely observed. BmTett ( 1986) agrees, 
stating that, with the exception of vertical pumps, pumps do not 
experience as many instability problems as do compressors and 
turbines. 

However. this does not, in any way. suggest that pump 
rotordynamic analysis is merely a formality. In the authors' 
experience, there have been many occasions in which the analysis 
procedure advocated herein was needed to rectify an existing 
problem in the field. If a problem is uncovered during the design 
phase, it should be taken seriously, and corrective action should be 
taken at that time. 

If the analysis procedure reveals a potential problem, there are 
several paths that can be followed to rectify the situation. This is 
the one [U-ea where the large number of parameters that affect the 
rotordynamic behavior of pumps may be considered a blessing, 
since they provide the user with many alternatives for escaping 
trouble. Although many of the potential fixes to be discussed are 
applicable to all types of rotating equipment, the reader will note 
that many are unique to pumps. 

In general, lateral rotordynamics problems can be divided into 
two lll,\jor ca!cgories: unbalance response problems and instability 
problems. The potential remedies for the two problem types are 
different and will be addressed separately. 

Elimination of Unbalance Response Problems 

The most straightforward method for escaping an unbalance 
response problem is reduction of the magnitude or the unbalance 
force exciting the mode of interest. This is sometimes relatively 
simple if the unbalance is due to mechanical effects. However, if 
the troublesome excitation is due to hydraulic unbalance, the only 
means for reducing the excitation magnitude is changing lo a more 
precisely manufactured impeller. The cost of doing this can often 
be prohibitive, so this is not always a viable option. 

Another means for reducing response amplitude is via addition 
of damping to the system. This can take the form of a change in 
bearing design, such as conversion from rolling element to fluid
film bearings. Alternatively, seal designs can be modified per the 
general guidelines provided previously to provide a greater amount 
of damping. In extreme cases, squeeze-film dampers can be 
installed in the bearing housings at the cost of added expense and 
complexity. Regardless of which damping augmentation method is 
chosen, it should be located in a region where the mode shape 
displays a significant amplitude or its impact will be limited. 

A third solution to response quandaries is alteration of the 
system's natural frequencies to eliminate the troublesome 
resonance point. This can be accomplished by modifying the shaft, 
casing, or bearing stiffness, guided, of course, by the critical speed 
map and relevant mode shape. Additionally, Leader ( 1984) 
provides a good summary of the effects of varying various design 
parameters, such as bearing span, on critical speeds. Alteration of 
seals, impellers, fluid annuli, etc., to change their stiffness charac
teristics can also be pursued. If this option is selected, it must be 
realized that a new dynamic system has been created which 
deserves a new rotordynamic analysis of its own. 

Elimination of Stability Problems 

There are three general paths that may be followed for 
eliminating stability problems. First, the source of the instability 
such as journal bearings, seals, or impellers may be weakened or 
eliminated. Secondly, damping may be added to the system at the 
bearings and/or seals or in the form of squeeze-film dampers. 
Finally, the system's first critical speed may be raised to raise the 
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machine's instability threshold speed to a value above the 
maximum running speed. 

The first solution, that of reducing the strength of the instability 
mechanism, is also the most obvious. If the excitation source is a 
bearing, changing from a plain journal design to any of the well
known stabilizing configurations such as multilobed, pressure 
dam, or tilting pad can often eradicate the problem. Tilting pad 
bearings are particularly effective in this regard since, 
theoretically, their cross-coupling coefficients are zero. 
Additionally, anything that can be done to increase the loading on 
lightly loaded bearings improves the system from a stability 
standpoint. 

If the primary instability source is a seal or impeller, the most 
practical rectification approaches are those that reduce the average 
swirl within the close-clearance gap. The successful use of swirl 
brakes to solve instability problems triggered both by seals and 
impellers has been reported many times in the literature. 
Furthermore, if the instigator is a seal, modification to a roughened 
stator damper seal design may be all that is needed to solve the 
problem. Some other unique fixes to pump instability problems are 
provided by Smith, et al. (l 996). 

The second solution is the addition of damping to the system at 
beadngs, seals, etc. The specifics for this option are the same as 
those discussed for co1Tecting unbalance response problems. 

The third fix is the raising of the system's first critical speed. 
This is usually accomplished via stiffening of the shaft and/or 
supports. As was discussed earlier, in order to be effective, the 
stiffened components must be located in regions demonstrating 
significant displacements in the first mode shape. Since the direct 
stiffoesses of annular seals were previously shown to be dependent 
on a large number of design parameters, the seals represent a 
potentially frnitful source of assistance. 

OVERALL ANALYSIS PROCEDURE 

At this point, the plethora of information presented so far is 
likely to have the reader thinking that the title for this paper is 
totally inappropriate. However, the authors believe that the step
by-step analysis procedure that is about to be presented boils all the 
preceding information down into a form that can be easily 
understood and implemented by the vast majority of pump users. 

Parameter Sensitivity Studies 

Although it has been shown that there are many parameters that 
can affect the rotordynamic characteristics of pumps in general, for 
a given pump, some of those parameters may be inconsequential. 
The authors recommend that a critical speed map for the dry 
condition be generated at the outset of the analysis procedure. The 
wet parameters such as seal coefficients, impeller coefficients, etc. 
should then be introduced into the analysis one at a time to 
determine their influence on the system. Any parameters whose 
influence is found to be negligible should be discarded and ignored 
for the remainder of the analysis procedure. 

Additionally, the effects of tolerance variations should also be 
evaluated. The rotordynamic analysis of pumps would be 
relatively straightforward if each analysis type only needed to be 
applied to a single, nominal system. Unfortunately, such a 
simplified analysis is woefully inadequate for predicting pump 
rotordynamic behavior. The literature is filled with cases where a 
pump's behavior changed drastically when a single design 
parameter, such as journal bearing clearance, was varied between 
the extreme values permitted by its tolerance. The effect of 
tolerances is so great that Pace, et al. ( 1986), state that it is very 
common for two nominally identical pumps to exhibit markedly 
different rotordynamic characteristics. Accordingly, a study of the 
effects of expected parameter variations on the system should be 
an integral portion of the rotordynamic analysis process. 

Some of the parameters whose variation through expected 
tolerances can alter the machine's behavior include the following: 

• Journal bearing clearances-The rotordynamic coefficients of
journal bearings are strongly dependent on the radial clearance,
generally decreasing with increasing clearance. The difference in
rotordynamic behavior between the minimum and maximum
clearance cases is often profound. For instance, Wachel, et al.
(1995), present an unbalance response analysis where the
predominant peak calculated using maximum bearing clearances
completely disappears when minimum clearances are employed.

• Journal bearing static load-Similar to the above item, journal
bearing coefficients are also strongly dependent on the static load
imposed on them. For horizontal machines where the primary
bearing loading is dead weight, this is not a problem since the load
is essentially constant. For bearings whose main loading is due to
a gear load, particularly in vertical pumps, the load usually varies
with the pump's power and flow condition. A corresponding
variation in dynamic coefficients will accompany this.

• Journal bearing preload-The dynamic coefficients of
preloaded designs such as elliptical, multilobe, and tilting pad vary
directly with the amount of geometdc preload present. The effect
of preload tolerances is, thereby, similar to that of clearance
tolerances.

• Journal bearing fluid temperature-Variations in fluid viscosity
due to temperature changes can have dramatic effects on the
rotordynamic coefficients.

• Seal wear-The statement made above regarding journal
bearing clearances also applies to seals, although it is to a lesser
extent since seal coefficients are usually somewhat smaller than
those for bearings. Furthermore, since seals wear much easier than
bearings, the resulting enlarged clearances result in a further
diminishing of their dynamic coefficients. Frei, et al. ( 1990), go as
far as to say that most pump subsynchronous vibration problems
occur after the seals have worn. Many experts, including the
authors, advocate consideration of the worn seal case, in which the
seal clearance is assumed to be twice the design clearance, during
the design process.

• Seal coefficients-Although these coefficients are not strictly
associated with a tolerance, .it is still important to know the
system's sensitivity to their variation due to the i.:ncertainty
associated with their calculation. If a bulk-flow procedure such as
Black's is utilized to generate the coefficients, the amount of
uncertainty is smallest for short plain seals. In increasing amounts
of uncertainty, the other seal types can be listed as long plain seals,
circumferentially grooved seals, and helically grooved seals. Of
course, if CFD is utilized to obtain the coefficients, the uncertainty
is drastically diminished.

• Impeller radial and shroud clearances-As stated earlier, the
rotordynamic coefficients of impellers have a strong inverse
dependence on the clearance between the impeller and its mating
casing. Tolerances on these clearances play the same role as do
those on journal bearing and seal clearances.

• Impeller coefficients-As with seal coefficients, there is always
an uncertainty involved with impeller coefficients arising from the
relatively imprecise manner in which they are obtained.

• Amount and distribution of hydraulic unbalance in the system
In conventional rotordynamic analyses the only unbalance loads
that are considered are those due to mechanical unbalance. The
magnitudes of these loads are reasonably well known, due to the
fact that all machines are balanced to some level of precision. On
the other hand, the hydraulic unbalance loads at each impeller,
which have already been shown to be typically greater than the
mechanical unbalance loads, are totally random and can vary from
zero for a perfect impeller to a maximum value that is rather vague.
The unbalance response of a given machine can exhibit
tremendous variation dependent on the level of hydraulic
unbalance applied.
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• Process fluid density-It has already been shown that the
dynamic coefficients for seals, impellers, and fluid immersion
effects are directly propmtional to the density of the process fluid.
Fluid density variations can alter rotordynamic behavior
substantially.

It is obvious that the number of tolerance combinations that can 
occur in a given assembly is staggering. It is just as obvious that it 
would be totally impractical to attempt to perform a rotordynamic 
analysis for every combination to ensure that the machine will not 
encounter trouble under any operating condition. Instead, a great 
deal of engineering judgment must be exercised in choosing the 
cases to be run in order to provide sufficient confidence that the 
machine will run smoothly without expending an inordinate 
amount of time. 

This problem has been addressed in different manners by 
various authors. Atkins, et al. (I 985 ), advocate the running of two 
extreme unbalance response cases to bracket the true response. 
They advise that the first case should be run with the fluid-film 
bearings at their maximum clearances and with seal dynamic 
coefficients totally ignored. This should yield the lowest possible 
critical speeds. The other extreme sbould be simulated by utilizing 
minimum journal bearing clearances and including seal 
coefficients calculated with minimum clearances. 

Wadiel (1986) proceeds along the same lines when discussing the 
cases that should be run in a design audit for a compressor or turbine. 
He advocates running a case with all journal bearings at maximum 
clearance, minimum preload, and maximum oil temperature. 
Subsequently, the other limiting case, in which these three 
parameters are all taken to the opposite extremes, should also be run. 

Ahhough these approaches certainly contain merit, the tack 
favored by the authors is more like that used by Chang and Braun 
(1987) in an analysis they conducted on a vertical pump. In this 
calculation, they evaluated the sensitivity of the system to 
specified variations in some of the more uncertain quantities of 
interest. Prominent among these were dynamic coefficients for the 
seals and impellers. They assumed that wear ring coefficients 
could vary by ±20 percent while balance piston coefficients had 
an uncertainty of ±50 percent. For the imprecisely obtained 
impeller coefficients, they allowed for a variation of± I 00 percent. 

The authors recommend that a complete rotordynamic analysis, 
utilizing the step-by-step procedure of the next section, be first 
performed on a nominal system. This calculation should establish 
the basic rotordynamic characteristics of the machine and highlight 
potential trouble spots. The relevant parameters should then be 
taken to the extremes of their tolerance values one at a time and the 
impact of each variation on the system should be noted. This 
methodical procedure permits the establishment of the sensitivity 
of the system to variation of each relevant parameter. 

Once the parameter sensitivity study is complete, all parameters 
whose vtu-iation bas been shown to have little impact on the 
system's behavior should be held constant at their nominal values 
for the remainder of the analysis. The user should then exercise 
judgment to run a minimum of further calculations with the 
relevant parameters taken to their extreme values to establish 
whether or not the design is viable. 

The reader may feel that the authors are being vague in this area 
but that is purely intentional. There is no way that the authors can 
provide a cookbook procedure that would be applicable to every 
conceivable case. Each situation must be evaluated on an 
individual basis using engineering judgment and common sense. 

Overall Design Procedure 

When faced with the task of performing a lateral rotordynamic 
analysis for a pumping system, the authors recommend that the 
user proceed per the following step-by-step procedure (omitting, of 
course, those steps shown to be unnecessary by the parameter 
sensitivity study): 

1. Generate the lumped parameter rotor model from the
appropriate hardware drawings.

2. Calculate the dynamic coefficients for all fluid-film and rolling
element bearings.

3. Calculate the dynamic coefficients for all annular seals using the
best available procedures.

4. Determine the dynamic coefficients for all impellers.

• Find the impeller for which there is dynamic coefficient test
data (either within the user's organization or in the general 
literature) that most closely matches tile impeller under 
consideration. 

• Determine nondimensional coefficients for the reference
impeller from test data. 

• Use Equations (63) through (69) to convert the dimensionless
coefficients into dimensional coefficients. 

5. Determine the dynamic coefficients for thin, liquid-filled annuli.

• If necessary, divide the annuli up into shorter annuli, using
judgment. 

• Use Equations (78) through (84) to calculate the stiffness,
damping, and mass coefficients for each of the annuli. 

• Apply the coefficients to the axial centmids of each annulus.

6. Determine the added mass coefficients for shafts immersed in
liquid.

• If necessary, divide the liquid-filled region into shorter
regions, using judgment. 

• Use Equation (85) to determine the added mass coefficients.

• Apply the added mass coefficients to the axial centroids of
each region. 

7. Determine if a multilevel model is needed to account for casing
dynamic effects.

• Using hand analysis, calculate the natural frequencies of the
casing or casings. 

• Jf the casing natural frequencies are all outside the operating
range (demonstrating a 1mu-gin of 20 percent or more), proceed 
with a single-level model. 

• If the above criterion is not met, construct a multilevel model.

8. If a single-level model is being utilized, calculate the horizontal
and vertical stiffnesses for all the bearing pedestals and input them
to the model.

9. Generate a critical speed map.

• Repeatedly run the natural frequency program for various
values of bearing stiffoess while maintaining all other stiffnesses 
(seals, pedestals, etc.) constant at their nominal values. 

• Plot the natural frequencies versus bearing stiffness and
bem·ing horizontal and vertical stiffnesses versus speed as shown in 
Figure 6. 

10. Determine undamped critical speeds and mode shapes.

• Use a critical speed map to detennine approximate location of
eacb critical speed. 

• Determine dynamic coefficients for all components (bearings,
seals, etc.) at the approximate critical speed. 

• Rerun natural frequency program with the above coefficients
as inputs. 

• If resulting critical speed is close to assumed value, a true
critical speed has been found. If not, rerun with another guess for 
critical speed. 
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l l .  Perform hand checks to verify accuracy of computer undamped
analysis results.

12. Use critical speed map to detennine points that must be
checked out with unbalance response analysis.

• If all critical speeds are above operating speed range and
exhibiting sufficient margin ( 15 to 20 percent), no unbalance 
response calculations need be performed. 

• A separate unbalance response calculation should be executed
for each critical speed that lies within the operating speed range 
(including those above the range having insufficient margin). 

• A separate unbalance response calculation should also be per
formed for each critical speed lying below the operating speed range. 

13. Perform unbalance response analysis for each point uncovered
above.

• Use undamped mode shape to determine appropriate
locations to place unbalance loads. 

• Detennine appropriate levels of mechanical unbalance to apply
to model using governing specification or Equations ( 11) or ( 12). 

• Based on the method used to manufacture the impellers,
determine appropriate levels of hydraulic unbalance to apply at 
impellers. 

• Run unbalance response as a function of speed, applying both
mechanical and hydraulic unbalances to model. 

• Use unbalarn.:e response versus speed plot to determine peak
response speed. 

• Determine acceptabil.ity of system at peak response speed by
looking at deflections in close clearance locations, dynamic 
bearing loads, amplification factors, etc. 

• If system is unsatisfactory, proceed to step 15.

14. Perform damped natural frequency/stability analysis.

• Run analysis at maximum operating speed.

• Ensure that logarithmic decrement for each damped natural
frequency uncovered is greater than +0.30. 

• U above criterion is not fulfilled. proceed to step 15.

15. Implement corrective actions for any response or stability
problem uncovered.

16. If execution of previous step causes system to change
significantly, reanalyze new system, beginning witl1 step l .

CONCLUSION 

A comprehensive procedure for the lateral rotordynamic 
analysis of pumps has been presented. The methodology is general 
enough that it should be applicable to any pumping system that 
may be encountered. The key points that should be emphasized are 
as follows: 

• A thorough rotordynamic analysis should always be included as
an integral part of the design process for any pumping system.

• Most pump rotordynamic problems experienced in the field are
preventable if prudent design action is taken.

• The essence of lateral rotordynamic analysis is identification of
all synchronous resonance points and determination of the
system's ability to withstand them and ensuring that
nonsynchronous instability problems will be avoided.

• A critical speed map should be generated as soon as possible to
provide visibility into the overall situation.

• In stark contrast to many engineers' practices for compressors
and turbines, a stability analysis should always be performed for
pumps.

• Dry rotordynamic analysis is insufficient for a pump. The fluid
interaction effects at seals, impellers, etc., need to be accounted for
in the analysis.

• The significance of casing flexibility should always be investigated.

• Parametric studies should always be used to determine the
combinations of tolerance conditions that need to be analyzed.

• Rotordynamic analysis is not an exact science. Although many
of the calculation procedures are relatively sophisticated, the role
of the skill and judgment of the analyst should never be
underestimated.
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